
A MIXED GM/SMC IMPLEMENTATION

OF THE PROBABILITY HYPOTHESIS DENSITY FILTER

Yohan Petetin, François Desbouvries

Telecom Institute / Telecom SudParis - CITI Department and CNRS UMR 5157

9 rue Charles Fourier, 91011 Evry, France

{yohan.petetin, francois.desbouvries}@telecom-sudparis.eu

ABSTRACT

The Probability Hypothesis Density (PHD) filter is a re-

cent solution for tracking an unknown number of targets

in a multi-object environment. The PHD filter cannot be

computed exactly, but popular implementations include

Gaussian Mixture (GM) and Sequential Monte Carlo (SMC)

based algorithms. GM implementations suffer from prun-

ing and merging approximations, but enable to extract the

states easily; on the other hand, SMC implementations

are of interest if the discrete approximation is relevant,

but are penalized by the difficulty to guide particles to-

wards promising regions and to extract the states. In this

paper, we propose a mixed GM/SMC implementation of

the PHD filter which does not suffer from the above men-

tioned drawbacks. Due to the SMC part, our algorithm

can be used in models where the GM implementation is

unavailable; but it also benefits from the easy state ex-

traction of GM techniques, without requiring pruning or

merging approximations. Our algorithm is validated on

simulations.

1. INTRODUCTION

Multi-target filtering consists in estimating the random states

of an unknown number of targets from a set of observa-

tions which are either due to detected targets or are false

alarms measurements. This problem has been studied for

a long time now and has received much attention since the

introduction of Random Finite Sets (RFS). RFS are sets of

random variables with random and time-varying cardinal

[1], and enable to avoid the use of an association mech-

anism between observations and targets, used in classical

multi-target filters such as the Joint Probabilistic Data As-

sociation (JPDA) algorithm [2] or the Multiple Hypothe-

sis Tracker (MHT) [3]. Direct implementations of RFS

based solutions such as the Bayesian multi target filter

(MTF) are generally not computable. Therefore Mahler

proposed to propagate the so-called PHD or intensity, a

positive density function which operates in the single tar-

get state space domain and which enables to deduce the

number of targets as well as the states of each target.

The PHD propagation formula still involves the com-

putation of complex integrals and thus the PHD cannot be
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computed exactly either. In practice, two implementations

of the PHD filter, with variants, are popular. On the one

hand, the GM implementation [4] assumes that the PHD

is a GM, but requires that each target and associated mea-

surement (when it is detected) follow a linear and Gaus-

sian model; on the other hand, the SMC implementation

of the PHD [5] consists in approximating the PHD by a set

of weighted particles and does not require any assumption

as regards the dynamics of the targets.

Even in the Gaussian and linear case, the PHD filter

is not exactly computable. The GM implementation relies

on approximations such as pruning and merging, and it

can sometimes be necessary to limit the number of Gaus-

sians of the mixture. This is due to the fact that the number

of Gaussians grows exponentially with time. More pre-

cisely, if Jk−1 is the number of Gaussians at time k − 1
and |Zk| the number of measurements available at time k
then even in the simple case where there is no birth and no

spawning, the computation of the PHD a time k requires

the computation of Jk−1 prediction steps and Jk−1×|Zk|
update steps of the Kalman Filter (KF). On the other hand,

the extraction of states is easy since it consists in looking

for Gaussians with high weight.

By contrast, pruning and merging approximations are

not necessary in SMC implementations. However, as in

SMC methods for single object filtering, it may be difficult

to guide particles into regions where targets are present

and so the choice of the sampling importance distribution

is critical. Consequently, a poor choice of the importance

distribution can lead to unreliable estimates of the num-

ber of targets and states. Finally, it has been argued in [4]

that contrary to the GM implementation, the extraction of

states is a difficult task, since it requires clustering tech-

niques which can be unreliable in some situations. How-

ever some practical heuristics have been proposed in [6]

and improve classical clustering techniques.

In this paper, we combine the GM and SMC imple-

mentations of the PHD filter in order to take advantage

of both implementations. More precisely, we propagate a

Monte Carlo (MC) approximation of the PHD filter, which

enables to avoid the use of pruning and merging approx-

imations, and given an MC approximation of the PHD at

time k− 1, we derive an estimate of the number of targets

and states at time k based on the procedure used in the

GM implementation. Thus, we do not need to use clus-



tering techniques to extract states, and we reduce the role

of the importance distribution since our estimates do not

rely on an MC approximation of the PHD at time k. We

first focus on the Gaussian and linear model and we show

that our approach enables to relax some assumptions used

in the GM implementation; in particular, the probability

of survival of targets does not need to be constant and the

birth intensity of targets may not be a GM. Next we ob-

serve that our algorithm can be used in semi-linear Gaus-

sian models, which is not the case for purely GM based

implementations. Finally, our algorithm can be extended

to non-linear Gaussian models up to some numerical ap-

proximations.

The paper is organized as follows. In §2 we recall

the general PHD filter and its GM and SMC implemen-

tations. In §3 we derive our combined GM-SMC PHD

filter for Gaussian and linear models, and then extend it

to more general models. Finally in §4 compare the three

implementations (SMC, GM and GM-SMC) via computer

simulations.

2. CLASSICAL IMPLEMENTATIONS

OF THE PHD FILTER

A PHD is a real and positive function which has the fol-

lowing property: let S ⊂ IRm, then

∫

S

v(x) dx = E(|X ∩ S|), (1)

where |X∩S| is the cardinal of the set of the targets which

belong to region S. In other words, the integral of PHD

v(x) over region S is the expected number of objects in

this region.

In this framework, the multi-target filtering problem

can be seen as the propagation of PHD vk|k, i.e. the PHD

of the set of targets at time k, given all observations up

to time k. The so-called PHD filter, which is a set of

equations which propagate recursively the PHD, can be

derived under the following hypotheses [1]: targets evolve

and generate measurements independently of one another;

the clutter is independent of measurements due to detected

targets and the clutter and the number of targets follow

a Poisson distribution. If we note fk|k−1(xk|xk−1) the

transition pdf from state xk−1 to xk; gk(zk|xk) the likeli-

hood of a measurement zk with state xk; ps,k(xk−1) the

probability that a target with state parameters xk−1 at time

k − 1 still exists at time k; pd,k(xk) the probability that

a target with state parameters xk is detected at time k; κk
the intensity of the clutter measurements at time k and γk
the intensity of birth targets at time k, the propagation of

PHD vk|k(x) is the succession of a prediction step and of

an updating step (we assume for simplicity, but without

loss of generality, that there is not spawning) [1]:

vk|k−1(x) =

∫

ps,k(xk−1)fk|k−1(x|xk−1)×

vk−1|k−1(xk−1)dxk−1 + γk(x), (2)

vk|k(x) = [1− pd,k(x)] vk|k−1(x)+

∑

z∈Zk

pd,k(x)gk(z|x)vk|k−1(x)

κk(z)+
∫
pd,k(x)gk(z|x)vk|k−1(x) dx

. (3)

2.1. GM Implementation of the PHD filter [4]

Let us now assume that the model is linear and Gaus-

sian, i.e that fk|k−1(xk|xk−1) = N (xk;Fkxk−1;Qk)
and gk(z|xk) = N (z;Hkxk;Rk), where N (x;m;P) is

the Gaussian pdf with variable x, mean m and covariance

P. We also assume that the probabilities of survival ps,k
and of detection pd,k do not depend on the state, and that

the PHD at time k − 1 and the birth intensity are GM:

vk|k−1(x) =

Jk−1∑

i=1

w
(i)
k−1N (x;m

(i)
k−1;P

(i)
k−1), (4)

γk(x) =

Jγk∑

i=1

w(i)
γk
N (x;m(i)

γk
;P(i)

γk
). (5)

Plugging (4) and (5) in (2), we get a new GM of Jk|k−1 =
Jk−1 + Jγk

components:

vk|k−1(x) =

Jk|k−1
∑

i=1

w
(i)
k|k−1N (x;m

(i)
k|k−1;P

(i)
k|k−1).(6)

The first Jk−1 components are obtained with the predic-

tion step of the KF and the first Jk−1 weights arew
(i)
k|k−1 =

ps,kw
(i)
k−1|k−1.

Next, vk|k(x) is the sum of the reweighted predicted

GM vk|k−1(x), and of a new GM of Jk|k−1 × |Zk| com-

ponents obtained by applying the update step of the KF on

the predicted GM with each measurement z ∈ Zk, and by

deriving appropriate weights, see [4] for further details.

In order to keep this GM tractable several approxima-

tions studied in [7] have to be done:

• a Gaussian with weightw
(i)
k|k is under a given thresh-

old Tp is deleted;

• given a threshold Tu, Gaussians which are too close

are merged;

• if after these two steps, the number of components

is above a given threshold Jmax, only the Jmax

Gaussians with highest weights are kept.

Finally, an estimate of the number of targets is given

by the sum of the weights of the mixture, and a Gaussian

is considered as a target when its weight is above a given

threshold, typically 0.5.



2.2. SMC Implementation of the PHD filter [5]

Let us now focus on the SMC implementation of the PHD

filter. Assume that an approximation of vk−1|k−1 is given

by

v̂k−1|k−1(xk−1) =

Lk−1∑

i=1

w
(i)
k−1δx(i)

k−1

(xk−1). (7)

Then by plugging this approximation in (2), we get an

approximation of the predicted PHD:

ṽk|k−1(xk) =

Lk−1∑

i=1

ps,k(x
(i)
k−1)w

(i)
k−1fk|k−1(xk|x

(i)
k−1)+

γk(xk). (8)

Next, let q(xk|xk−1) and q′(xk) be two importance dis-

tributions. By sampling x
(i)
k ∼ q(xk|x

(i)
k−1) for 1 ≤ i ≤

Lk−1 and x
(i)
k ∼ q′(xk) for Lk−1 + 1 ≤ i ≤ Lk−1 +

Lγk
= L′

k, we get a discrete approximation v̂k|k−1(xk) =
∑L′

k

i=1 w
(i)
k|k−1δx(i)

k

(xk) of ṽk|k−1 where

w
(i)
k|k−1 = w

(i)
k−1×

ps,k(x
(i)
k−1)fk|k−1(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1)

, 1 ≤ i ≤ Lk−1, (9)

w
(i)
k|k−1 =

γk(x
(i)
k )

Lγk
× q′(x

(i)
k )

, Lk−1 + 1 ≤ i ≤ L′
k. (10)

Finally, by plugging v̂k|k−1 in (3), we get a discrete ap-

proximation v̂k|k of the updated PHD vk|k given by

v̂k|k(xk) =

L′
k∑

i=1

w
(i)
k δ

x
(i)
k

(xk), (11)

where

w
(i)
k = (1− pd,k(x

(i)
k ))w

(i)
k|k−1+

∑

z∈Zk

w
(i)
k|k−1pd,k(x

(i)
k )gk(z|x

(i)
k )

κ(z)+
∑Lk|k−1

i=1 w
(i)
k|k−1pd,k(x

(i)
k )gk(z|x

(i)
k )

. (12)

One can possibly turn the set {w
(i)
k ,x

(i)
k }

L′
k

i=1 into a set of

Lk particles by using a resampling step.

An estimate of the number of targets is then given by
∑N

i=1 w
(i)
k but it is difficult to extract states. Clustering

techniques are required to find regions where particles are

concentrated. Another approach developed in [6] consists

in looking measurements z such that

L′
k∑

i=1

w
(i)
k|k−1pd,k(x

(i)
k )gk(z|x

(i)
k )

κ(z)+
∑Lk|k−1

i=1 w
(i)
k|k−1pd,k(x

(i)
k )gk(z|x

(i)
k )

(13)

is above a given threshold. In this case, an estimate of the

state associated to the measurement z is given by

L′
k∑

i=1

w
(i)
k|k−1pd,k(x

(i)
k )gk(z|x

(i)
k )

κ(z)+
∑Lk|k−1

i=1 w
(i)
k|k−1pd,k(x

(i)
k )gk(z|x

(i)
k )

x
(i)
k .

(14)

3. A MIXED GM-SMC IMPLEMENTATION

OF THE PHD FILTER

We now develop an alternative approach to the GM and

SMC implementations. We first focus on Gaussian and

linear models (see §2.1). As in the GM implementation we

assume that the probability of detection pd,k(xk) = pd,k
is constant and that γk is a GM with Nγk

components;

however, we do not need to assume that ps,k(xk−1) is

constant. As in SMC implementations, we assume that

an approximation of vk−1|k−1 is given by (7).

3.1. Prediction Step

Plugging the approximation v̂k−1|k−1 in (2), we get the

approximation (8), which actually is a GM of Lk|k−1 =
Lk−1 + Jγk

components:

ṽk|k−1(x) =

Lk|k−1
∑

i=1

w
(i)
k|k−1N (x;m

(i)
k|k−1;P

(i)
k|k−1), (15)

in which w
(i)
k|k−1=ps,k(x

(i)
k−1)w

(i)
k−1|k−1, m

(i)
k|k−1 = Fk×

x
(i)
k−1, P

(i)
k|k−1 = Qk for 1 ≤ i ≤ Lk−1, and other com-

ponents are given by the GM γk.

3.2. Update Step

Next, as in the GM implementation, we derive an approx-

imation of vk|k(x) without sampling new particles. Let

B(z) = κ(z) +

∫

pd,kgk(z|x)ṽk|k−1(x)dx (16)

= κ(z) +

Lk|k−1
∑

i=1

pd,kw
(i)
k|k−1q

(i)
k (z), (17)

where

q
(i)
k (z) = N (z;Hkm

(i)
k|k−1;Rk +HkQkH

T
k ). (18)

Then by plugging the approximation (15) of vk|k−1(x) in

(3) and using classical results on Gaussian variables, we

get a GM approximation of vk|k(x) given by

ṽk|k(x) = (1− pd,k)ṽk|k−1(x) +

∑

z∈Zk

∑Lk|k−1

i=1 pd,kw
(i)
k|k−1q

(i)(z)ψ
(i)
k (x, z)

B(z)
,(19)

where

ψ
(i)
k (x, z) = N (x;m

(i)
k (z);P

(i)
k ), (20)

m
(i)
k (z) = m

(i)
k|k−1 +K

(i)
k (z−Hkm

(i)
k|k−1), (21)

P
(i)
k = (I−K

(i)
k Hk)P

(i)
k|k−1, (22)

K
(i)
k =P

(i)
k|k−1H

T
k (HkP

(i)
k|k−1H

T
k +Rk)

−1. (23)



3.3. Estimating the number of targets and extracting

the states

An estimate of the number of targets is given by N̂k =
∫
ṽk|k(x)dx which is computable here:

N̂k = (1− pd,k)

Lk|k−1
∑

i=1

w
(i)
k|k−1+

∑

z∈Zk

∑Lk|k−1

i=1 pd,kw
(i)
k|k−1q

(i)(z)

B(z)
. (24)

Two options are available to extract states:

• The first one consists in using the procedure used in

the GM implementation, i.e. in first merging close

Gaussians, then in looking for Gaussians with high

weights.

• Otherwise we first look for measurements z such

that

∑Lk|k−1
i=1 pd,kw

(i)

k|k−1
q
(i)
k

(z)

B(z) is above a given thresh-

old. Then we deduce an estimate of the state asso-

ciated to this measurement given by 1
B(z)

∑Lk|k−1

i=1

pd,kw
(i)
k|k−1q

(i)
k (z)m

(i)
k (z). This method has the ad-

vantage to involve the computation of m
(i)
k (z) only

for such measurements z.

Note that by contrast with the SMC implementation of

the PHD filter, our estimates of the number of targets and

of the states do not depend on a weighted set of samples

{w
(i)
k ,x

(i)
k }Lk

i=1.

3.4. SMC approximation of the PHD at time k

We finally derive a discrete approximation v̂k|k(x)=
∑Lk

i=1

w
(i)
k δ

x
(i)
k

(x) of vk|k (remember that our approach requires

an MC approximation of the PHD at each time step), by

using either the method described in §2.2 or other SMC

methods; for example, the Auxiliary PHD filter [8] uses

the expression of ṽk|k(x) to sample particles.

3.5. Discussion and extensions

The previous paragraph was devoted to Gaussian and lin-

ear models. Note however that contrary to the GM im-

plementation, the probability of survival ps,k(xk−1) can

indeed depend on xk−1. In addition, our approach can

be used if one can compute q
(i)
k (z) =

∫
gk(z|x)fk|k−1

(x|x
(i)
k−1)dx and so ψ

(i)
k (x, z)= gk(z|x) fk|k−1(x|x

(i)
k−1)

×1/q
(i)
k (z) (see (18) and (20)).

3.5.1. Gaussian but semi-linear models

Note that, these terms are also computable in a wider class

of models. Assume for instance that fk|k−1(x|xk−1) and

gk|k(z|x) are Gaussians, that the mean of gk|k is linear

in x but that the mean of fk|k−1 is nonlinear in xk−1.

Then the GM implementation is not computable because

it is not possible to compute (2), while the GM-SMC ap-

proach remains computable for such models since q
(i)
k (z)

and ψ
(i)
k (x, z) are indeed computable.

3.5.2. About alternate birth intensities

Up to now the birth intensity γk was assumed to be a GM.

However, one can adapt our approach to any birth inten-

sity. If
∫
gk(z|x)γk(x)dx is not computable, then one can

derive an MC approximation γ̂k of γk, using the proce-

dure described in §2.2. An approximation of the predicted

PHD is now given by the sum of a GM and of the MC

approximation γ̂k of γk:

ṽk|k−1 =

Lk−1∑

i=1

w
(i)
k|k−1N (x;Fkx

(i)
k−1

︸ ︷︷ ︸

m
(i)

k|k−1

; Qk
︸︷︷︸

P
(i)

k|k−1

) + γ̂k,

(25)

where weights w
(i)
k|k−1 = ps,k(x

(i)
k−1)w

(i)
k−1|k−1 and γ̂k =

∑Lγk

i=1 w
(i)
γk δx(i)

γk

. The term B(z) in (16) should be modi-

fied and is computed from the the MC approximation of
∫
gk(z|x)× γk(x)dx. We have now

B(z) = κ(z)+

Lk−1|k−1
∑

i=1

pd,kw
(i)
k|k−1q

(i)
k (z)+

Lγk∑

i=1

w(i)
γk
gk(z|x

(i)
γk
). (26)

Finally, an approximation of vk|k is of the following form:

ṽk|k(x) = ṽ1k|k(x) + ṽ2k|k(x), (27)

where

ṽ1k|k(x) = (1− pd,k)

Lk−1|k−1
∑

i=1

w
(i)
k|k−1N (x;m

(i)
k|k−1;P

(i)
k|k−1)

+
∑

z∈Zk

pd,k
∑Lk−1|k−1

i=1 w
(i)
k|k−1q

(i)
k (z)ψ

(i)
k (x, z)

B(z)
, (28)

where q
(i)
k (z) and ψ

(i)
k (x, z) are respectively defined in

(18) and (20), and

ṽ2k|k(x) = (1− pd,k)

Lγk∑

i=1

w(i)
γk
δ
x
(i)
γk

+

∑

z∈Zk

Lγk∑

i=1

w(i)
γk

pd,kgk(z|x
(i)
γk )δx(i)

γk

B(z)
. (29)

The term ṽ1
k|k is due to persistent targets while ṽ2

k|k is due

to birth targets. In this case, one can use the procedure

used in the GM implementation to extract states due to

persistent targets and that used in the SMC implementa-

tion to extract states due to birth targets. However, if we

want to avoid the use of an SMC extraction procedure, one

can only extract states due to persistent targets; the birth

targets at time k become persistent target at time k+1 and

so their extraction will become easy at the next iteration.



3.5.3. Non linear Gaussian models

Finally, there are some models for which the expressions

of q
(i)
k (z) and ψ

(i)
k (x, z) are not computable. Well known

techniques such as linearization and Unscented Transfor-

mation can be used to approximate q
(i)
k (z) and ψ

(i)
k (x, z)

[9]. When they are used sequentially, they lead to the Ex-

tended Kalman or Unscented Kalman implementations of

the PHD filter [4]. Of course, in an oriented GM-SMC

implementation, they are just used locally to estimate the

number of targets and their state, but not to compute and

propagate a GM approximation of the PHD.

4. SIMULATIONS

4.1. The Optimal Subpattern Assignment (OSPA) met-

ric

The OSPA metric enables to compare multi-target filter-

ing algorithms [10]. Let X = {x1, ..., xm} and Y =
{y1, ..., yk} be two finite sets. X represents the estimated

finite set of the targets and Y represents the true finite set

of the targets. For 1 ≤ p < +∞ and c > 0, we denote

d(c)(x, y) = min(c, ||x− y||) (||.|| is the euclidean norm)

and Πk the set of permutations on {1, 2, ..., n}. The OSPA

metric is defined by :

d
c

p(X,Y )
∆
=

(

1

n

(

min
π∈Πk

m∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

)) 1
p

(30)

if m ≤ n and d
c

p(X,Y )
∆
= d

c

p(Y,X) if m > n. We use

p = 2 and c = 100 in our simulations.

4.2. Linear and Gaussian Model

We track the position and velocity of targets, so xk =
[px, ṗx, py, ṗy]

T
k . We take fk|k−1(xk|xk−1) = N (xk,

Fxk−1,Q) and gk(zk|xk) = N (zk,Hxk,R) where

F =







1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1







, H =

[
1 0 0 0
0 0 1 0

]

,

Q = σ2
v








T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T








and R =

(
σ2
x 0
0 σ2

y

)

.

Other parameters are T = 2s, σv = 3m2/sec3 but σx =
σy = 0.3m, which means that likelihood gk(z|xk) is sharp.

This is challenging for the SMC-PHD implementation above

when the sampling importance distribution is the transi-

tion pdf fk|k−1 (xk|xk−1): it does not take into account

the available measurements z ∈ Zk and so few particles

are in regions where terms gk(z|xk) are large, even if the

measurement z is due to a target. So few particles are in

regions where targets are present, and the estimates of the

number of targets and of their states are not accurate.

We compare the SMC and GM-SMC implementations

of the PHD filter, and both algorithms use the transition

density to sample particles (remember that in our com-

bined approach, one should propagate the discrete approx-

imation, even if it not used for computing an estimator of

the number of targets, see §3.4). Particles are initialized

around the measurements [6], we use Nb = 20 particles

per newborn targets and N = 200 particles per persistent

targets in both algorithms. The probability of detection is

pd,k = 0.95 for 1 ≤ k ≤ 100, the probability of survival

is ps,k = 0.98 for 1 ≤ k ≤ 100, and we generate 10 false

alarm measurements (in mean).

We also implement the GM implementation, with Tp =
10−5 for the pruning threshold, Tm = 4m for the merging

threshold and we keep at most Nmax = 100 Gaussians. A

scenario with 6 targets which appear at k = 0, k = 20 and

k = 50 is presented in Fig. 1.
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Fig. 1. Scenario with 6 targets - True tracks, estimates and

measurements

The OSPA distance and the estimated number of tar-

gets are displayed in Fig. 2 and Fig. 3. The combined

approach outperforms the SMC one and copes with the

issue of guiding particles in promising regions. Indeed,

even if we use the transition density for getting a discrete

approximation of vk−1|k−1, we get a correct estimator of

the number of targets when we use the GM-SMC algo-

rithm by contrast with the SMC one where the new set

{w
(i)
k ,x

(i)
k }Lk

i=1 is used to deduce a discrete approxima-

tion of vk|k and then an estimator of the number of tar-

gets. It means that for a same MC approximation of the



PHD at time k−1, which actually is not accurate approxi-

mation since MC samples are not in regions where targets

are present (see Fig. 3), the GM-SMC approach succeeds

in estimating the true number of targets and their states.

On the other hand, the GM-SMC approach also out-

performs the GM implementation in terms of OSPA dis-

tance, above all when time increases and so when the ap-

proximations of the GM implementation are severe since

the true PHD is a GM with more than Nmax components.

Finally, the number of targets is well estimated by the GM

and GM-SMC algorithms, but the GM-SMC estimator is

more accurate, see Fig. 4.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Time

O
S

P
A

 D
is

ta
n

c
e

 (
p

=
2

; 
c
=

1
0

0
)

 

 

SMC−PHD

GM−SMC−PHD

GM−PHD

Fig. 2. OSPA distance
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Fig. 3. Estimator of the number of targets
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Fig. 4. Standard Deviation of the estimator of the number

of targets

5. CONCLUSION

We proposed a mixed GM-SMC implementation of the

PHD filter. Starting from an MC approximation of the

PHD at time k − 1, we showed that one can estimate the

number of targets and the states by using the extraction

procedure of the GM implementation. Estimates at time k
do not rely on the MC approximation of the PHD at time k
and so are less responsive to the critical choice of the im-

portance distribution. More importantly, the approach re-

mains valid when we relax assumptions of the GM imple-

mentation and in some non-linear Gaussian models. Ap-

proximations techniques have been proposed when the ap-

proach is not directly computable. Simulations confirmed

that our GM-SMC method outperforms both classical GM

and SMC implementations.
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