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Abstract

In this paper, we address the identi�cation problem of p-inputs q-outputs MA models, corrupted by a white noise with
unknown covariance matrix, in the case where p¡q. Under certain additional conditions, we show that the generating
function of the MA model is identi�able (up to a p × p constant orthogonal matrix) from the autocovariance function of
the observation. Our results extend those already obtained in Desbouvries et al. [5] and Desbouvries and Loubaton [6].
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1. Introduction

Let {yn}n∈Z be a q-variate time-series given by
yn = [H (z)]vn + wn;

where H (z) =
∑M

k=0Hkz
−k is a q × p polynomial

of degree M , vn is a p-dimensional (non-observable)
white noise sequence for which E(vnvTn ) = Ip,
and wn is an additive q-dimensional white noise
(i.e. E(wnwTm) = 0 if n 6=m), independent with vn.
Throughout this paper, it is assumed that (C1) q¿p,
i.e., the dimension of the output y is strictly greater
than that of the input v, and that (C2) H (z) is mini-
mum phase, i.e., that

Rank(H (z)) = p
for all z such that |z|¿ 1; including z =∞:
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If the observations are noiseless, H (z) can of course
be identi�ed up to a constant p×p orthogonal matrix
from the autocovariance sequence of yn. The purpose
of this paper is to study the identi�ability ofH (z) in the
noisy case: in other words, if�=E(wnwTn ) is non-zero,
is it still possible to identify H (z), up to a constant
p×p orthogonal matrix, from the second-order statis-
tics of yn? The answer is known to be positive if
�=�2Iq where �2 is an unknown scalar parameter. As
a matter of fact, one can identify �2 from the covari-
ance matrixRN of the vector YN (n)=[yTn ; : : : ; y

T
n−N ]

T,
provided the parameter N is chosen “large enough”.
To show this, let TN (H) denote the q(N+1)×p(M+
N + 1) generalized Sylvester matrix associated with
H (z):

TN (H) =



H0 : : : HM 0

. . .
. . .

0 H0 : : : HM


 : (1.1)
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Then, it is clear that YN (n) = TN (H)VM+N (n) +
WN (n), in which VM+N (n) = [vTn ; : : : ; v

T
n−(M+N )]

T and
WN (n)= [wTn ; : : : ; w

T
n−N ]

T. The covariance matrix RN

is thus equal toRN=TN (H)TTN (H)+�
2I . Sincep¡q,

one can choose N such that (N+1)q¿ (M+N+1)p.
If this holds, then TN (H)TTN (H) is a singular matrix,
so �2 is identi�ed as the smallest eigenvalue of RN :
we are thus essentially led back to the noiseless case.
However, the assumption that � = �2I may be re-

strictive in certain contexts. Very often, yn represents
the signal sampled behind a sensor array. If w is a ther-
mal noise that stems from the acquisition devices of
the sensors, and the physical properties of the sensors
are not identical, the noise components are likely to
be decorrelated but their variances do not necessarily
coincide. As another example, the noise in underwater
acoustics is the sum of ambient sea noise, 
ow noise
and tra�c noise and may thus be spatially correlated
[10,3]. In this paper, we are going to show that in the
case where no a priori information on � is available,
it is still possible, under certain conditions, to iden-
tify H (z) (up to a p×p orthogonal matrix) from the
exact second-order statistics of yn.
Let us denote by {Rn}n∈Z and by {Ryn}n∈Z the auto-

covariance lags of the useful signal [H (z)]vn and of yn,
respectively. As wn is assumed to be white and H (z)
is a degree M polynomial, it is clear that Ry0 =R0 +�,
Ryn =Rn for 16|n|6M , and Ryn =Rn=0 for |n|¿M .
In particular, Ry0 does not bring any information on
R0. We thus reformulate our problem as follows:

Let H (z) =
∑M

k=0Hkz
−k be a q × p minimum

phase polynomial, and let {Rn} be the autoco-
variance function associated to the “spectral den-
sity” S(z) = H (z)HT(z−1). Identify H (z) (up to
a p × p orthogonal matrix) from the truncated
sequence {Rn}16n6M .

This problem was �rst introduced in [7] in the case
p= 1. It was shown that the unknown q× 1 transfer
function H (z) is not necessarily identi�able if q = 2.
In case of identi�ability, an identi�cation procedure
based on the stochastic realization theory was pro-
posed; however, it is based on a di�cult non-convex
optimization problem, for which no satisfying solu-
tion was proposed. In the meantime, subspace-based
FIR blind identi�cation methods were introduced for
the case � = �2I (see e.g. [12,11] in the SIMO case
p = 1, and [2,14] in the MIMO case p¿ 1). Later
on, it was shown that these methods could be gener-
alized to the case where � is unknown: the case p=1

was considered in [1], and the case p¿ 1 in [5] (in
the polynomial case), and [6] (in the rational case).
Lastly, an alternate approach is proposed in [13].
We now specify the content of the paper. The

results presented in Section 2 are based on the iden-
ti�cation of the unknown coe�cient R0. Section 2.1
outlines the general approach, Section 2.2 reformu-
lates some results of Desbouvries et al. [5] in order
to introduce more clearly the bene�t of the idea
presented in Section 2.3. Finally, we introduce in
Section 3 a new identi�ability result based on the
Wiener–Hopf factorization theory.
In this paper, we essentially focus on identi�ability

results based on the knowledge of the true autocovari-
ance coe�cients (Rn)16n6M . However, e�ective esti-
mation algorithms can be derived from the results of
Section 2. The practical use of the material presented
in Section 3 is more involved, and is out of the scope
of this paper. Finally, we note that the new results pre-
sented in this paper can be adapted immediately to the
case whereH (z) is rational. We have chosen to restrict
ourselves to the polynomial case for sake of clarity.

2. Identifying the missing covariance lag R0

2.1. Outline of the results

In this section, the general idea is as follows. Since
Rank(S(z)) = p¡q for all z, the structural equation
H (z)HT(z−1) = S(z) =

∑M
k=−M Rkz

−k provides an
implicit relation among the covariance lags {Rk}Mk=0
which, in turn, enables (under certain su�cient condi-
tions) to recover the central lagR0 from {Rk}Mk=1. Once
R0 is known, computing H (z) from H (z)HT(z−1) is a
classical problem, due to assumptions (C1) and (C2),
and is thus omitted.
Our results are based on the following observation.

Since q¿p, there exist 1 × q polynomials g(z) =∑N
k=0 gkz

−k (where N is to be determined) satisfying

g(z)H (z) = 0 for all z; (2.2)

or, equivalently, satisfying g(z)H (z)HT(z−1) = 0
for all z. Let us assume that we can compute
a set of r such polynomials gj(z), and let us
set G(z) = [gT1 (z); : : : ; g

T
r (z)]

T =
∑N

n=0 Gnz
−n. Put

S(z) =
∑M

n=−M Rnz
−n = R0 + T (z). We have

0=G(z)H (z)=G(z)S(z)=G(z)(R0+T (z)), and thus

G(z)R0 =−G(z)T (z); (2.3)
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where the right-hand side can be computed from the
data. Identifying on both sides the coe�cient of z−k

for 06k6N , and setting G = [GT0 ; : : : ; G
T
N ]
T, we see

that we can compute the matrix GR0. If G has full
column rank, R0 can be retrieved from (2.3).
The method thus relies on the possibility of

computing from the data (a su�cient number of)
polynomials g(z) satisfying (2.2). In [5], a method
for computing (M − 1)-degree such polynomials was
proposed. However, this approach is valid only un-
der very strong assumptions on H (z). After a brief
review of some results of Desbouvries et al. [5] (see
Section 2.2), we shall thus propose an interesting
alternative approach to evaluate polynomials satisfy-
ing (2.2) (see Section 2.3). Since both methods rely
heavily on the notion of polynomial bases of rational
subspaces, we �rst begin with brie
y recalling some
useful results on that subject.
A brief review of rational subspaces: Let us �rst

recall that the set Fq of all q × 1 rational transfer
functions is a q-dimensional subspace over the �eld
F1 of all scalar rational transfer functions. Let S be
a p-dimensional (p¡q) subspace of Fq. The set
{Fi(z)}pi=1 is a basis ofS if and only if the q×p ra-
tional matrix F(z)= [F1(z); : : : ; Fp(z)] has rank p for
almost all z (F(z) is said to have a normal rank equal
to p).S admits polynomial bases. A polynomial basis
{Fi(z)}pi=1 is said to be minimal if

∑p
i=1 deg(Fi(z))

is minimum (see [8] for more details). Minimal poly-
nomial bases are characterized by the well-known cri-
terion (see [8,9]):

Proposition 1. The polynomial basis {Fi(z)}pi=1
is minimal if and only if the matrix polynomial
F(z) = [F1(z); : : : ; Fp(z)] is irreducible and column
reduced.

All minimal polynomial bases share the same set
of degrees {Mi = deg(Fi(z))}pi=1. Usually, the mini-
mal degrees {Mi}pi=1 are called the Kronecker indices
associated to S. The “orthogonal” B of S is the
(q − p)-dimensional subspace of all 1 × q rational
transfer functions g(z) satisfying g(z)f(z) = 0 for all
f ∈ S. The Kronecker indices {M⊥

j }q−pj=1 of B are
the so-called dual Kronecker indices of S. They sat-
isfy the important equality:

p∑
i=1

Mi =
q−p∑
j=1

M⊥
j : (2.4)

We now turn back to our problem. Since H (z)
satis�es conditions (C1) and (C2), the rational
space generated by its columns is p-dimensional.
From now on, this subspace is denoted by S and
its (q − p)-dimensional dual subspace by B. Let
{M⊥

j }q−pj=1 , with 06M
⊥
1 6 · · ·6M⊥

q−p, denote the
Kronecker indices of B. Assume that we have a
method for computing from the data the set of all
polynomials g(z) satisfying (2.2) and of degree
lower or equal to N . If N ¡M⊥

1 = minj M⊥
j , then

(2.2) holds if and only if g(z) = 0 for all z, while
if M⊥

s 6N ¡M⊥
s+1, then there exist exactly s lin-

early independent polynomials g(z), with degree at
most N , satisfying g(z)H (z) = 0. In particular, if
N¿M⊥

q−p=maxj M
⊥
j , then there exists a polynomial

basis of B consisting of polynomials of degree at
most N .

2.2. Making use of the block-Hankel matrix
associated to the sequence {Rn}16n6M

In order to prepare the reader to the content of
Section 2.3, we reformulate (and hopefully simplify)
a method proposed in [5] for computing polynomials
of B, of degree (M − 1), from the data (Rn)16n6M .
Let (C1) and (C2) hold. For the approach of Desbou-
vries et al. [5] to be valid, H (z) also has to satisfy the
following extra assumptions (note that (C4) implies
(C2)):
• (C3) The columns Hi(z) of H (z) all share the same
degree M ;

• (C4) H (z) is irreducible, i.e., Rank(H (z)) = p for
all z 6= 0, including z =∞;

• (C5) H (z) is column reduced, and thus Rank(HM )
= p, because of (C3).

LetH be the qM×qM block Hankel matrix given by

H=



R1 · · · RM
... . .

.

RM 0


 : (2.5)

H can be factored as

H=



H1 · · · HM
... . .

.

HM 0





HT0 0
...

. . .
HTM−1 · · · HT0


= OCT:

(2.6)

Since HM and H0 have full column rank, O and C
have full column rank Mp. Therefore, the rank of
H is also equal to Mp. Let J be the q-block ex-
change matrix: J = JM×M ⊗ Iq, where ⊗ denotes the
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Kronecker product, and (JM×M (i; j)=�i+j−(M+1))Mi;j=1.
It is easy to check that a qM -dimensional row vector
g=(g0; : : : ; gM−1) (in which each gk is q-dimensional)
satis�es

gJH= 0 and HgT = 0

if and only if gTM−1(H) = 0. So Kerl(TM−1(H)) =
Kerl(JH) ∩ Kerl(HT) (Kerl stands for the left ker-
nel). Let g(z) =

∑M−1
k=0 gkz

−k be the (M − 1)-degree
polynomial associated to g. We have gTM−1(H) = 0
if and only if g(z)H (z) = 0 for all z. Therefore, there
is a one to one correspondence between the space
Kerl(JH) ∩ Kerl(HT) and the set of all polynomi-
als, of degree less than or equal to M − 1, belonging
to B.
We �rst have to check if this subset ofB is not triv-

ially reduced to {0}. SinceH (z) is irreducible and col-
umn reduced, its columns form a minimal polynomial
basis ofS. Therefore, the Kronecker indices ofS all
coincide with M . Hence, relation (2.4) becomes pM
=

∑q−p
j=1 M

⊥
j . If (M − 1)¡M⊥

1 , we have pM ¿
(q−p)(M−1) or, equivalently, q¡ 2p+p=(M−1).
Consequently, if q¿2p+ p=(M − 1), there exists at
least one non-zero (M − 1)-degree polynomial g(z)
satisfying: g(z)H (z)= 0 for all z. This condition,
which is assumed to hold from now on in this section,
implies in particular that q¿ 2p.
It remains to investigate under which conditions

there exist 1× q polynomials gj(z), of degree M − 1,
such that the matrix G associated to G(z) has full
column rank (see the beginning of Section 2). Intu-
itively, for this condition to hold, the number s of lin-
early independent rows (over the �eld F1) of G(z)
should be as large as possible. It is thus not surpris-
ing that in case s = q − p = dim(B) (the maximum
possible value), R0 can be identi�ed from (2.3), as we
now see.
Let us thus assume that (M − 1)¿M⊥

q−p =
maxj=1; q−p M⊥

j (which implies that q¿2p + p=
(M − 1)). Then there exist (q− p) linearly indepen-
dent 1× q polynomials {gj(z)}q−pj=1 , of degree M − 1,
satisfying gj(z)H (z)= 0 (see the end of Section 2.1).
Let G(z) = [gT1 (z); : : : ; g

T
q−p(z)]

T =
∑M−1

k=0 Gkz
−k ,

and let G = [GT0 ; : : : ; G
T
M−1]

T. The condition: (G has
full column rank), is equivalent to the condition:
(G(z)x0 = 0 for all z ⇒ x0 = 0). Let us thus consider
a constant vector x0 satisfying G(z)x0 = 0 for all z.
Since the (q− p) rows of G(z) are linearly indepen-
dent, G(z) is a basis of B. Therefore, the condition
G(z)x0 = 0 for all z holds if and only if the constant

polynomial x(z) = x0 belongs to the dual space of
B, i.e. to S. But the Kronecker indices of S are
all equal to M , and M¿1. Therefore, S does not
contain non-zero constant vectors, and x0 = 0.
We now summarize the discussion so far in the

following theorem:

Theorem 1. Let H (z) =
∑M

k=0 Hkz
−k be a q × p

polynomial; and let {Rn} be the autocovari-
ance function associated to the “spectral density”
S(z) = H (z)HT(z−1). Let S be the rational sub-
space generated by the columns of H (z); with
Kronecker indices {Mi}pi=1 and dual Kronecker in-
dices {M⊥

j }q−pj=1 . Assume that (C3)–(C5) hold; and
that (M − 1)¿M⊥

q−p = maxj=1; q−p M
⊥
j (which; in

particular; implies that q¿2p + p=(M − 1)). Then
H (z) is identi�able (up to a p × p orthogonal
matrix) from the truncated sequence {Rn}16n6M .

In practice, if the conditions of the theorem are satis-
�ed, this result is equivalent to the following property:
let the Mq-dimensional rows of U = (U0; : : : ; UM−1)
form an orthonormal basis of Kerl(JH)∩Kerl(HT);
then, the matrix U = (UT

0 ; : : : ; U
T
M−1)

T has full col-
umn rank, so that R0 can be identi�ed from the prod-
uctUR0. This leads to a practical estimation algorithm
based on the empirical autocovariance coe�cients of
the observation.

2.3. Making use of the derivative of S(z)

The approach presented in Section 2.2 enables to
compute polynomials of B; however, the degree of
these polynomials is bounded by M − 1. This feature
is the main limitation of the approach, because, on the
other hand, the condition M − 1¿M⊥

q−p can be re-
strictive. Consider for example the case p= 2, q= 5
and M =5. Among the 14 triples M⊥

1 ; M
⊥
2 ; M

⊥
3 satis-

fying 06M⊥
1 6M

⊥
2 6M

⊥
3 and

∑3
j=1M

⊥
j = 10, only

two satisfy the above condition. If M − 1¡M⊥
q−p,

one can compute s¡ (q − p) linearly independent
polynomials of B of degree M − 1. However, we
no longer have any reasonable condition guaranteeing
that the corresponding matrices G have full column
rank.
In this section, we propose an alternative approach

which overcomes this drawback. It is based on the use
of the derivative S ′(z) of S(z) (w.r.t. the variable z−1).
This function obviously does not depend on R0, and
is therefore known. From S(z) = H (z)HT(z−1), we
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have

S ′(z) = [H ′(z) H (z) ]
[
Ip 0
0 z2Ip

] [
HT(z−1)

−H ′T(z−1)

]
;

(2.7)

where H ′(z) stands for the derivative of H (z) w.r.t.
z−1. In all this section, we shall assume that (C2)
holds, that q¿ 2p and that (C6): (Normal Rank
([H ′(z); H (z)]) = 2p). We shall make an extensive
use of the (q − 2p)-dimensional dual space B′ of
S′. The Kronecker indices of S′ are denoted by
{M ′

i }2pi=1, with 06M ′
16 · · ·6M ′

2p, and those of B
′

by {M ′⊥
j }q−2pj=1 , with 06M

′⊥
1 6 · · ·6M ′⊥

q−2p.
Let us �rst outline the approach. Since S ′(z) is

known, one can extract for each N¿M ′⊥
1 the set of all

degreeN 1×q polynomials g(z)=∑N
k=0 gkz

−k satisfy-
ing g(z)S ′(z)=0 for all z; this is because g(z)S ′(z)=0
if and only if the row vector g= (g0; : : : ; gN ) belongs
to the left kernel of the generalized Sylvester matrix
associated to S ′(z). Now, (C6) ensures that the ratio-
nal spaces spanned by the columns of S ′(z) and of
[H ′(z); H (z)], respectively, are equal, and thus that
g(z)S ′(z) = 0 if and only if g(z)[H ′(z); H (z)] = 0.
This, in turn, implies that g(z)H (z)=0 for all z. There-
fore, using the derivative of S(z) enables to extract
polynomials of B of degree N for all N¿M ′⊥

1 . How-
ever, these elements do not span the whole set B be-
cause dim(B′)¡ dim(B)= q−p. Nevertheless, one
can use them to build a matrix polynomial G(z) for
which the associated matrix G has full column rank,
as we now see.
Let again Hi(z) (resp. H ′

i (z)) denote the ith col-
umn ofH (z) (resp. ofH ′(z)). From (2.4),

∑q−2p
j=1 M ′⊥

j

=
∑2p

i=1M
′
i ¡

∑p
i=1 (deg(Hi(z)) + deg(H ′

i (z)))
(the inequality is strict because [H ′(z) H (z)]
is not column-reduced). Therefore, M ′⊥

q−2p¡∑p
i=1(deg(Hi(z)) + deg(H ′

i (z))). If N is chosen
greater than

∑p
i=1 (deg(Hi(z)) + deg(H ′

i (z))), then
N¿M ′⊥

q−2p, and thus there exist (q − 2p) lin-

early independent 1 × q polynomials {gj(z)}q−2pj=1
of degree N satisfying gj(z)H (z) = 0. Let G(z) =
[gT1 (z); : : : ; g

T
q−2p(z)]

T =
∑N

k=0 Gkz
−k , and let G =

[GT0 ; : : : ; G
T
N ]
T. For the rest of the discussion we pro-

ceed as in Section 2.2. Let x0 satisfy Gx0 = 0 or,
equivalently, G(z)x0 = 0 for all z. Since G(z) is a
basis of B′, this holds if and only if the constant
polynomial vector x(z)= x0 belongs to the dual space
of B′, i.e., to S′. Let us assume that M ′

1¿1. Then x0
must be reduced to 0, G has full column rank, and R0
can be identi�ed from (2.3).

This result shows that R0 can be identi�ed from the
left Kernel of TN (S ′) (if N is chosen large enough)
provided M ′

1¿1. This condition implies in particular
that deg(Hi(z))¿2 for each i. We note however that
this new approach needs less restrictive assumptions
on H (z) than the exploitation of the block Hankel ma-
trixH. In particular, we no longer need that all chan-
nels Hi(z) have equal length (see condition (C3)), and
the su�cient identi�ability conditionM−1¿M⊥

q−p of
Theorem 1 is relaxed. Moreover, the reader may check
that the approach remains valid if H (z) is rational.
We now summarize the discussion in the following

theorem:

Theorem 2. Let H (z)=
∑M

k=0 Hkz
−k be a q×p min-

imum phase polynomial; and let {Rn} be the autoco-
variance function associated to the “spectral density”
S(z) = H (z)HT(z−1). Assume that q¿ 2p and that
(C6) holds. Let {M ′

i }2pi=1; with 06M ′
16 · · ·6M ′

2p; be
the Kronecker indices of the rational spaceS′ gener-
ated by the columns of [H ′(z); H (z)]. Let us assume
that S′ does not contain non-zero constant vectors;
i.e.; that its smallest Kronecker indexM ′

1 is non-zero.
Then H (z) is identi�able (up to a p× p orthogonal
matrix) from the truncated sequence {Rn}16n6M .

Finally, let us brie
y outline the principle of a possi-
ble identi�cation algorithm. The equation G(z)S ′(z)=
0 is equivalent to [G0; : : : ; GN ]TN (S ′) = 0. The gener-
alized Sylvester matrix TN (S ′) associated with S ′(z)
plays the same role as the matrix [JH HT] in the
preceding algorithm. Hence, let nowU=(U0; : : : ; UN )
be a matrix, the rows of which form an orthonormal
basis of Kerl(TN (S ′)). Then, providedM ′

1¿1, the ma-
trixU=[UT

0 ; : : : ; U
T
N ]
T has full column rank, so that R0

can be identi�ed from the product UR0. Note that the
dimension of Kerl(TN (S ′)) is generally much greater
than the dimension q− 2p of B′. This is because the
linear independence of the rows of U does not imply
the linear independence over the �eld F1 of their as-
sociated 1× q polynomials. In other words, the rows
of U (z) =

∑N
k=0Ukz

−k span B′, but are not linearly
independent over F1. Similar remarks also apply to
the algorithm of Section 2.2.

3. A Wiener–Hopf factorization based approach

In this �nal section, we still make use of the factor-
ization (2.7) but in a di�erent way. Under simple suf-
�cient conditions on H (z), we shall see that the factor
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[H ′(z) H (z)] in (2.7) is essentially unique (because
of its particular structure), which solves the identi�a-
bility problem of H (z) from {Rk}Mk=1.
Let us �rst set

W−(z) = [H ′(z); H (z)]; �(z) =
[
Ip 0
0 z2Ip

]

and

W+(z−1) =
[
HT(z−1)

−H ′T(z−1)

]
; (3.8)

so that (2.7) reads S ′(z) = W−(z)�(z)W+(z−1).
Throughout this section, we shall assume that q¿ 2p,
and that

(C7): Rank(W−(z)) = 2p

for all z such that |z|¿1 (including z =∞)
(which implies (C2)). Let � denote the unit circle,
�+ = {z ∈ C; s:t: |z| ¡ 1} its interior, and �− =
{z ∈ C; s:t: |z|¿ 1} ∪∞ the complement of �+ ∪�
in the Riemann sphere C = C∪∞. (C7) implies that
W−(z) is analytic and has full rank 2p in �− ∪ �,
while W+(z−1) is analytic and has full rank 2p in
�+ ∪ �. Thus (2.7) is indeed on particular so-called
non-canonical left Wiener–Hopf factorization of S ′(z)
with respect to the contour � (for sake of brevity, we
shall simply use the term: WH factorization) [4]. As
is seen from the following theorem, the three factors
W−(z), �(z), and W+(z−1) are uniquely de�ned up
to certain non-trivial indeterminacies:

Theorem 3. Let (C7) hold. Then the decomposition
S ′(z) = W−(z)�(z)W+(z−1) in (2:7) is a WH fac-
torization of S ′(z). Let S ′(z) = W̃−(z)�̃(z)W̃+(z−1)
be another WH factorization of S ′(z); i.e., W̃−(z) is
analytic and has full rank 2p in �− ∪�; W̃+(z−1) is
analytic and has full rank 2p in �+∪�; and �̃(z) is a
diagonal matrix with diagonal entries (zk1 ; : : : ; zk2p);
where the indices k16 · · ·6k2p belong to Z. Then
�̃(z) = �(z); W̃−(z) =W−(z)C−1

− (z)

and

W̃+(z−1) = �−1(z)C−(z)�(z)W+(z−1); (3.9)

where C−(z) belongs to the multiplicative group C−
of 2p× 2p block upper triangular matrices

C−(z) =
[
C1;1 C1;2(z)
0 C2;2

]
(3.10)

satisfyingC1;1 andC2;2 are constant regular matrices;
and C1;2(z) =

∑2
i=0 C

(i)
1;2z

−i is a polynomial matrix

in z−1 of degree at most 2. Conversely; if C−(z) is
any such matrix; and if W̃−(z); W̃+(z−1) and �̃(z)
are given by (3:9); then the factorization S ′(z) =
W̃−(z)�̃(z)W̃+(z−1) is aWH factorization as de�ned
above.

Proof. Theorem 3 is a particular application of the
general theorems [4, Theorems 1.1 and 1.2] to the
present situation of interest. Note that de�nitions and
results about existence and unicity are given in [4,
Chapter 1] for the case of square factors, but the
generalization to the present situation (q¿ 2p) is im-
mediate.

We shall now show that taking into account the
particular structure of W−(z) (i.e., its left block is
the derivative of its right block) enables to raise the
indeterminacies evoked in Theorem 3.

Lemma 3.1. Assume that the matrix [H1; H2] has full
column rank. Let W̃−(z) and W̃+(z−1) be the left and
right factors; respectively; of some WH factorization
of S ′(z). Then H (z) is identi�able from these factors
up to a constant p× p orthogonal matrix.

Proof. Set W̃−(z) = [P1(z); P2(z)], and Pi(z) =∑M
k=0 Pi;kz

−k for i = 1; 2. Then (3.9) reads

[H ′(z); H (z)] = [P1(z); P2(z)]
[
C1;1 C1;2(z)
0 C2;2

]
:

(3.11)

This equation leads in particular to (P2(z)C2;2 +
P1(z)C1;2(z))′ = P1(z)C1;1. Developing and equating
on both sides the coe�cients of z−k for 06k6M
leads immediately to the matrix equation


0 P1;0 P1;1 P1;0
2P1;0 2P1;1 2P1;2 P1;1
3P1;1 3P1;2 3P1;3 P1;2
4P1;2 4P1;3 4P1;4 P1;3
...

...
...

...







−C(2)1;2C−1
2;2

−C(1)1;2C−1
2;2

−C(0)1;2C−1
2;2

C1;1C−1
2;2




=




P2;1
2P2;2
3P2;3
4P2;4
...



: (3.12)

Since P1(z) = H ′(z)C−1
1;1 , it is easy to check that

the �rst matrix of the left-hand side of (3.12) is
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equal to

0 H1 2H2 H1
2H1 4H2 6H3 2H2
...

...





C−1
1;1 0

. . .
0 C−1

1;1


 ;

and thus has full column rank if [H1; H2] has full col-
umn rank 2p. If this holds, then Eq. (3.12) provides the
matrices C(0)1;2C

−1
2;2 , C

(1)
1;2C

−1
2;2 , C

(2)
1;2C

−1
2;2 and C1;1C

−1
2;2 .

Injecting into (3.11), we see that one can recover the
matrix �H (z) = H (z)C−1

2;2 from any left Wiener–Hopf
factor of S ′(z).
It remains to identify the unknown matrix C2;2.

To that end, let W̃+(z−1) = [Q1(z−1); Q2(z−1)]T.
From W+(z−1) = �−1(z)C−1

− (z)�(z)W̃+(z−1), we
see that −H ′T(z−1) = C−1

2;2Q
T
2 (z

−1). In particular,
Q2(0) =−H1CT2;2 =− �H 1 × (C2;2CT2;2). Now, �H 1 has
full column rank and thus admits a left inverse �H

−L
1 .

We thus see that the matrix A=C2;2C
T
2;2=− �H

−L
1 Q2(0)

can be computed from the data. Let A1=2 be a square
root of A. Then A1=2 = C2;2Q for some orthogonal
matrix Q, and �nally �H (z)A1=2 = H (z)Q.

This identi�ability result can be used to derive a
concrete estimation algorithm of H (z) provided we
have at hand a simple constructive Wiener–Hopf
factorization algorithm. This non-obvious problem is
out of the scope of the present paper, and is under
investigation.
Let us summarize the discussion of this section into

the following theorem.

Theorem 4. Let H (z) =
∑M

k=0Hkz
−k be a q × p

polynomial; and let {Rn} be the autocovari-
ance function associated to the “spectral density”
S(z) = H (z)HT(z−1). Assume that q¿ 2p and that
(C7) holds. Let us further assume that the matrix
[H1; H2] has full column rank 2p. Then H (z) is iden-
ti�able (up to a p× p orthogonal matrix) from the
truncated sequence {Rn}16n6M .

4. Conclusion

In this paper, we proposed two approaches, based
on second-order statistics, for identifying a noisy MA
model up to a constant orthogonal matrix. The prob-
lem has been formulated as the identi�cation of the
unknown �lter H (z) from the truncated autocovari-
ance sequence {Rn}n6=0 associated to the spectral den-
sity S(z) = H (z)HT(z−1), and can thus be viewed as
a stochastic realization problem. The �rst approach

consists in identifying R0 directly from certain 1 × q
polynomials g(z) satisfying g(z)H (z)=0. Computing
these �lters can be done either from the block Hankel
matrix associated to the sequence {Rn}n¿1, or from the
derivative S ′(z) of S(z) w.r.t. the variable z−1, which
requires less-restrictive assumptions on H (z). Finally,
we have introduced an alternative approach based on
the Wiener–Hopf factorization theory. In this context,
an identi�ability result has been proved. The practi-
cal use of the Wiener–Hopf factorization approach is
currently under investigation.
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