
Mechanisms for Attack Protection
on a Prevention Framework

Joaquı́n Garcı́a, Sergio Castillo, Guillermo Navarro, andJoan Borrell

Dept. of Information and Communications Engineering,
Autonomous University of Barcelona,

Edifici Q, 08193 Bellaterra (Spain)
Email: {jgarcia,scastillo,gnavarro,jborrell}@ccd.uab.es

Abstract

Current research inIntrusion Detection Systems(IDSs),
targeted towards preventing computer attacks, is mainly
focused on improving detection and reaction mechanisms,
without preserving the protection of the system itself. This
way, if an attacker compromises the security of the detection
system, she may be able to disarm the detection or reaction
mechanisms, as well as delete log entries that may reveal
her actions. Given this scenario, we introduce in this paper
the use of an access control mechanism, embedded into the
operating system’s kernel, to handle the protection of the
system itself once it has been compromised by an attacker.

1 Introduction

Network attacks often benefit from distributed and coordi-
nated techniques, since it opens the possibility to perform
more complex tasks, such as distributed denial of service or
coordinated port scans. These techniques are also useful to
make their detection more difficult and, normally, these at-
tacks will not be detected by exclusively considering infor-
mation from isolated sources of the network. Likewise, Net-
work Intrusion Detection and Response Systems also ben-
efit from a distributed implementation. Different compo-
nents of the system may look for different attack evidences,
in order to detect this new kind of attacks.

We are currently working on a decentralized approach for
achieving this distribution. Our solution uses a tuple space
to communicate the different components within and with
each other. Middle-level analyzers place alerts into a dis-
tributed tuple space, and higher-level analyzers consume
those tuples to perform a detection and reaction process [3].

One of our main objectives is to obtain a system able to
fulfill attack protection to its components. This way, the
system itself must maintain acceptable, though possibly de-
graded, service despite attacks in parts of the system, be
them at network, application or system level. In order to
achieve this goal, we started out doing research on protec-
tion mechanisms to handle the security and strength of our
prevention system’s components. As a result of our current
work, we present in this paper the development of a protec-
tion module integrated into the kernel of our research proto-
type’s operating system,GNU/Linux, and implemented over
theLinux Security Modules(LSM) framework [9].

The protection mechanism consists of building a comple-
mentary kernel access control scheme, to handle the protec-
tion of the system itself once it has been compromised by
an attacker. To do this, it intercepts and cancels unlawful
system calls launched by the attacker. Thus, even if the at-
tacker gains administrator permissions, she will not achieve
her purpose. This security enhancement is solved without
having to recompile the kernel, and with a high degree of
flexibility and portability when compared to other propos-
als for theGNU/Linuxkernel, such as [5] and [6].

1.1 Paper Organization

The rest of this paper is organized as follows. Section 2
shows a brief overview of our attack prevention system, as
well as the main components to protect it through the pro-
tection scheme proposed in Section 3. We also present in
this section a first implementation of such mechanism on
our research prototype, through theLinux Security Modules
(LSM) framework, as a kernel based access control mech-
anism. Finally, Section 4 closes the paper with a list of
conclusions and future work.

1



2 System Overview

The main purpose of our prevention system is to detect and
react to coordinated or distributed attacks. By means of a set
of cooperative entities which are lodged inside the network,
the system avoids the use of network resources to perform
coordinated attacks against third party networks. The aim
of this system is not only to detect incoming attacks against
these entities, but also to detect when these nodes are the
source of one of the different steps of a coordinated attack
to avoid it.

Our approach is based on gathering and correlating infor-
mation held by multiple sources. We use a decentralized
scheme based on message passing to share alerts in a secure
communication infrastructure. The information exchange
between peers is intended to manage a more complete view
of the whole system. Once achieved, one can detect and re-
act on the different actions of the corresponding attack [3].

Each node of the architecture is made up of a set of ana-
lyzers (with their respective detection units or sensors),a
set of alert managers (to perform alert processing and ma-
nipulation functions), and a set of local reaction units (or
effectors). These components, and the interactions between
them, are briefly described below:

Analyzers – They process, in user space, the information
gathered by associated sensors, implemented as operating
system’s kernel modules, to infer possible alerts. Their task
is to identify occurrences which are relevant for the exe-
cution of the different steps of an attack and pass this in-
formation to an alert correlation manager. The interesting
occurrences are local alerts. Each local alert is detected in a
sensor’s input stream and exchanged to the set of managers
through the use of a publish/subscribe system.

On the other hand, the communication between sensors and
analyzers is solved vianetlink sockets, a Linux specific
mechanism that allows us to perform communication be-
tween kernel modules and user space processes via the well
known primitives from the socket treatment.

Managers – In order to facilitate the management of alerts,
our architecture provides a set of clients to manage both
both local alerts (i.e., messages provided by the node’s ana-
lyzers) and external messages (i.e., the information received
from other collaborating nodes). Just like for the commu-
nication between the analyzer and the correlation manager,
the communication between managers is also implemented
through the use of a publish/subscribe system.

3 Protection Mechanisms

As described out in [3], the entities of our prevention plat-
form cooperate to detect if the resources, where they are
lodged, are taking an active part of a coordinate attack. As it
happens with any other traditional detection system, if an at-
tacker is able to manipulate the processes associated to each
node, she could bypass the detection mechanisms. Thus, the
intruder could make its way to hide the local part of the at-
tack from the node. This problem leads to the need for intro-
ducing a protection mechanism on the different components
of each node, keeping with their protection and mitigating
or even eliminating any attempt to attack or compromise
the platform and its operation. This way, even if an attacker
compromises the security of the system, she would not be
able to disarm the detection and reaction mechanisms.

Given the inherent characteristics of our prevention plat-
form’s design, and according to [5], we consider two possi-
ble protection mechanisms: theauto-protectioncarried by
each node’s elements, and the protection of the elements
carried by the operating system’s kernel. In the first case,
each component is responsible for its own protection, us-
ing mechanisms such hiding its processes, or cryptographic
techniques associated to the system logs. Most of the cur-
rent proposals in this field, e.g. [2, 7], are inefficient against
some attacks. For example, when the intruder is in a privi-
leged position, she may interact without restriction with the
components through the underlying operating system.

Therefore, the cancellation of processes associated with the
detection system, or the deletion of logs, show the problem
of these methodologies. The problem relies in two facts: the
existence of privileged users in most of the current operating
systems, that can freely interact with the system; and the
delegation of part of the protection to the operating system
access control mechanism, which does not consider that an
attacker could gain privileged user permissions from a bug
or security failure.

In the second case, the kernel of the operating system pro-
vides the proper protection mechanisms, detached from the
detection and reaction system. Protection is achieved by
incorporating an access control mechanism into the kernel
system calls. This way, one may allow or deny a system call
based on several criteria such as the identifier of the pro-
cess making the call, parameters of the call, etc. The ker-
nel’s access control allows to eliminate the notion of trust
associated to privileged users, delegating the authorization
for the execution of a given system call to the internal ac-
cess control mechanisms. In addition, and contrary to the
previousauto-protectionmechanisms, it provides a unified
solution, avoiding the implementation of different specific
mechanisms for each component.



3.1 Proposed Scheme

In order to protect the components of our platform we pro-
pose an access control mechanism integrated into the kernel
of the operating system. This way, even if an attacker gains
administrator permissions, she will not be able to generate
actions attempting on the node. Each unlawful system call
to the components will be intercepted and cancelled by the
access control. This methodology also allows us to provide
a second level of protection. The mechanism provided by
the kernel and the modularity based on components allows
to enforce the compartimentalization principle [8]. This
principle is based in the segmentation of a system, so sev-
eral components can be protected independently one from
another. This ensures that even if one of the components is
compromised, the rest of them can operate in a trusted way.

In our case, several components from the node can be ex-
ecuted as processes. By specifying the proper permission
based on the process ID, we can limit the interaction be-
tween elements of the node. If an intruder takes control of
a process associated to a given component (through a buffer
overflow, for example), she will be limited to make the sys-
tem call for this given process. In our proposal the compar-
timentalization principle is used as follows. In each node
we assume that the execution of the analyzers is isolated
from the cooperation manager. The protection at kernel
level avoids that potentially dangerous system calls (such
askilling a process) could be produced from one compo-
nent against another one.

Even so, it is not always possible to achieve a complete in-
dependence between the components. There is a need to
determine which system calls may be considered as a threat
when launched against an element from the node. This re-
quires a meticulous study of each one of the system calls
provided by the kernel, and how can they be misused. On
the other hand, we have to define the access control rules
for each one of these system calls. Despite its complexity,
we consider the following three protection levels to clas-
sify the system calls: Critical process protection (e.g. exe-
cution of a new application already in memory), Communi-
cation mechanisms protection (e.g. messages interchanged
between the node elements), and Protection of files associ-
ated to the components (e.g. configuration or log files).

3.2 Implementation

In this section we outline a first implementation of our pro-
tection scheme. In accordance with Section 3.1, it consists
of a kernel based access control mechanism, and its de-
velopment has been done over theLinux Security Modules
(LSM) framework forGNU/Linuxsystems [9].

The LSM framework does not consist of a single specific
access control mechanism; instead it provides a generic
framework, which can accommodate several approaches.
There are several hooks (i.e. interception points) across the
kernel that can be used to implement different access con-
trol strategies. Such hooks are:Task hooks, Program Load-
ing Hooks, Filesystems HooksandNetwork hooks.

These LSM hooks, can be used to provide protection at the
three levels commented in the previous section. Further-
more, LSM adds a set of benefits to our implementation.
First, it introduces a minimum load to the system when
comparing it to kernels without LSM, and does not inter-
fere with the detection and reaction processes. In the sec-
ond place, the access control mechanism can be composed
in the system as a module, without having to recompile the
kernel. And third, it provides a high degree of flexibility and
portability to our implementation when compared to other
proposals for the Linux kernel, such as [5] and [6], where
the implementation requires the modification of some fea-
tures of the original kernel 2.6.x.

The LSM interface provides an abstraction, which allows
the modules to mediate between the users and the internal
objects from the operating system kernel. To this effect, af-
ter accessing the internal object, the hook calls the function
provided by the module and which will be responsible to
allow or deny the access. There, for example, a module reg-
isters the function to make a check over theinodesof the
filesystem.

At the same time, LSM allows to keep the discretionary ac-
cess control (DAC) provided by Linux by standing between
the discretionary control and the object itself. This way, if a
user does not have permissions in relation to a given file, the
DAC of the operating system will not allow the access and
no call to the function registered by the LSM will be made.
This architecture reduces the load of the system when com-
pared to an access control check centralized in the operating
system call interface, which always gets used for all the sys-
tem calls.

The node components will be allowed to make operations
only permitted to the system administrator (such as packet
filtering, process or application cancellation, etc.). This im-
plies that the system processes associated to the components
will be executed by the root user. On the contrary, if we
associate the processes to a non privileged user, the discre-
tionary access control of Linux will not allow the execution
of some specific calls.

The internal access control mechanisms at the kernel is
based in the process identifier (PID) that makes the system
call, which will be associated to a specific component. Each
function registered by an LSM module, determines which
component is making the call from the PID of the associ-



ated process. It then, applies the access control constraints
taking also into account the parameters of the system call.
So, for example, a given component can access its own con-
figuration files but not configuration files from other com-
ponents.

An important issue in the implementation is the administra-
tion of the access control mechanisms and the management
of each one of the nodes. As described in the previous sec-
tion, the administrators should not be able to throw a system
call, which may suppose a threat to the node.

This prevents an intruder to do any harm to the node even if
she could scale its privileges to the administrator ones. This
contrasts with the administration of the node, if an adminis-
trator cannot interact with the components of the node, she
will not be able to carry on any management or configura-
tion process and activities.

To solve this problem, we have introduced a temporal au-
thentication process based on a cryptographic USB to-
ken [1]. While the device is connected to the system, the
administrator will be able to hold the indispensable privi-
leges to manipulate the node. When the device is retired,
the access control enforcement will come to its normal op-
eration.

4 Conclusions

In this paper we have presented a protection mechanism
specially suited for a distributed prevention and reaction
system. The distributed system is made up of several com-
ponents such as sensors, analyzers, managers, etc. that may
be distributed in a network. We provide a solution for the
protection of the components by making use of theLinux
Security Modules(LSM) framework in the Linux kernel.

The proposed mechanism works by providing and enforcing
access control rules at system calls. It is based on a protec-
tion module integrated into the operating system’s kernel,
providing a high degree of modularity and independence
between components.

Our scheme offers a good degree of transparency to the ad-
ministrator in charge, since the access control is integrated
inside the kernel of the operating system, and it does not
interfere directly with user space’s processes. At the same
time, a complementary token based authentication for ad-
ministration purposes, provides a transparent and secure
management of the platform.

As future work we are considering to continue our study
about attack and intrusion tolerant mechanisms, to address
the security of our proposed architecture from a wider and
more global point of view.

Acknowledgments

Part of this work has been founded by the Spanish Gov-
ernment Commission CICYT, through its grant TIC2001-
0633-C03-01, and the Catalan Government Department
DURSI, with its grant 2003FI-126.

References

[1] Aladdin Knowledge Systems. eToken – USB To-
ken Authentication Device. http://www.a-
laddin.com/etoken/, 2005.

[2] S. Bhattacharya and N. Ye. Design of robust, surviv-
able intrusion detection agent. In1st Asia-Pacific Con-
ference on Intelligent Agent Technology, Hong Kong,
December 1999.

[3] J. Garcı́a, F. Autrel, J. Borrell, S. Castillo, F. Cuppens,
and G. Navarro. Decentralized publish-subscribe sys-
tem to prevent coordinated attacks via alert correla-
tion. In 6th International Conference on Information
and Communications Security, October 2004.

[4] L. McVoy, and C. Staelin. LMbench – Tools
for Performance Analysis http://www.bit-
mover.com/lmbench/, 1998.

[5] T. Onabuta, T. Inoue, and M. Asaka. A Protec-
tion Mechanism for an Intrusion Detection System
Based on Mandatory Access Control. In13th An-
nual Computer Security Incident Handling Confer-
ence), Toulouse, France, June 2001.

[6] A. Ott. The Role Compatibility Security Model. In
7th Nordic Workshop on Secure IT Systems, Karlstad,
Sweden, November 2002.

[7] B. Schneier, and J. Kelsey. Cryptographic Support
for Secure Logs on Untrusted Machines. In7th
USENIX Security Symposium Proceedings, San An-
tonio, Texas, January 1998.

[8] J. Viega, and G. McGraw.Building Secure Software
- How to Avoid Security Problems the Right Way.
Addison-Wesley, September 2002.

[9] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: Gen-
eral Security Support for the Linux Kernel. In11th
USENIX Security Symposium, San Francisco, Califor-
nia, August 2002.


