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ABSTRACT

Bayesian filtering is an important issue in Hidden Markov

Chains (HMC) models. In many problems it is of interest

to compute both the a posteriori filtering pdf at each time

instant n and a moment Θn thereof. Sequential Monte

Carlo (SMC) techniques, which include Particle filtering

(PF) and Auxiliary PF (APF) algorithms, propagate a set

of weighted particles which approximate that filtering pdf

at time n, and then compute a Monte Carlo (MC) estimate

of Θn. In this paper we show that in models where the

so-called Fully Adapted APF (FA-APF) algorithm can be

used such as semi-linear Gaussian state-space models, one

can compute an estimate of the moment of interest at time

n based only on the new observation yn and on the set

of particles at time n − 1. This estimate does not suffer

from the extra MC variation due to the sampling of new

particles at time n, and is thus preferable to that based on

that new set of particles, due to the Rao-Blackwell (RB)

theorem. We finally extend our solution to models where

the FA-APF cannot be used any longer.

1. INTRODUCTION

Let xn (resp. yn) be a sequence of hidden states (of obser-

vations), assumed to be real for simplicity. In this paper

we do not distinguish random variables and their realiza-

tions. We assume that {(xn, yn)}n≥0 is an HMC:

p(x0:n,y0:n) = p(x0)

n∏

i=1

fi|i−1(xi|xi−1)

n∏

i=0

gi(yi|xi),

(1)

in which p(xi), say, is the pdf (w.r.t. Lebesgue measure)

of xi, x0:k = {xi}
k
i=0, fi|i−1(xi|xi−1) is the transition

pdf of Markov Chain {xn}n≥0, and gi(yi|xi) is the like-

lihood of yi given xi. Assume that we are interested in

computing, for all n, the moment

Θn =

∫

IR

φ(xn)p(xn|y0:n)dxn, (2)

in which p(xn|y0:n) (or simply pn|n) is the conditional

pdf of xn given y0:n. Then one would think of comput-

ing (2) after pn|n is itself propagated via the well known
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formulas

p(xn|y0:n−1) =

∫
fn|n−1(xn|ξ)pn−1|n−1(ξ)dξ, (3)

p(xn|y0:n) =
gn(yn|xn)p(xn|y0:n−1)∫
gn(yn|xn)p(xn|y0:n−1)dxn

. (4)

However, as is well known (3)-(4) (and thus (2)) cannot be

computed in practice so one need to use approximations.

In particular, SMC methods consist in approximating pn|n
by a set of weighted samples {wi

n, x
i
n}

N
i=1 which are prop-

agated over time; then the MC estimator

Θ̂n({w
i
n, x

i
n}

N
i=1) =

N∑

i=1

wi
nφ(x

i
n). (5)

of Θn is obtained as a byproduct.

In this paper we show that in some HMC models one

can compute an estimator Θ̂se
n ({wi

n−1, x
i
n−1}

N
i=1, yn) of

(2) (here superscript ”se” stands for semi-exact), which

depends only on the new observation yn and on the set of

particles at time n−1. This estimate remains an estimator

of Θn at time n (thanks to the new data yn), but does not

use the particles {xn}Ni=1 which will be produced by the

SMC algorithm. In other words, rather than propagating

{wi
n−1, x

i
n−1}

N
i=1 and next computing Θ̂n({w

i
n, x

i
n}

N
i=1)

in (5), we first compute Θ̂se
n from {wi

n−1, x
i
n−1}

N
i=1 and

yn, and next run the SMC algorithm. In this solution, Θ̂se
n

is still a byproduct of an SMC algorithm (whence the term

”semi”); but given yn, Θ̂se
n is a deterministic function of

{wi
n−1, x

i
n−1}

N
i=1 (and not of samples {xi

n}
N
i=1), whence

the term ”exact”. The interest of Θ̂se
n is that it does not

suffer from the extra MC variation induced by the produc-

tion of the new samples {xn}
N
i=1, and is thus preferable to

Θ̂n due to the RB theorem.

The paper is organized as follows. In §2 we show that

the FA-APF algorithm can be replaced by a semi-exact

solution which leads to a variance reduction, at least for

classical functions such as φ(xn) = xn or φ(xn) = x2
n,

then we show that it is also valid for the Sampling Im-

portance Resampling (SIR) algorithm with optimal im-

portance distribution. When the FA-APF or the SIR algo-

rithm with optimal importance distribution are no longer

computable, we approximate our semi-exact solution by

combining classical PF to get an approximation of the



filtering pdfs, with numerical approximations using lo-

cal linearizations or Unscented Transformations (UT) to

compute an estimate of Θn which does not rely on MC

samples {wi
n, x

i
n}

N
i=1. Finally in §3 we validate our semi-

exact solution on popular models such as the ARCH and

Stochastic Volatility (SV) models.

2. SEMI-EXACT FILTERING FOR SOME HMC:

FA-APF IN SEMI-LINEAR GAUSSIAN MODELS

2.1. FA-APF-based estimator of Θn

In an HMC model (1), existing SMC techniques for com-

puting pn|n include PF and APF filters. APF filters in-

clude the so-called FA-APF algorithm which we briefly

recall. Assume that at time n − 1 the set of weighted

particles {wi
n−1, x

i
n−1}

N
i=1 is an MC approximation of

pn−1|n−1. An approximation of pn|n is obtained by re-

placing in (3) and (4) pn−1|n−1 by p̂n−1|n−1 =
∑N

i=1

wi
n−1δxi

n−1

. Then the following mixture pdf p̃n|n(.) is an

approximation of pn|n:

p̃n|n(xn) =
N∑

i=1

wi
n−1p(yn|x

i
n−1)∑N

i=1 w
i
n−1p(yn|x

i
n−1)

p(xn|x
i
n−1, yn),

(6)

where

p(yn|xn−1)=

∫
fn|n−1(xn|xn−1)gn(yn|xn)dxn,(7)

p(xn|xn−1, yn) =
fn|n−1(xn|xn−1)× gn(yn|xn)

p(yn|xn−1)
. (8)

By drawing N i.i.d. samples from p̃n|n in (6) we obtain

the so-called FA-APF algorithm [1]:

FA-APF Algorithm.

Let p̂n−1|n−1 =
∑N

i=1 w
i
n−1δxi

n−1

be an SMC approxi-

mation of pn−1|n−1. For all i, 1 ≤ i ≤ N :

1. Sample x̃i
n−1 ∼

∑N

i=1

wi
n−1

p(yn|x
i
n−1

)
∑

N
i=1

wi
n−1

p(yn|xi
n−1

)
δxi

n−1

;

2. Sample xi
n ∼ p(xn|x̃

i
n−1, yn);

3. Set wi
n = 1

N
;

4. Compute

Θ̂n =
1

N

N∑

i=1

f(xi
n). (9)

Then p̂n|n =
∑N

i=1 w
i
nδxi

n
approximates pn|n, and Θ̂n is

an estimator of moment Θn defined in (2).

2.2. Semi-exact FA-APF-based estimator of Θn

The FA-APF-based estimator can be interpreted as the

succession of three successive steps:

1. Approximate the filtering distribution pn|n by the

random mixture p̃n|n defined in (6);

2. Draw i.i.d. samples {xi
n}

N
i=1 from p̃n|n and set p̂n|n =∑N

i=1
1
N
δxi

n
;

3. Compute the empirical estimator Θ̂n of Θn.

Since the estimation step (3) follows the sampling step

(2), Θ̂n depends on particles {xi
n} and thus suffers from

the MC variations introduced by this sampling step. By

construction, Θ̂n is just a crude MC estimator Θ̂se
n , defined

as

Θ̂se
n = Ep̃n|n

(φ(x)). (10)

Given the previous set of particles {wi
n−1, x

i
n−1}

N
i=1 and

observation yn,

E(Θ̂n|{w
i
n−1,x

i
n−1}

N
i=1, yn) = Θ̂se

n , (11)

var(Θ̂n|{w
i
n−1,x

i
n−1}

N
i=1, yn) =

1

N
varp̃n|n

(φ(x)).

(12)

As we will see in the next section, in some situations it

is possible to interchange steps (2) and (3) and use Θ̂se
n

(which depends on the old particles {wi
n−1, x

i
n−1}

N
i=1 and

on yn, but no longer on the new particles {xi
n}

N
i=1) rather

than Θ̂n. Of course, this semi-exact version of the FA-

APF algorithm, which we now summarize, remains an

SMC algorithm because particles {xi
n}

N
i=1 are still nec-

essary to compute the estimator at the next time step.

Semi-exact FA-APF Algorithm.

Let p̂n−1|n−1 =
∑N

i=1 w
i
n−1δxi

n−1

be an SMC approx-

imation of pn−1|n−1. Let pi,n(xn)
def
= p(xn|x

i
n−1, yn).

For all i, 1 ≤ i ≤ N :

1. Compute

Θ̂se
n =

N∑

i=1

wi
n−1p(yn|x

i
n−1)∑N

j=1 w
j
n−1p(yn|x

j
n−1)

Epi,n
(φ(x));

2. Sample x̃i
n−1 ∼

∑N

i=1

wi
n−1

p(yn|x
i
n−1

)
∑

N
j=1

w
j

n−1
p(yn|x

j

n−1
)
δxi

n−1

;

3. Sample xi
n ∼ p(xn|x̃

i
n−1, yn);

4. Set wi
n = 1

N
.

Then p̂n|n =
∑N

i=1 w
i
nδxi

n
approximates pn|n, and Θ̂se

n is

an estimator of the moment Θn defined in (2).

2.3. Discussion

2.3.1. Rao-Blackwell properties

Of course, E(Θ̂se
n |{wi

n−1, x
i
n−1}

N
i=1, yn) = E (Θ̂n |{wi

n−1,

xi
n−1}

N
i=1, yn) = Θ̂se

n , but we have now var(Θ̂se
n |{wi

n−1,

xi
n−1}

N
i=1, yn) = 0 since Θ̂se

n does not depend on the new

particles {xi
n}

N
i=1. Removing the dependency on {wi

n−1,
xi
n−1}

N
i=1, we have the following result:



Proposition 1 Let Θn be the moment defined in (2), and

let Θ̂n (resp. Θ̂se
n ) be the FA-APF-based estimator (resp.

semi FA-APF-based estimator) of Θn defined in (9) (resp.

in (10)). Then

E(Θ̂se
n |y0:n) = E(Θ̂n|y0:n), (13)

var(Θ̂se
n |y0:n) ≤ var(Θ̂n|y0:n), (14)

E[(Θ̂se
n −Θn)

2|y0:n] ≤ E((Θ̂n −Θn)
2|y0:n).(15)

Proof 1

• The first point is obvious since the two estimators

have the same conditional mean, and the weighted

set {wi
n−1, x

i
n−1}

N
i=1 has the same pdf whatever the

considered estimator.

• For the second point, we apply the RB equality:

var(Θ̂n|y0:n) = var(Θ̂se
n |y0:n)+

E(var(Θ̂n|{w
i
n−1, x

i
n−1}

N
i=1, yn)|y0:n)

• Finally, the sign of the difference

E((Θ̂se
n −Θn)

2|y0:n)− E((Θ̂n −Θn)
2|y0:n) =

var(Θ̂se
n |y0:n)− var(Θ̂n|y0:n)

is immediate from (14).

2.3.2. Computational issues

In practice, the semi-exact algorithm requires that integral

∫
φ(xn)p(xn|xn−1, yn)dxn

is computable. This is impossible in general, however for

some classical functions such as φ(xn) = xn, used to

give an estimator of the hidden state, the problem reduces

to computing the first order moment of the sampling dis-

tribution p(xn|xn−1, yn) which happens to be available in

some models (and which is also used to draw new samples

{xi
n}

N
i=1). Let us for instance consider the semi-linear

stochastic models with additive Gaussian noise, given by

xn = fn(xn−1) + gn(xn−1)un (16)

yn = hnxn + vn (17)

in which {un} and {vn} are i.i.d., mutually independent

and independent of x0, un ∼ N (0; 1) and vn ∼ N (0;Rv
n).

The one-dimensional ARCH model is one such model with

fn(xn−1) = 0, gn(xn−1) =
√
β0 + β1x2

n−1 and hn = 1.

In these semi-linear models, pdf p(xn|xn−1, yn) and the

predictive likelihood p(yn|xn−1) are Gaussian and com-

putable, so the algorithm is workable for some functions

φ. If in particular φ(x) = x, no further computation is

necessary; and if φ(x) is a polynomial in x, the prob-

lem reduces to computing the first moments of the avail-

able Gaussian pdf (8). This is not the only class of func-

tions for which the semi-exact algorithm is workable: mo-

ments according to p(xn|xn−1, yn) of functions φ(xn) =

exp(axn), where a is a real constant, are also computable

in such models. Note that computing Θ̂se
n does not require

extra computational cost since in both algorithms one has

to compute p(yn|xn−1) and the first two order moments

of p(xn|xn−1, yn); in the semi-exact computation, we use

them to compute directly the estimator while in the FA-

APF we use them to sample new particles.

2.3.3. An alternate semi-exact solution

The variance reduction technique can indeed be applied as

soon as we know how to compute E(Θn|{wi
n−1, x

i
n−1}

N
i=1,

yn), where Θn is an estimator of Θn computed via a given

SMC algorithm. As we now see, the FA-APF algorithm is

not the only SMC algorithm for which a semi-exact esti-

mator is available in the ARCH model. Another popular

algorithm applicable in such models is the SIR algorithm

with optimal importance distribution and optional resam-

pling step. The algorithm is a reordering of the FA-APF

algorithm, and is described by the following steps:

Semi-exact optimal SIR Algorithm.

Let p̂n−1|n−1 =
∑N

i=1 w
i
n−1δxi

n−1

be an SMC approxi-

mation of pn−1|n−1. For all i, 1 ≤ i ≤ N :

1. x̃i
n ∼ p(xn|xi

n−1, yn);

2. wi
n ∝ wi

n−1p(yn|x
i
n−1),

∑N

i=1 w
i
n = 1;

3. Θn =
∑N

i=1 w
i
nφ(x̃

i
n);

4. (Optional) xi
n ∼

∑N

i=1

wi
n−1

p(yn|x
i
n−1

)
∑

N
j=1

w
j

n−1
p(yn|x

j

n−1
)
δx̃i

n
.

In this algorithm, we have

E(Θn|{w
i
n−1, x

i
n−1}

N
i=1, yn) = Θ̂se

n , (18)

var(Θn|{w
i
n−1, x

i
n−1}

N
i=1, yn) =

N∑

i=1

[
wi

n−1p(yn|x
i
n−1)∑N

j=1 w
j
n−1p(yn|x

j
n−1)

]2

varpi,n
(φ(x)).

(19)

Starting from a common set {wi
n−1, xn−1}

N
i=1, the esti-

mator Θ̂se
n defined in Eq. (18) outperforms the Importance

Sampling based estimator Θn (the proof is similar to that

developed in §2.3.1).

Remark 1 Until now, we have just shown that given a set

{wi
n−1, x

i
n−1} which approximates pn−1|n−1, it is possi-

ble in some cases to compute directly a moment accord-

ing to p̃n|n, and that this strategy is preferable to using

the new set of particles {xi
n}

N
i=1. However, our estima-

tor is also based on a discrete approximation of pn−1|n−1

and is dependent on the set {wi
n−1, x

i
n−1}

N
i=1. We do not

discuss in this paper on how to propagate the discrete ap-

proximation of the filtering distribution p(xn|y0:n) that is



to say, should we propagate it using the FA-APF algo-

rithm or the SIR one with optimal importance distribu-

tion. This is a thorny issue since the resampling step is

optional and is often done according to a particular crite-

rion, like an estimator of the number of efficient particles

[2] [3]. In addition,we know from [4] that it is not pos-

sible from an asymptotical point of view to compare the

set {wi
n, x

i
n}

N
i=1 produced by the SIR algorithm before the

resampling step with that produced by the FA-APF algo-

rithm.

However, if we consider that the resampling step is

done at each time step some analysis is available. It has

been discussed in [5, Ch.9] that the MC estimator of Θn

produced by the FA-APF algorithm always outperforms

(in an asymptotic normality sense) that produced by the

SIR algorithm after the resampling step. Empirically, if

we start from a set {wi
n−1, x

i
n−1}

N
i=1, the number of dif-

ferent particles {xi
n} produced by the FA-APF is equal to

N while that produced by the SIR algorithm is lower than

N . We thus expect that the semi-exact estimator based on

the FA-APF algorithm outperforms that built from the SIR

algorithm with resampling at each time step, and this will

indeed be confirmed by our simulations in §3.1.

Remark 2 In some models, Θ̂se
n = Ep̃n|n

(φ(x)) can of

course not be computed, because likelihood p(yn|xn−1)
is not computable (and so p(xn|xn−1, yn) is not either).

However, techniques such as local linearizations [6], Tay-

lor series expansion [7], or UT [8] have been proposed

for approximating p(yn|xn−1) and p(xn|xn−1, yn). More

precisely, starting from an SMC approximation {wi
n−1,

xi
n−1}

N
i=1 of the filtering pdf at time n−1, an approximate

version of our semi-exact filtering algorithm is described

by the following steps:

1. Compute an approximation of Ep̃n|n
(φ(x)) by us-

ing local linearizations or UT;

2. Derive an SMC approximation of pn|n using a clas-

sical SMC algorithm, such as an SIR or APF algo-

rithm [1]. Previous approximations can possibly be

used to derive some sampling importance distribu-

tions [7] [9]. Other SMC algorithms why optimize

a given criterion are described in [10] [11].

Note that this method differs from the well known Ex-

tended Kalman Filter (EKF) or Unscented Kalman Fil-

ter (UKF) where we use numerical approximations (also

based on linearizations and UT) to approximate the fil-

tering pdf and so to deduce an estimator of Θn; and is

also different from PF based estimators, where an estima-

tor of Θn is deduced from the SMC approximation of the

filtering pdf at time n. Our approximated semi-exact al-

gorithm can thus be seen as a mixture of pure SMC and

pure numerical techniques and has the advantage to avoid

the propagation of errors due to numerical approximation

in the EKF/UKF. In our Simulations section (see §3.3),

we will discuss on the quality of the approximation of the

semi-exact filtering algorithm according to the model and

its parameters.

3. SIMULATIONS

We compute the empirical mean square error (MSE) at

each time step, averaged on P = 200 simulations, and de-

fined by MSE(n) = 1
P

∑P

i=1 |Θ̂
j

n|n −Θj
n|

2, where Θ̂j

n|n

is the estimate of Θj
n given by one of the tested algorithm

at the j-th realization and Θj
n is the true mean at the j-th

realization given either by the Kalman Filter (KF) in the

Gaussian case or a bootstrap filter with N = 105 particles

otherwise.

3.1. Gaussian Model

Let us consider the following model:

xn+1 = 0.9xn + un (20)

yn = xn + vn (21)

in which {un} and {vn} are i.i.d., mutually independent

and independent of x0, with x0 ∼ N (0, 1). Let also

un ∼ N (0, Q), Q = 10 and vn ∼ N (0, R), R = 1.

We estimate the hidden state, so φ(xn) = xn, for all

n, 1 ≤ n ≤ 50, and compare the semi-exact estimator

with the KF, which computes Epn|n
(x). We run the KF,

which of course here is the benchmark solution, the FA-

APF algorithm, the SIR algorithm with optimal sampling

distribution and resampling at each time step, the semi-

exact algorithm based on the FA-APF recursion (S-FA-

APF) and finally the semi-exact algorithm based on the

SIR recursion with optimal sampling distribution and re-

sampling at each time step (S-SIR). All SMC algorithms

use N = 1000 particles. The MSE of the four estimators

are computed and displayed in Fig. 1. The S-FA-APF

based estimator always outperforms the FA-APF based

one, and the S-SIR with optimal importance distribution

based estimator, always outperforms the SIR based one.

Note also that the FA-APF based estimator does not al-

ways outperform the SIR based one which is in accor-

dance with the asymptotical analysis [4], whereas the S-

FA-APF based estimator always outperforms the S-SIR

based one, see Remark 1.

3.2. ARCH Model

Next, we consider the ARCH model.

xn+1 =
√
β0 + β1x2

n × un (22)

yn = xn + vn (23)

in which {un} and {vn} are i.i.d, mutually independent

and independent of x0, with x0 ∼ N (0, 1), un ∼ N (0, 1),
vn ∼ N (0, R), R = 3, β0 = 1 and β1 = 0.1. Let us

now assume that we want to estimate the hidden state xn

(so φ(xn) = xn) and the variance of the process noise

(φ(xn) = β0 + β1 × x2
n) for all n, 1 ≤ n ≤ 50. Since

p(xn|xn−1, yn) is Gaussian (see §2.3.2), it is possible to

calculate both moments. We compute estimators based

on the FA-APF algorithm, the S-FA-APF algorithm, with
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Fig. 1. MSE - Gaussian model, R = 1, Q = 10.

N = 1000 particles for both algorithms and the S-FA-

APF algorithm with N = 100 particles. Results (MSE)

are displayed on Fig. 2 for the estimate of xn and Fig. 3

for the variance of the process noise.
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Fig. 2. MSE - ARCH Model - β0 = 1, β1 = 0.1 and

R = 3 - φ(xn) = xn

As we see, both the S-FA-APF based estimator, with

N = 1000 particles, or N = 100 particles, outperform

the FA-APF based one with N = 1000 particles: even

if we start from an approximation of pn−1|n−1 with 100
particles, it may be better to compute an estimator of Θn

using the semi-exact FA-APF algorithm than starting from

of an approximation of pn−1|n−1 with 1000 particles and

compute an estimator of Θn using the FA-APF algorithm.

Remark however that these considerations are model and

function dependent.

3.3. SV Model

Let us finally consider the following model:

xn+1 = Φxn + un (24)

yn = βexp(xn/2)× vn (25)
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Fig. 3. MSE - ARCH Model - β0 = 1, β1 = 0.1 and

R = 3 - φ(xn) = β0 + β1x
2
n

in which un ∼ N (0, σ2) and vn ∼ N (0, 1). Ep̃n|n
(φ(x))

is not computable, whatever function φ, because the like-

lihood APF algorithms [1] [10] can be a rescue for propa-

gating a discrete approximation of pn|n. Such algorithms

consist in sampling particles in augmented dimension:

(ki, xi
n) ∼

wj
n−1p̂(yn|x

j
n−1)∑N

j=1 w
j
n−1p̂(yn|x

j
n−1)︸ ︷︷ ︸

Pr(ki=j)

p̂(xn|x
j
n−1, yn),

then weighting them by

wi
n ∝

p(xi
n|x

ki

n−1)p(yn|x
i
n)

p̂(yn|xki

n−1)p̂(x
i
n|x

ki

n−1, yn)
,

N∑

i=1

wi
n = 1.

Although {xi
n}

N
i=1 are now sampled from

p̃′n|n(xn) =

N∑

i=1

wi
n−1p̂(yn|x

i
n−1)∑N

i=1 w
i
n−1p̂(yn|x

i
n−1)

p̂(xn|x
i
n−1, yn)

(which differs from p̃n|n),

E(

N∑

i=1

wi
nφ(x

i
n)) 6= Ep̃′

n|n
(φ(x))

because weights {wi
n}

N
i=1 depend on the whole new set

{xi
n}

N
i=1. However, if p̃′

n|n is a correct approximation of

p̃n|n then it may be interesting to compute Ep̃′
n|n

(φ(x))

and to compare it with the classical estimator based on

the APF recursion [1]. The approximation of p(yn|xn−1)
relies on a first order Taylor series expansion of function

log(gn(yn|xn)) in Φxn−1, and so one can consider that

the approximation of log(gn(yn|xn)) is correct for val-

ues of xn close to Φxn−1. If the deduced approxima-

tion of gn(yn|xn) is noted ĝn(yn|xn) then p̂(yn|xn−1) =∫
fn|n−1(xn|xn−1) × ĝn(yn|xn)dxn, where fn|n−1(xn

|xn−1) = N (xn; Φxn−1;σ
2) is now computable. Let us

assume that σ is small. Then fn|n−1(xn|xn−1) is approx-

imately non-null for values close of Φxn−1, and for such



values, ĝn(yn|xn) is a good approximation of gn(yn|xn).
An approximation of p(xn|xn−1, yn) deduced from (8) is

given by a Gaussian pdf, see [1]. So one should get good

approximations p̂(yn|xn−1) and p̂(xn|xn−1, yn) when σ2

is small. In this simulation, we estimate the standard de-

viation of the observation noise at time n, so φ(xn) =
βexp(xn/2) for all n, 1 ≤ n ≤ 50. We take Φ = 0.8,

β = 0.6, σ2 = 0.18 and we compute the estimator based

on the APF and that based on the approximated mixture

p̃′
n|n (which is computable since p̂(xn|xn−1, yn) is Gaus-

sian and φ(xn) = βexp(xn/2)). Results are plotted in

Fig. 4, and we indeed observe that the semi-exact estima-

tor outperforms the APF based one, even if we compute

an approximation of the semi-exact solution via mixture

p̃′
n|n.
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Fig. 4. MSE - Stochastic Volatility Model - Φ = 0.8,

β = 0.6, Q = 0.182

4. CONCLUSION

In this paper we have proposed to reduce the variance of

an SMC estimator of a moment of interest of the a poste-

riori filtering distribution by reversing the estimation step

and the sampling step. In practice, this technique can be

used in models in which the FA-APF algorithm can be

applied and for classical functions of interest. An approx-

imate implementation has also been proposed when the

FA-APF algorithm is not directly applicable. Simulations

validated our approach.
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