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ABSTRACT

The Fully Adapted Auxiliary Particle Filter (FA-APF) is a
well known Sequential Monte Carlo (SMC) algorithm for
computing recursively the filtering pdf in a Hidden Markov
Chain (HMC) model. However, in most of cases, the FA-
APF cannot be used directly because the required functions
are unavailable. To cope with this issue, the Auxiliary Particle
Filter (APF) uses Importance Sampling (IS) with two degrees
of freedom. APF techniques need an importance distribution
and also a reliable approximation of the predictive likelihood.
In this paper, we propose a class of SMC algorithms which
also try to mimic the FA-APF but which has the advantage
not to require any approximation of the predictive likelihood.
The performances of our solution as compared to the APF
algorithm is provided by simulations.

Index Terms— Particle Filtering, Sequential Monte
Carlo, Auxiliary Particle Filter, Importance Sampling

1. INTRODUCTION

Let xn ∈ IRm and yn ∈ IRp be respectively a hidden
and observed process. Letp(xn|y0:n), say, denote the pdf
(w.r.t. Lebesgue measure) ofxn giveny0:n = {yi}ni=0, and
p(dx) = p(x)dx the continuous measure with densityp(x).
We assume that{xn,yn} is an HMC :

p(x0:n,y0:n) = p(x0)

n∏

i=1

p(xi|xi−1)

n∏

i=0

p(yi|xi). (1)

Bayesian Filtering consists in computing recursively
p(xn|y0:n) (we notepn|j = p(xn|y0:j)). If pn|n cannot
be computed exactly, one can resort to Monte Carlo based so-
lutions such as particles filters (PF) (see e.g [1] or [2]) or APF
[3] which propagate a set ofN samples and their associated
weights{xi

n, w
i
n}

N
i=1.

Let us briefly recall the principle of APF. We start for the
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classical recursion (hereN stands for numerator) :

p(xn|y0:n) =

p(yn|xn)

p(xn|y0:n−1)︷ ︸︸ ︷∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

p(yn|y0:n−1) =
∫
Ndxn

(2)
If we plug a discrete approximation

∑N

i=1 w
i
n−1δxi

n−1

(dxn−1)

of p(xn−1|y0:n−1) in (2), it can be rewritten as

π(xn|y0:n) =

N∑

i=1

wi
n−1p(yn|xi

n−1)∑N

i=1 w
i
n−1p(yn|xi

n−1)
p(xn|x

i
n−1,yn).

(3)
Pdfπ(xn|y0:n) is a finite mixture continuous density approx-
imatingp(xn|y0:n). In the view of deriving an SMC filter one
should get samples from (3) in order to further proceed at time
n+1. We obtain the so-called FA-APF in the terminology of
Pitt and Shephard [3]. However, when the predictive like-
lihood p(yn|x

i
n−1) is not available and/or it is not possible

to get samples fromp(xn|xi
n−1,yn), one solution consists in

using importance sampling (IS) in augmented dimension with
the following importance distribution :

q(xn) =

N∑

i=1

wi
n−1τ(x

i
n−1)∑N

i=1 w
i
n−1τ(x

i
n−1)

q̃(xn|x
i
n−1) (4)

In summary, assuming that atn − 1 {xi
n−1, w

i
n−1}

N
i=1 ap-

proximatesp(dxn−1|y0:n−1), then an iteration of the APF
algorithm is the succession of the three following steps :

APF Algorithm

1. x̃i
n−1 ∼

∑N

i=1

wi

n−1
τ(xi

n−1
)

∑
N

i=1
wi

n−1
τ(xi

n−1
)
δ
x
i

n−1

(dxn−1) (Re-

sampling Step)

2. xn ∼ q̃(xn|x̃i
n−1)

3. wi
n ∝

p(xi

n
|x̃i

n−1
)p(yn|x

i

n
)

τ(x̃i

n−1
)q̃(xi

n
|x̃i

n−1
)

,
∑N

i=1 w
i
n = 1.

The performance of the APF depends on the choice of the
first stage weightsτ(xi

n−1) and of the importance distribu-
tion q̃(xn|xn−1). A recent contribution [4] suggests to ap-



proach respectivelyp(yn|xn−1) and p(xn|xi
n−1,yn) how-

ever in practice it can be very difficult to derive a good ap-
proximation ofp(yn|xn−1). When the objective is to evaluate
directly a functionΦ =

∫
f(xn)p(xn|y0:n)dxn, an optimal

choice of the first stage weights, based on an asymptotical
variance analysis, has also been proposed in [5].

In this paper, we show that the APF is not the only work-
able approximation of the FA-APF algorithm and more pre-
cisely we focus on the approximate computation of the mea-
surep(dxn|y0:n) from p(dxn−1|y0:n−1). We derive a Par-
ticle Smoothing APF (PS-APF) which imitates the FA-APF
in a sense which will be specified later. Our algorithm has
the advantage to circumvent the critical approximation of the
predictive likelihoodp(yn|xn−1). This is of practical interest
when it is difficult to derive an approximation of this predic-
tive likelihood or when such a procedure is computationally
intensive. Moreover, we show that our approach outperforms
the APF when the required parameters are not correctly ap-
proximated.

2. A PARTICLE SMOOTHING IMPLEMENTATION
OF THE FA-APF

Before introducing our method, let us first revisit the FA-APF
as an SMC algorithm propagating samples frompn−1|n−1

into samples frompn−1|n and thenpn|n. More precisely
equation (2) can be rewritten as

p(xn|y0:n) =

∫
p(xn|xn−1,yn)×

[
p(yn|xn−1)p(xn−1|y0:n−1)

p(yn|y0:n−1) =
∫
Ndxn−1

]

︸ ︷︷ ︸
p(xn−1|y0:n)

dxn−1.

(5)

In the view of deriving an SMC filter from (5) we can first
sample,

x̃
i
n−1 ∼

N∑

i=1

p(yn|xi
n−1)∑N

i=1 p(yn|xi
n−1)

δ
x
i

n−1

(dxn−1)

in order to get samples approximately drawn frompn−1|n,
and next samplexi

n fromp(xn|x̃i
n−1,yn) in order to get sam-

ples frompn|n. Of course, this procedure coincides with the
FA-APF described previously.

Now, let us assume thatp(yn|xn−1) is not computable
and/or it is not possible to get samples fromp(xn|xn−1,yn).
As we now show, it remains possible to get approximately
samples{x̃i

n−1} drawn from pn−1|n and next (possibly
weighted) samples{xi

n} from pn|n. Letq(xn|xn−1) be some
importance distribution. Firstly, we use a one step backward
marginal smoother of a SIR algorithm to obtain samples from
pn−1|n :

Particle Smoothing Step

1. xi
n ∼ q(xn|xi

n−1)

2. wi
n ∝ wi

n−1
p(xi

n
|xi

n−1
)p(yn|x

i

n
)

q(xi
n
|xi

n−1
)

,
∑N

i=1 w
i
n = 1.

3. x̃i
n−1 ∼

∑N

i=1 w
i
nδxi

n−1

(dxn−1).

By construction samples{x̃i
n−1}

N
i=1 are drawn approx-

imately from p(dxn−1|y0:n) and we look for obtaining
weighted samples(x̃i

n−1,x
i
n) drawn fromp(xn−1,xn|y0:n)

∝ p(xn−1|y0:n)p(xn|xn−1,yn). Of course, this second step
is straightforward if one can sample fromp(xn|x̃n−1,yn).
If however it is not possible to sample from this distri-
bution, we can call for IS again with a importance dis-
tribution q(xn|xn−1) = p̂(xn|xn−1,yn) close enough to
p(xn|xn−1,yn). The associated weights are :

wi
n ∝

p(x̃i
n−1,x

i
n|y0:n)

p(x̃i
n−1|y0:n)q(xi

n|x̃
i
n−1)

∝
p(xi

n|x̃
i
n−1)p(yn|x

i
n)

p(yn|x̃i
n−1)q(x

i
n|x̃

i
n−1)

∝
p(xi

n|x̃
i
n−1,yn)

q(xi
n|x̃

i
n−1)

,
N∑

i=1

wi
n = 1 (6)

At this point, several cases can occur :

1. Assume first thatp(xi
n|x̃

i
n−1,yn) is computable at any

point(xi
n−1,x

i
n). Then weightswi

n in (6) are computable.
In this case there is a connection between our algorithm
and the APF, see Remarks 2 and 3 below.

2. Assume now thatp(xi
n|x̃

i
n−1,yn) is not computable but

we have a good approximation̂p(xn|xn−1,yn) of this pdf
pdf. Then we can reasonably assume that weights are
equal to 1

N
.

3. Otherwise, we can introduce an MCMC method to adjust
the samplesxi

n. We then setwi
n = 1

N
for all i. The idea to

use an MCMC method in PF is not new (see e.g [1, chap.
6]) and is generally applied directly after a SIR algorithm.
Here, by contrast, we first draw a full set of samplesx

i
n

before moving particles with an MCMC method in order
to have a set of different particlesxi

n like in the FA-APF
(see also Remark 1). The MCMC algorithm is used here
to circumvent the impossibility to obtain directly weighted
samplesxi

n drawn frompn|n using IS.

Let us sum up the methodology of the PS-APF filter :

PS-APF algorithm

• Obtain samples̃xi
n−1 ∼ p(xn−1|y0:n) using the one

step backward marginal smoother of a SIR algorithm
with importance distributionq(xn|xn−1).



• Draw x
i
n ∼ p̂(xn|x̃i

n−1,yn), then if the weights of
equation (6) are not available, use (if needed) a few
MCMC steps to adjustxi

n and setwi
n = 1/N .

3. DISCUSSION AND CONNECTION TO THE APF

Both algorithms are composed of a first Weighting Resam-
pling step (which actually is the Particle Smoothing step
for PS-APF) then a sampling-weighting step (with optional
MCMC method). This construction leads to similarities
between our algorithm and the (FA)-APF, illustrated by fol-
lowing remarks:

Remark 1 The FA-APF is a particular case of our class of
algorithms. Indeed, let us chooseq(xn|xn−1) = q(xn|xn−1)
= p(xn|xn−1,yn) in the PS-step and in the sampling step of
PS-APF. Then the first stage weightswi

n of the PS step, are
proportional top(yn|xi

n−1) and the second stage weightswi
n

are equal to 1
N

. Since the first stage weights of the PS step do
not depend onxi

n, the first sampling step can be avoided and
the computational efforts are reduced.

Remark 2 The APF is also a particular solution of PS-
APF algorithms. If we approximate the productp(xn|xn−1)
p(yn|xn) = p(xn|xn−1,yn) p(yn|xn−1) by the approxi-
mated productp(xn|xn−1,yn) p̂(yn|xn−1) in our algorithm,
and we selectq(xn|xn−1) = p(xn|xn−1,yn) in the PS step,
then the PS-APF corresponds to the APF withτ(xi

n−1) =
p̂(yn|xi

n−1) and q̃(xn|xi
n−1) = q(xn|xi

n−1). Indeed, under
this approximation, it is easy to check that the first and second
stage weights of the APF and the PS-APF are equal and that
samples{xi

n} are drawn from the same distribution.

Remark 3 If p(xi
n|x

i
n−1,yn) is computable then the predic-

tive likelihoodp(yn|xn−1) is computable. So in this case,
case 1 of the discussion about weightswi

n coincides with
the particular APF in whichτ(xi

n−1) = p(yn|xi
n−1) and

q̃(xn|xi
n−1) = q(xn|xi

n−1).

Let us know focus on the difference between the PS-
APF and the classical APF. From a practical point of view,
we never use any approximation ofp(yn|xn−1). Further-
more, a major difference between the two methodologies
comes from the intermediate set of particles{x̃i

n−1}
N
i=1

which is approximately sampled from a pdf proportional to
p̂(yn|xn−1) p(xn−1|y0:n−1) for the APF and, by contrast,
approximately sampled fromp(xn−1|y0:n) for PS-APF. This
difference is critical for the performances of the two algo-
rithms, since the interpretation of the FA-APF in section 2
shows that the aim of this first step is to guide particles into
promising regions. The APF tries to approach directly the
likelihood p(yn|xn−1) then selecting new particles̃xi

n−1

whereas in our algorithm, a set of particles{xi
n}

N
i=1 is used

to explore the new state space at timen and select particles
x
i
n−1 corresponding to a promising trajectory. Of course,

p(xn−1|y0:n) ∝ p(yn|xn−1)p(xn−1|y0:n) but if we have at
our disposal a poor approximation̂p(yn|xn−1) then the inter-
mediate samples produced by the APF will be far from being
sampled fromp(xn−1|y0:n), which means in other words that
x̃
i
n−1 are not in promising regions or are few diversified : this

will produce few efficient samplesxi
n. For example, taking

τn(x
i
n−1) = p(yn|µi

n) [3] whereµi
n is the mean or the mode

of p(xn|xi
n−1) in some model can lead to poor performances.

4. PRACTICAL CONSIDERATIONS

Let us specify how to choose the importance distributions
q(xn|xn−1) andq(xn|xn−1) in the PS-APF. It is well known
that we should takeq(xn|xn−1) = p̂(xn|xn−1,yn) if we
want to try to minimize the variance ofwi

n conditionally
on x

i
0:n−1 andyn [6]. Heuristically, it is important to take

into yn account to guide particlesxi
n−1. For the second

distribution q(xn|xn−1) we should ideally sample from
p(xn|x̃i

n−1,yn) and as this choice is often impossible we
draw samples from̂p(xn|x̃i

n−1,yn). Therefore, the same
distribution could be used for the two steps of our algorithm.
Let us thus briefly remind some approximation techniques
of p̂(yn|xn−1) for the APF andp̂(xn|xn−1,yn) for both
algorithms. Roughly speaking, most of techniques consist
in first approximating locallyp(xn,yn|xi

n−1) by a Gaussian
pdf, the moments of which are approximated bu using an-th
degree Taylor polynomial [6] [7] or the Unscented Trans-
formation for particle filters [8] applied to the state and/or
observation equation(s), then in deducing a local approxima-
tion of p(yn|x

i
n−1) andp(xn|x

i
n−1,yn). The approximation

of p(yn|xi
n−1) by p̂(yn|xi

n−1) can be used as a choice of the
first stage weightsτ in in the APF. Note that the knowledge
of the first and second moment order of a pdf can lead to a
poor approximation of this pdf but enables to getting samples
approximately drawn from it. It why the proposed method is
less restrictive.

5. SIMULATIONS

Let us consider the Kitagawa model :
{

xn+1 = 0.5xn + 25 xn

1+x2
n

+ 8 cos(1.2(n+ 1)) + un

yn =
x
2

n

20 + vn

,

(7)
in whichun andvn are i.i.d., mutually independent and inde-
pendent ofx0, with x0 ∼ N (0, 1). Let alsoun ∼ N (0, Q)
andvn ∼ N (0, R), R = 1. Let J be defined asJ =

1
T

∑T

n=1

[
1
T

∑P

j=1(x̂
j

n|n − xj
n)

2
] 1

2

where x̂j

n|n and xj
n are

respectively the estimated state and the true state at timen
according the firstn observations, for thej-th realization.J
is averaged overP = 1000 realizations, andT = 50 time
indices. Exact first and second moments of distributions con-
cerned are calculable [7], so when it is necessary, same ap-



proximations are used for the PS-APF and the APF and we
note for simplicityp̂EMM (.) = p̂(.). We compare two vari-
ants of the APF and three variants of the PS-APF. Parameters
of each algorithm are described in Table 1 and we indicate
for the PS-APF the number of MCMC (here we use an in-
dependent Metropolis Hasting algorithm) steps used (0 or 1).

τ (xi

n−1) q̃(xn|x
i

n−1)

APFclass p(yn|µ
i

n) p(xn|x
i

n−1)

APFEMM p̂(yn|x
i

n−1) p̂(xn|x
i

n−1,yn)

q(xn|x
i

n−1) q(xn|x
i

n−1)

PS-APFboot−1 p(xn|x
i

n−1) p̂(xn|x
i

n−1,yn)

PS-APFEMM−0 p̂(xn|x
i

n−1,yn) p̂(xn|x
i

n−1,yn)

PS-APFEMM−1 p̂(xn|x
i

n−1,yn) p̂(xn|x
i

n−1,yn)

Table 1. Parameters of algorithms used for simulations

We first fix the number of particlesN = 200 thenQ
varies. Results are presented in Table 2. WhenQ is small, all
algorithms present equivalent results since approximatedpdfs
are close to the true pdfs. Indeed, it can be shown that EMM
implies an approximation onp(yn|xn) which is valid when
Q is small. Consequently,wi

n ≈ p̂(yn|xi
n−1) (by construc-

tion, p̂(xn|xi
n−1) = p(xn|xi

n−1)) and second stage weights
of APF are close to1

N
. The MCMC step does not bring

any improvement, for the same reasons. WhenQ increases,
these approximations become rough and the PS-APF method
gives better results, even if we do not use an MCMC step. Of
course, MCMC step improves performances since this time
it is less reasonable to assume that weightswi

n (see equa-
tion (6)) are equal to1

N
before adjusting samples{xi

n}. For
PS-APFboot−1, performances are damaged because particles
x
i
n−1 are not as well guided in promising regions than in the

other algorithms since particlesxi
n are sampled according the

transition density.
Finally we takeQ = 10 and the number of particlesN

varies (Figure 1). For clarity, we do not present results of the
algorithm APFclass, but it leads to poor performances when
Q is high (see results of Table 2). Figure 1 shows that PS-
APF methods outperform the APF when the number of par-
ticles is weak, except for the PS-APFboot−1. However, this
phenomenon is alleviated whenN → ∞ and for example,
whenN = 4000, PS-APFboot−1 gives same results than PS-
APFEMM−1 (it does not appear on this figure).
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