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ABSTRACT

Multi-target filtering aims at tracking an unknown num-

ber of targets from a set of observations. The Probability

Hypothesis Density (PHD) Filter is a promising solution

but cannot be implemented exactly. Suboptimal imple-

mentation techniques include Gaussian Mixture (GM) so-

lutions, which hold only in linear and Gaussian models,

and Sequential Monte Carlo (SMC) algorithms, which es-

timate the number of targets and their state parameters for

a more general class of models. In this paper, we address

the case of Gaussian models where the state can be de-

composed into a linear component and a non-linear one,

and we show that the use of SMC methods in such models

can indeed be reduced. Our technique not only improves

the estimate of the number of targets but also that of their

state. We finally adapt the technique to linear and Gaus-

sian jump Markov state space systems (JMSS) in order to

reduce the intractability of existing solutions, and to JMSS

with partially linear and partially non-linear state vector.

1. INTRODUCTION

The problematic of multi-target filtering consists in esti-

mating random state parameters of an unknown number

of targets from a set of observations which are either due

to detected targets or are false alarms measurements. The

PHD Filter is a recent solution based on the Random Fi-

nite Set (RFS) theory [1] and is based on the propagation

of the PHD function (or intensity), a positive density func-

tion which operates in the single target state space domain

and which enables to deduce the number of targets as well

as the state parameters of each target.

However, the PHD filter involves the computation of

complex integrals and thus the PHD cannot be computed

exactly either. In practice, two implementations of the

PHD filter, with variants, are popular. On the one hand,

GM implementations [2] assume that the PHD is a GM,

but require that each target (when it is detected) and asso-

ciated measurement follow a linear and Gaussian model;

on the other hand, SMC implementations of the PHD [3]

consist in approximating the PHD by a set of weighted

particles and do not require any assumption as regards the

dynamics of the targets. Now, multiple object filtering

SMC-based solutions inherit the same problems as their
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single object filtering counterparts (see e.g. [4]). In par-

ticular, the specific difficulties of high dimensional prob-

lems get worse in multi target scenarios since one needs

to estimate the number of targets in addition to the state

parameters.

In particle filtering (PF) this problem can somehow be

attenuated when the state can be decomposed into a lin-

ear component and a nonlinear one. In this case it is of

interest to use marginalized PF (MPF) solutions, which

roughly speaking estimate the nonlinear part of the state

by PF, and conditionally to that non linear part, the linear

one via Kalman filtering (KF) [5] [6]. MPF solutions have

recently been adapted to multi-target filtering, with an ap-

proach based on data association [7] and another on the

Bayesian Multi Target Filter (MTF) [8]. The aim of this

paper consists in further adapting the MPF idea, but now

to the PHD filter which has the advantage of being more

tractable than the Bayesian MTF, and which presents good

results in highly cluttered environments [2] [1].

More precisely our contribution is threefold. We first

derive an implementation of the PHD filter, the Marginal-

ized PHD Filter (M-PHD), which can be used in a Gaus-

sian but only partially linear model. We next consider lin-

ear and Gaussian JMSS in the context of multi-target fil-

tering. In such models a GM implementation of the PHD

filter has been proposed [9], but the intractability of the

GM solution is overemphasized by the different number

of modes taken by the discrete Markov Chain (MC) which

models the jumps. So we adapt our M-PHD filter to such

models in order to avoid the growth of the mixture due

to the number of modes. Finally, we consider Gaussian

JMSS but now with partially linear and non-linear sub-

structures, for which we also adapt the M-PHD filter. M-

PHD filters are validated via simulations. The paper is

organized as follows. In section 2 we briefly recall the

PHD filter and in section 3 develop M-PHD implementa-

tions. Section 4 is devoted to simulations and we end the

paper with a conclusion.

2. THE PHD FILTER

A PHD is a real and positive function v(x) which has the

following property: let S ⊂ IRm, then

∫

S

v(x) dx = E(|X ∩ S|), (1)



where |X∩S| is the cardinal of the set of the targets which

belong to region S. In other words, the integral of PHD

v(x) over region S is the expected number of objects in

this region.

In this framework, the multi-target filtering problem

can be seen as the propagation of the filtering PHD vk|k
i.e. the conditional PHD at time k given all observations

up to time k. The so-called PHD filter, which is a set

of equations which propagate recursively the PHD, can be

derived under the following hypotheses [1]: targets evolve

and generate measurements independently of one another;

the clutter is independent of measurements due to detected

targets; and the clutter and the number of targets follow a

Poisson distribution. This last assumption can be relaxed

but in this case one needs to propagate the cardinality dis-

tribution of the number of targets, which yields the Car-

dinalized PHD (CPHD) filter [10]. We will just consider

the case of the PHD filter in this paper, even though our

method can be adapted to the CPHD filter.

Let fk|k−1(xk|xk−1) be the transition pdf from state

xk−1 to xk; gk(zk|xk) the likelihood of a measurement

zk with state xk; ps,k(x) the probability that a target with

state parameters x at time k − 1 still exists at time k;

pd,k(x) the probability that a target with state parameters

x is detected at time k; κk (resp. γk) the PHD of clutter

measurements (birth targets) at time k. The propagation of

the PHD vk|k(x) is the succession of a prediction step and

of an updating step (we assume for simplicity, but without

loss of generality, that there is not spawning) [1]:

vk|k−1(x) =

∫

ps,k(xk−1)fk|k−1(x|xk−1)×

vk−1|k−1(xk−1)dxk−1 + γk(x), (2)

vk|k(x) = [1− pd,k(x)] vk|k−1(x) (3)

+
∑

z∈Zk

pd,k(x)gk(z|x)vk|k−1(x)

κk(z)+
∫
pd,k(x)gk(z|x)vk|k−1(x) dx

.

3. M-PHD FILTERS

3.1. A brief review of MPF in single object filtering

Assume that the state vector xk of a target can be divided

into a linear component xl
k (with dimension ml) and a

non linear one xn
k (with dimension mn) (i.e., xl

k follows

a linear dynamics and xn
k a non linear one), and that the

relations between these components between time k and

k + 1 and the associated measurement zk are given by:

xn
k+1 = fnk (x

n
k ) + Fn

k (x
n
k )x

l
k + un

k , (4)

xl
k+1 = f lk(x

n
k ) + Fl

k(x
n
k )x

l
k + ul

k, (5)

zk+1 = hk(x
n
k+1) +Hk(x

n
k+1)x

l
k+1 + vk, (6)

in which fnk (.) is a function from IRmn to IRmn , Fn
k (.) is

a mn × ml matrix which depends on the components of

vector xn
k and which acts on vector xl

k (functions f lk(.),
hk(.), F

l
k(.) and Hk(.) are defined similarly), and





un
k

ul
k

vk



 ∼ N (.;





0

0

0



 ;





Qn
k (Qnl

k )T 0
(Qnl

k ) Ql
k 0

0 0 Rk



), (7)

where [un
1 ,u

l
1], · · · , [u

n
k ,u

l
k] and v1, · · · ,vk are indepen-

dent.

Let us now recall MPF [6] [5] [11] in model (4)-(6).

Remember that the goal consists in approximating the pos-

terior density p(xk|z0:k). MPF techniques are based on

the factorization

p(xl
k,x

n
0:k|z0:k) = p(xl

k|x
n
0:k, z0:k)

︸ ︷︷ ︸

KF

× p(xn
0:k|z0:k)

︸ ︷︷ ︸

PF

. (8)

The second factor p(xn
0:k|z0:k) is approximated by PF,

and since system (4)-(6) becomes a classical state-space

model once xn
k is fixed, the first factor p(xl

k|x
n
0:k, z0:k)

can be computed exactly via KF. This idea is popular and

its interest is enlightened by the Rao-Blackwell theorem

applied to sequential filtering.

3.2. Extension to multi-target filtering : the M-PHD

filter

We now address PHD-based multi-object filtering algo-

rithms. Remember from section 2 that the expected num-

ber of targets at time k is given by
∫

IRm vk|k(xk)dxk,

where vk|k(xk) is the a posteriori filtering PHD and that

looking for state parameters boils down to finding regions

S ⊂ IRm such that
∫

S
vk|k(xk)dxk is high. Estimating

∫

S
vk|k(xk)dxk over any region S (or over IRm) is thus

essential in the PHD-based approach, since in practice the

integral is not directly computable.

We show that in such a model, the integral of the PHD
∫
vk|k(xk)dxk can be computed as follow:
∫
[
∫

vk|k(x
n
k ,x

l
k)dx

n
k

︸ ︷︷ ︸

PF implementation

]
dxl

k =

∫

v̂k|k(x
l
k)dx

l
k

︸ ︷︷ ︸

Computable

.

We assume now that the probability of survival ps,k(x)
= ps,k(x

n) and the probability of detection pd,k(x) =
pd,k(x

n) depend only on the non linear component. The

Gaussian pdf taken in x, with mean m and covariance P

is noted N (x;m;P) and we assume also that γk+1(x) is

a mixture

γk+1(x) =

Nγk+1∑

i=1

w(i)
γk+1

pi(x
n)N (xl;ml,(i)

γk+1
(xn);Pl,(i)

γk+1
)

where pi(x) is a pdf for each i, 1 ≤ i ≤ Nγk+1
.

The key idea of our approach is to assume that at time

k, the PHD is neither a Gaussian nor a discrete mixture,

but a mixture with the following form, hereafter denoted

normal discrete (ND):

v̂k|k(xk) =

Lk∑

i=1

w
(i)
k|kN (xl

k;m
l,(i)
k|k ;P

l,(i)
k|k )δ

x
n,(i)
k

(xn
k ),

(9)

with xk = [xl
k,x

n
k ]. As we now see it is possible to

propagate an ND approximation of the PHD vk|k(xk).
Our algorithm consists of three steps, described in §3.2.1-

3.2.3 below; the predicting (see §3.2.1) and updating (see

§3.2.3) steps are derived by using conditioning properties

in Gaussian pdfs (proofs are omited for lack of space).



3.2.1. Prediction

Let us set F
l,(i)
k

∆
= Fl

k(x
n,(i)
k ), F

n,(i)
k

∆
= Fn

k (x
n,(i)
k ), f

l,(i)
k

∆
= f lk(x

n,(i)
k ), f

n,(i)
k

∆
= fnk (x

n,(i)
k ) and p

(i)
s,k

∆
= ps,k(x

n,(i)
k ).

Let v̂k|k in (9) be an ND approximation of PHD vk|k.

Then our first step consists in plugging (9) into (2), which

yields the following approximation ṽk+1|k of the predicted

PHD vk+1|k :

ṽk+1|k(x) =

Lk∑

i=1

w
(i)
k+1|kN (xl;m

l,(i)
k+1|k(x

n);P
l,(i)
k+1|k)

× N (xn;m
n,(i)
k+1|k;P

n,(i)
k+1|k)+γk+1(x),(10)

where

w
(i)
k+1|k = p

(i)
s,k+1w

(i)
k|k, (11)

m
n,(i)
k+1|k = f

n,(i)
k + F

n,(i)
k m

l,(i)
k|k , (12)

P
n,(i)
k+1|k = Qn

k + F
n,(i)
k P

l,(i)
k|k F

n,(i)
k

T
, (13)

m
l,(i)
k+1|k(x

n
k+1) = A

(i)
k m̃

l,(i)
k+1|k(x

n
k+1)+ f

l,(i)
k

+ Qnl
k (Qn

k )
−1(xn

k+1−f
n,(i)
k ), (14)

P
l,(i)
k+1|k = Ql

k −Qnl
k (Qn

k )
−1Q

(nl)
k

T

+ A
(i)
k P̃

l,(i)
k+1|kA

(i)
k

T
, (15)

in which m̃
l,(i)
k+1|k(x

n), P̃
l,(i)
k+1|k and A

(i)
k are defined by

m̃
l,(i)
k+1|k(x

n) = m
l,(i)
k|k (16)

+ K̃
l,(i)
k+1|k[x

n − f
n,(i)
k − F

n,(i)
k m

l,(i)
k|k ],

P̃
l,(i)
k+1|k =

[

I− K̃
l,(i)
k+1|kF

n,(i)
k

]

P
l,(i)
k|k , (17)

A
(i)
k =

[

F
l,(i)
k −Qnl

k (Qn
k )

−1F
n,(i)
k

]

, (18)

where

K̃
l,(i)
k+1|k =P

l,(i)
k|k F

n,(i)
k

T
[

F
n,(i)
k P

l,(i)
k|k F

n,(i)
k

T
+Qn

k

]−1

. (19)

3.2.2. Discrete Approximation of ṽk+1|k(xk+1)

To propagate the PHD we need to derive a discrete ap-

proximation of ṽk+1|k(xk+1). This can be achieved by

deriving a discrete approximation of the first mixture in

(10) and one of γk(xk+1):

• Sample x
n,(i)
k+1 ∼ N (xn

k+1;m
n,(i)
k+1|k;P

n,(i)
k+1|k), for 1 ≤

i ≤ Lk (other importance distributions can be cho-

sen, see [3]) and set m
l,(i)
k+1|k = m

l,(i)
k+1|k(x

n,(i)
k+1 );

• Sample x
n,(i)
k+1 ∼

∑Nγk+1

j=1 w
(j)
γk+1pj(x

n
k+1) for Lk +

1 ≤ i ≤ Lk + Lγk+1
, by first sampling index ji ∼

∑Nγk+1

j=1

w(j)
γk+1

∑Nγk+1
i=1 w

(i)
γk+1

δj then x
n,(i)
k+1 ∼ pji(x

n
k+1)

and initialize m
l,(i)
k+1|k = m

l,(ji)
γk+1 (x

n,(i)
k+1 ), P

l,(i)
k+1|k =

P
l,(ji)
γk+1 and w

(i)
k+1|k =

∑Nγk+1

i=1 w
(i)
γk+1/Lγk+1

.

Finally, ṽk+1|k is approximated by an ND approximation

of Lk+1|k = Lk + Lγk+1
components.

3.2.3. Updating

We set h
(i)
k

∆
= hk(x

n,(i)
k+1 ), H

(i)
k

∆
= Hk(x

n,(i)
k+1 ) and p

(i)
d,k+1

∆
=

pd,k+1(x
n,(i)
k+1 ). It remains to implement equation (3), which

finally gives the ND approximation v̂k+1|k+1 of vk+1|k+1:

v̂k+1|k+1(x) =

Lk+1|k
∑

i=1

[w
(i)
k+1|k+1(∅)N (xl;m

l,(i)
k+1|k;P

l,(i)
k+1|k)

+
∑

z∈Zk

w
(i)
k+1|k+1(z)ψ

(i)
k+1|k+1(x

l, z)]δ
x
n,(i)
k+1

(xn), (20)

where

ψ
(i)
k+1|k+1(x

l, z)=N (xl;m
l,(i)
k+1|k+1(z);P

l,(i)
k+1|k+1), (21)

w
(i)
k+1|k+1(∅) = (1− p

(i)
d,k+1)w

(i)
k+1|k, (22)

w
(i)
k+1|k+1(z)= (p

(i)
d,k+1qk+1(z,x

n,(i)
k+1 )w

(i)
k+1|k)(κ(z)

+

Lk+1∑

i=1

w
(i)
k+1|kp

(i)
d,k+1qk+1(z,x

n,(i)
k+1 ))

−1, (23)

m
l,(i)
k+1|k+1(z) = m

l,(i)
k+1|k

+K
(i)
k+1

[

z−H
(i)
k m

l,(i)
k+1|k−h

(i)
k

]

, (24)

P
l,(i)
k+1|k+1 =

[

I−K
(i)
k+1H

(i)
k

]

P
l,(i)
k+1|k, (25)

where

qk+1(z,x
n,(i)
k+1 ) =

N (z;h
(i)
k +H

(i)
k m

l,(i)
k+1|k;Rk +H

(i)
k P

l,(i)
k+1|kH

(i)
k

T
), (26)

K
(i)
k+1 = P

l,(i)
k+1|kH

(i)
k

T
[

H
(i)
k P

l,(i)
k+1|kH

(i)
k

T
+Rk

]−1

. (27)

3.3. Other applications of the M-PHD filter

We next focus on models where a dependence in a discrete

Markov Chain rk is introduced and so we consider the

augmented state [xk, rk]. These models are of practical

interest for tracking maneuvering targets.

3.3.1. Linear and Gaussian JMSS

The technique described above is adaptable for linear and

Gaussian JMSS, described by the following equations:

xk+1 = Fk(rk+1)xk +Gk(rk+1)uk, (28)

zk+1 = Hk(rk+1)xk+1 +Bk(rk+1)vk, (29)

rk is a discrete MC, (30)

where uk ∼ N (.;0;Qk), vk ∼ N (.;0;Rk) and where

u1, · · · ,uk and v1, · · · ,vk are independent and indepen-

dent of r1, · · · , rk. We set Qk(r) = Gk(r) Qk Gk(r)
T

and Rk(r) = Bk(r) Rk Bk(r)
T .

In the GM implementation of the PHD filter [9], even

in the particular case where there is no birth nor spawn-

ing, if PHD vk|k is characterized by
∑

rk
J(rk) Gaussians

(J(rk) ones for a given mode rk) then the predicted PHD



vk+1|k(xk+1, rk+1) requires the computation of
∑

rk
J(rk)

×|r| Gaussians (|r| is the number of different modes of

MC rn), and the updated PHD vk+1|k+1(xk+1, rk+1) the

computation of
∑

rk
J(rk)×|r|× [|Zk+1|+1] Gaussians.

As we now see, adapting our marginalized solution en-

ables to avoid the growth of the mixture which is due to

|r|. Let us assume that γk+1(x, r) = πk+1(r) γ̃k+1(x, r),
where

γ̃k+1(x, r) =

Nγk+1
(r)

∑

i=1

w(i)
γk+1

(r)N (x;m(i)
γk+1

(r);P(i)
γk+1

(r)),

(31)

and that the probabilities of survival ps,k+1(r) and of de-

tection pd,k+1(r) only depend on the mode. As in Section

3.2 our algorithm consists of the three following steps.

• First, let

Lk∑

i=1

w
(i)
k|kN (xk;m

(i)
k|k;P

(i)
k|k)δr(i)

k

(rk) (32)

be an ND approximation of vk|k. Then we compute

the approximation ṽk+1|k(x, r) of vk+1|k, where

ṽk+1|k(x, r) =

Lk∑

i=1

w
(i)
k|kps,k+1(r

(i)
k )p(r|r

(i)
k )×

N (xk+1;m
(i)
k+1|k(r);P

(i)
k+1|k(r)) + γk+1(x, r),

(33)

where

m
(i)
k+1|k(r) = Fk(r)m

(i)
k|k, (34)

P
(i)
k+1|k(r) = Fk(r)P

(i)
k|kFk(r)

T +Qk(r). (35)

• Next one can derive an ND approximation of vk+1|k

by using a procedure similar to that described in

§3.2.2: sample r
(i)
k+1 ∼ p(rk+1|r

(i)
k ) for 1 ≤ i ≤ Lk

and derive an ND approximation of Lγk+1
compo-

nents of γk+1(xk+1, rk+1). This provides an ND

approximation of Lk + Lγk+1
components of PHD

vk+1|k.

• Finally, the updating step (which enables to com-

pute v̂k+1|k+1) is identical to that of section 3.2.3,

except that x
n,(i)
k+1 should be replaced by r

(i)
k+1, Rk

by Rk(r
(i)
k+1) and h

(i)
k = 0.

3.3.2. Gaussian JMSS with partially linear and partially

non-linear sub-structures

Finally we adapt the M-PHD algorithm proposed in Sec-

tion 3.2 to a more general class of models (we note ξk =
[xn

k , rk+1] and ψk = [xn
k+1, rk+1]):

xn
k+1 = fnk (ξk) + Fn

k (ξk)x
l
k +Gn

k (ξk)u
n
k , (36)

xl
k+1 = f lk(ξk) + Fl

k(ξk)x
l
k +Gl

k(ξk)u
l
k, (37)

zk+1 = hk(ψk) +Hk(ψk)x
l
k+1 +Bk(ψk)vk, (38)

rk is a discrete MC, (39)

where [un
1 ,u

l
1] · · · , [u

n
k ,u

l
k] and v1, · · · ,vk are indepen-

dent and independent of r1, · · · , rk, and are defined as in

(7). We note Qn
k(x

n, r)= Gn
k (x

n, r) Qn
k Gn

k (x
n, r)

T
,

Ql
k(x

n, r) = Gl
k(x

n, r) Ql
k Gl

k(x
n, r)

T
, Qnl

k (xn, r) =

Gl
k(x

n, r) Qnl
k Gn

k (x
n, r)

T
and Rk(x

n, r) = Bk(x
n, r)

Rk Bk(x
n, r)

T
. This model is a generalization of that

described by (4)-(6) so we adapt the approach of Section

3.2. We assume that γk+1(x, r) = πk+1(r)× γ̃k+1 (x, r)
where, for given pdfs pi(x

n|r) depending on r,

γ̃k+1(x, r) =

Nγk+1
(r)

∑

i=1

w(i)
γk+1

(r)pi(x
n|r)×

N (xl;m(i)
γk+1

(xn, r);P(i)
γk+1

(r)), (40)

and that the probabilities of survival ps,k+1(x
n, r) and of

detection pd,k+1(x
n, r) depend only on the mode and on

the non-linear component. Let us assume also that at time

k an ND approximation of the PHD at time k is given by

v̂k|k(xk, rk) =

Lk∑

i=1

w
(i)
k|kN (xl

k;m
l,(i)
k|k ;P

l,(i)
k|k )δ

x
n,(i)
k

,r
(i)
k

(xn
k , rk). (41)

Then our algorithm consists of the three following steps.

• The approximated predicted PHD is given by

ṽk+1|k(x, r) =

Lk∑

i=1

w
(i)
k+1|kp(r|r

(i)
k )Φi(x

l,xn, rk+1)

+ γk+1(x, r), (42)

where

Φi(x
l,xn, r)=N (xl;m

l,(i)
k+1|k(x

n, r);P
l,(i)
k+1|k(r))

×N (xn;m
n,(i)
k+1|k(r);P

n,(i)
k+1|k(r))

(43)

and where m
l,(i)
k+1|k(x

n, r), P
l,(i)
k+1|k(r), m

n,(i)
k+1|k(r),

P
n,(i)
k+1|k(r) and w

(i)
k+1|k are given by (11)-(19), in

which we introduce the dependency in r. More pre-

cisely, f
n,(i)
k , f

l,(i)
k , F

n,(i)
k and F

l,(i)
k have to be re-

placed respectively by fnk (x
n,(i)
k , r), f lk(x

n,(i)
k , r),

Fn
k (x

n,(i)
k , r) and Fl

k(x
n,(i)
k , r); and Qn

k , Qnl
k and

Ql
k respectively by Qn

k (x
n,(i)
k , r), Qnl

k (x
n,(i)
k ,r) and

Ql
k(x

n,(i)
k , r);

• Next a discrete approximation of ṽk+1|k(xk+1, rk+1)

is obtained by sampling particles [x
n,(i)
k+1 , r

(i)
k+1] in

augmented dimension, according to pdf p(rk+1|r
(i)
k )

× N (x; m
n,(i)
k+1|k(r); P

n,(i)
k+1|k(r)) for 1 ≤ i ≤ Lk,

and by deriving a discrete approximation of γk+1(x,
r);

• Finally, the updating step is also given by (20)-(27),

except that h
(i)
k , H

(i)
k , Rk and p

(i)
d,k+1 are replaced

by hk(x
n,(i)
k+1 , r

(i)
k+1), Hk(x

n,(i)
k+1 , r

(i)
k+1), Rk(x

n,(i)
k+1 ,

r
(i)
k+1) and pd,k+1(x

n,(i)
k+1 , r

(i)
k+1).



4. SIMULATIONS

In this section we compare the M-PHD and SMC imple-

mentations of the PHD filter. Because both methods rely

on SMC methods, the same mechanisms are used to ini-

tialize particles, extract the state parameters of the target

and resample particles (these mechanisms are described in

[12]).

4.1. Optimal Subpattern Assignment (OSPA) metric

To compare both algorithms we use the OSPA metric, a

metric adapted to the multi-target filtering problem [13].

Let X = {x1, ..., xm} and Y = {y1, ..., yn} be two fi-

nite sets; here X (resp. Y ) represents the estimated (resp.

true) finite set of targets. For c > 0 let d(c)(x, y) =
min(c, ||x− y||) (||.|| denotes Euclidean norm) and let

Πn be the set of permutations on {1, 2, ..., n}. Then for

1 ≤ p < +∞, the OSPA metric is defined by:

d
c

p(X,Y )
∆
=

(

1

n

(

min
π∈Πn

m∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

)) 1
p

(44)

if m ≤ n, and d
c

p(X,Y )
∆
= d

c

p(Y,X) if m > n. In our

simulations, we take c = 100 and p = 2.

4.2. Simulations in the Range Bearing Tracking Prob-

lem

We address the range-bearing tracking problem which con-

sists in tracking the Cartesian coordinates of targets from

angle and range measurements. It is illustrated by the fol-

lowing equations:







px
ṗx
py
ṗy







k+1

=







1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1













px
ṗx
py
ṗy







k

+ uk (45)

[
zb
zr

]

k+1

=

[
tan−1(py/px)√

p2x + p2y

]

k+1

+ vk (46)

with uk ∼ N (.; 0;Q) and vk ∼ N (.; 0;R).

This model is a particular case of the more general

model presented in Section 3.1, since f lk(x
n
k ) = 0, Hl

k(x
n
k )

= 0 and matrices Fn
k and Fl

k do not depend on xn
k . Note

that measurements do not bring any information on the

linear component (Hl
k(x

n
k ) = 0). So if the SMC imple-

mentation is used some particles can have well estimated

positions, but estimated velocities which do not match the

true velocity of the targets. If velocities are not well esti-

mated at time k, it can be difficult to properly predict the

targets positions at time k + 1.

We next test the behavior of the algorithms when the

velocity of a target can evolve with time. So we generate

trajectories from model (45) with

Q = σ2
v







T 3

3 0 0 0
0 T 0 0

0 0 T 3

3 0
0 0 0 T







and R =

(
σ2
b 0
0 σ2

r

)

.

We take σb = π/180rad and σr = 1m, so the likelihood

is not too tight. A mean of M = 80 clutter measurements

are generated uniformly on [0, π/2]× [−1500, 2500]. Fig-

ure 1 displays a realization of such a scenario, and indeed

for a given coordinate, velocities of a target can be posi-

tive or negative, which means that the targets manoeuvre

and change of direction.

We run both algorithms 500 times in this scenario.

We use Np = 200 particles for each persistent target and

Nb = 10 particles for potential birth targets. Fig. 2 dis-

plays the (averaged) OSPA distance and the estimator of

the number of targets. As we see, the gap between the M-

PHD and SMC-PHD algorithm is very large, and this is

due to the fact that the number of targets is badly estimated

when the SMC-PHD algorithm is used. The reason why

is that such a model is indeed challenging for the SMC-

PHD filter. Since Qnl = 0, each component of particles

x
(i)
k+1 is sampled independently given the previous particle

x
(i)
k . Consequently, the linear and non-linear components

of particle x
(i)
k+1 can be inconsistent given the previous one

x
(i)
k . This cannot happen with the M-PHD: even if Qnl =

0, the velocity components of the M-PHD are predicted

according to the sampled particles. Indeed, according to

(14), we have m
l,(i)
k+1|k(x

n,(i)
k+1 ) = Fl

km̃
l,(i)
k+1|k(x

n,(i)
k+1 ), where

m̃
l,(i)
k+1|k(.) is given by (16) and depends on x

n,(i)
k+1 , m

l,(i)
k|k

and x
n,(i)
k . It was also experimented that both algorithms

give the same results when the number of particles for the

classical SMC implementation is increased to Nb = 40
and Np = 500. Finally, we perform an experiment where

the measurements due to detected targets are very infor-

mative (σb = 0.001 rad and σr = 1m), and the mean

of clutter measurements is M = 50. This experiment is

challenging for the SMC implementation. We average the

OSPA distance over time and we find approximately 15
for the M-PHD and 25 for the SMC-PHD.

5. CONCLUSION

In this paper we proposed a Marginalized implementation

of the PHD filter for models which present state dynamics

which are partially linear. This implementation enables

to reduce the dimension of MC samples in the estimation

of the PHD, which improves the estimation of both the

number of targets and of the state parameters of each tar-

get. Our algorithm was extended to Gaussian JMSS with

linear or partially linear state dynamics. We finally per-

formed some simulations and compared our M-PHD al-

gorithm against the classical SMC based PHD filter. The

M-PHD algorithm outperforms the SMC based PHD filter

when the model is informative or if knowledge about the

dynamic model of targets is unspecified.
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Fig. 1. Measurements, true target positions and M-PHD

filter estimates
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Fig. 2. OSPA Distance (a) and mean of the estimator of

the number of targets (b)
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