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ABSTRACT

This work deals with the statistical restoration of a hidden
signal using Pairwise Markov Trees (PMT). The latter
PMT, recently introduced in the case of discrete hidden
signal, are here applied to unsupervised image
segmentation and it is showed that they work better then
the classical Hidden Markov Trees (HMT). Further,
considering a PMT in a linear Gaussian model with
continuous hidden data, which is new, we give the
formulas of an original extension of the classical Kalman
filter.

1. INTRODUCTION

Hidden Markov models (HMM), like hidden Markov
chains (HMC), hidden Markov fields (HMF), or hidden
Markov trees (HMT) admit numerous applications in
various domains, and in particular in signal and image
processing. These models have been recently generalized
to pairwise Markov chains (PMC [10]), pairwise Markov
fields (PMF [6]), and pairwise Markov trees (PMT [7])
The aim of this paper is to present some further properties
of the PMT introduced in [7] (in French). On the one
hand, we present an application to unsupervised image
segmentation of the PMT with discrete hidden process.
On the other hand, we propose an original extension of
the well known Kalman filter to the PMT with continuous
hidden process. The latter extends analogous results
proposed in the case of PMC [2, 9].

2. HIDDEN, PAIRWISE, AND TRIPLET MARKOV
TREE

Let S  be a finite set of points and SssXX ∈= )( ,

SssYY ∈= )(  two stochastic processes indexed on S . Each

sX  takes its values in Ω  (which will be a finite set in the

next section and NR  in section 3) and sY  takes its values

in the set of observations, which will be real numbers R

in the next section and qR  in section 3. Let 1S , …, nS
be a partition of S  representing different « generations ».

Each iSs∈  admits 1++ ⊂ iSs  (called his « children ») in

such a way that every element of 1+∈ iSt  has a unique

« parent » iSt ∈− . We assume that 1S  is a singleton (its
element rs  is called « root »). Then the distribution

),( yxp  of ),( YX  can be defined by four models with

increasing generality :
(i) the classical Hidden Markov Tree with independent
noise (HMT-IN [1, 4]), in which =)(xp

∏
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−=
1

)()(
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sss xxpxp
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 (which means that X  is a

Markov tree), ∏
∈

=
Ss

ss xypxyp )()( , and thus, putting

),( yxz =  :

∏
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−=
1

)()()()()(
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sssssss xypxxpxypxpzp
rrr

; (1)

(ii) the Hidden Markov Tree (HMT), in which X  is a
Markov tree as above and the pairwise process

SssZZ ∈= )( , where ),( sss YXZ = , is a Pairwise Markov

Tree (PMT), which means that its distribution verifies :

∏
−∈

−=
1

)()()(
SSs

sss zzpzpzp
r

; (2)

(iii) the PMT SssZZ ∈= )(  verifying (2);

(iv) the Triplet Markov Trees (TMT [8]), in which one
introduces a latent variable SssUU ∈= )(  and assumes that

the triplet ),,( YUXT =  is a Markov tree (i.e., verifies (2)

with ),,( yuxt =  instead of ),( yxz = ).
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Let us remark that the greater generality of PMC with
respect to HMT-IN appears locally at the transition

probability level. In fact, as )( −ss zzp  in (2) can be

written == −−− ),,()(
ssssss yxyxpzzp

),,(),( −−−−=
sssssss yxxypyxxp , we see that HMT-IN is a

PMT such that )(),( −−− =
sssss xxpyxxp  and

)(),,( ssssss xypyxxyp =−− .

3. DISCRETE HIDDEN PROCESS

Let us assume that { }kωω ...,,1=Ω , which mean that the

hidden process is a finite valued one. Let Z  be a PMT

defined with (2). Then the distribution yp  of X

conditional to yY =  keeps the same form (1). More

precisely, for s  child of −s , we have [7] :

∑
Χ∈

−

−

− =
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ssss
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xxp
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ωωβ
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),()(
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with the probabiliti es "backward" )()( sss zypx ++=β
recursively calculable by

1)( =sxβ  for ∅=+s ,

∏ ∑
+∈ Ω∈

=
su

suuus

u

zypx )),()(()(
ω

ωωββ for ∅≠+s (4)

Otherwise, we have the following result, showing the
greater generality of PMT with respect to HMT [7] :

Proposition 1

Let Z  be a PMT defined with (2) and let (P) be the
following property :

For each 1SSs −∈ , Ω∈− ss
xx , , and Ry

s
∈− ,

)(),( −−− =
sssss xxpyxxp (P)

Then :
1. (P) implies that Z is a HMT (i.e., X  is a Markov tree);
2. Assume that each Ss ∈  has at least two children and

for each +∈ st1  there exists +∈ st2  such that

)()(
21 stst zzpzzp =  (the distributions of 

1t
Z  and 

2t
Z

conditional on sZ  are equal). Then “ Z is a HMT” implies

(P).
In particular, (P) is a necessary and suff icient condition

when )( −ss zzp  does not depend on +−∈ )(ss .

An analogous result shows the greater generality of TMT
with respect to PMT [8].
Let Z  be a PMT defined with (2) and let us consider the
problem of calculating the distribution of sX  conditional

on yY =  (marginal « a posteriori » distribution), needed

when using the Bayesian Maximum a Posteriori (MPM)
segmentation. This distribution )( yxp s  can be calculated

in the following way. Let Ss ∈ , and let rss =1 , …,

ssn =  be the unique path (for each ni ≤≤2 , 1−is  is the

unique parent of is ) leading from the root rs  to s . All

)(
1−ii ss

y xxp  having been calculated with (3), we have
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where )( s
s xα  is calculated using the path rss =1 , …,

ssn =  by
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So, after having calculated )( yxp s  for each Ss ∈ , one

can use the classical Bayesian MPM segmentation method
in which Sssxx ∈= )ˆ(ˆ  is obtained by

)(maxargˆ yxpx ss ω
ω

==
Ω∈

. When the segmentation is

performed in an unsupervised manner, which is important
in real applications, one has to estimate the model
parameters from yY = . The general methods like

Expectaion-Maximization (EM [4]) or Iterative
Conditional Estimation (ICE [10]) have been applied in
the HMT and can be extended to the PMT and TMT
cases. Classical HMT prove useful in statistical
unsupervised segmentation problems [4]. The aim of the
example presented in Figure 1 is to show that the greater
generality of PMT can improve the results obtained with
HMT. The class image is a 128x128 image and the
Markov tree structure is a quad-tree [4]. So, we have the

root and seven “generations” , with the last generation 7S
being the set of 128x128 pixels. The noisy image

7)(7
Sssyy ∈=  is obtained by simulating a classical

Gaussian noise on the generation 6S , and then using (2)
to obtain 7)(

Sssy ∈ . In the classical HMT case, we consider

that only the last generation 7S  is noisy according to (1).
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The results prented in Figure 1 are obtained in an
unsupervised manner, the parameters being estimated with
ICE.

True image Noisy image

HMT based method : error
rate of 7.71%

PMT based method : error
rate of 1.52%

Figure 1. HMT and PMT based unsupervised Bayesian
segmentation results.

4. CONTINUOUS HIDDEN PROCESS

Let us now consider a PMT ),( YXZ = , in which each

sX  takes its values in NR  and each sY  takes its values in
qR . Equations (3)-(6) still hold (with the obvious

difference that sums should be replaced by intergrals), but
may be difficult to compute in the general case.
So, let us now address the particular case in which in
addition Z  is a Gaussian process. Injecting this
assumption in the algorithm of section 3 immediately
leads to a Kalman-like smoothing algorithm which is
omitted here for want of space.
In this section, we will rather show that in Gaussian case,
it is also possible to develop a Kalman-like adaptive

filtering algorithm for PMT. Recalling that 1S , …, nS  is
a partition of S  representing different « generations », let
us put nSssn XX ∈= )(  and )...,,( 1:1 nn XXX = . The

random vectors nY , nY :1 , nZ , and nZ :1  are defined

similarly. Since Z  is a Markov Tree, it can also be seen
as a Markov Chain 1)( ≥= nnZZ  to which the classical

Kalman filter can thus be applied. More precisely, our aim
consists in recursively estimating (as new data become
available) the p.d.f. of the last “leaves” 1+nX  given all

observed variables up to level 1+n , i.e. we want to

compute )( 1:1 ++ nnn yxp  in terms of )( :nnn yxp  and of

1+ny .

Our assumptions are as follows. We assume that the
model is linear and Gaussian
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in which 1)(
SSssWW −∈=  are random zero-mean vectors,

independent and independent of 1Z . We also assume that

W  is Gaussian and that 1Z  is Gaussian with mean 1z  and

variance-covariance matrix 1P , which is denoted by

),(N~ 111 PzZ . Then Z  is a Gaussian process and

consequently the p.d.f. )( 1:1 ++ nnn yxp  and )( :nnn yxp  are

also Gaussian. For 1,0=l , let us set

),ˆ(N~)( 1: nlnnlnnnln Pxyxp ++++  and let

s
T

ss QWWE =)( , T
sss

ss

ss
s GQG

QQ

QQ
Q =












=

2221
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~~

~~
~ (8)

We shall also need the following notation : For n  fixed,

let )...,,( 1 k
n ssS = , and let { }j

ppii ss
1, =

++ =  (i.e. +
pis ,  is the

thp  son of node is ). For { }2,1, ∈ml , let l
n 1F + , l

n 1H + , and
ml

n
,

1Q
~

+  be the following block-diagonal matrices :
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The following result is an extension of the classical
Kalman filter

Proposition 2 (Kalman filter for PMT)

Let us assume that Z  is a PMT and that model (7) holds.
Suppose that ),(N~ 111 PzZ  and ),0(N~ ss QW .
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Then 11
ˆ ++ nnx  and 11 ++ nnP  can be computed from nnx̂  and

nnP  via :

Time-update equations

nnnnnnn yxx 2
1

1
11 FˆFˆ +++ += , (11)

T
nnnnnnn PP )F(FQ

~ 1
1

1
1

11
11 ++++ += (12)

Measurement-update equations

nnnnnnn yxyy 2
1

1
111 HˆH~

++++ −−= (13)

T
nnnnnn PL )H(HQ

~ 1
1

1
1

22
11 ++++ += (14)

1
1

1
1

1
1

12
111 ))H(FQ

~
( −

++++++ += n
T

nnnnnnn LPK (15)

nnnnnnn yKxx ~ˆˆ
11111 +++++ += (16)

T
nnnnnnnnn KLKPP 11111111 ++++++++ −= (17)

Remarks

- The algorithm is valid under the implicit assumption that
each node has at least one child, but can easily by adapted
to the general case where some node(s) have no child;
- If each root has exactly one child, then PMT reduces to a
particular case of Pairwise Markov Chain model
introduced in [5] (corollary 1, page 72), and the algorithm
of the Proposition 2 reduces to the algorithm proposed for
the latter model ([5], eqs. (13.56) and (13.57));
- The algorithm in Proposition 2 requires the inversion of
the square matrix 1+nL  defined in (13), the dimension of

which is proportional to the number of variables in
generation 1+n  of the tree. However, this full -size matrix
inversion can be avoided by conditioning w.r.t. each
variable in 1+ny  one after the other;

- In more general PMT which are neither linear nor
Gaussian, one could consider to propose “Particle
filtering”, which would extend this king of methods
proposed in the case of PMC [2] and TMC [3].

5. CONCLUSIONS

Recent PMT, strictly more general that HMT, can be used
in discrete or continuous hidden signal restoration, as well
in a supervised manner than in an unsupervised one. Its
greater generality can lead to an improvement of the
results obtained with the classical HMT. As further
research we may mention the possibiliti es of extending
PMT to Pairwise Markov Graphical models, with the
associated methods of hidden process restoration and
parameter estimation [14].
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