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ABSTRACT

The Probability Hypothesis Density (PHD) Filter is a re-

cent solution to the multi-target filtering problem which

consists in estimating an unknown number of targets and

their states. The PHD filter equations are derived under

the assumption that the dynamics of the targets and associ-

ated observations follow a Hidden Markov Chain (HMC)

model. HMC models have been recently extended to Pair-

wise Markov Chains (PMC) models. In this paper, we

focus on multi-target filtering when targets and associated

measurements follow a PMC model, and we extend the

classical PHD filter to such models. We also propose

a Gaussian Mixture (GM) implementation of our PMC

PHD filter for linear and Gaussian PMC. Our approach

enables to extend multi-object filtering to more general

tracking scenarios, and also enables to deduce an estimate

of the measurement associated to each target.

1. INTRODUCTION

Single object target filtering has been studied for a long

time now, beginning with the pionnering work of Kalman

in the 1960s. Bayesian filtering has next been developed

in complex non linear and / or non Gaussian stochastic

models; available solutions include extended or unscented

Kalman filter methods as well as sequential Monte Carlo

(SMC) algorithms [1]. Most of these works assume that

the state and the associated observation are an HMC, i.e.

the state is a Markov chain (MC), and conditionally to a

sequence of states, the observations are independent and

the observation at time k depends only on the state at time

k. Recent works have extended single object filtering from

HMC to a more general class of models called PMC. In

such models we only assume that the pair (hidden state

and associated observation) follows a (vector) MC. As a

result, the marginal hidden state process is not necessarily

Markovian; and conditionally on a sequence of states, the

observations are Markovian, but not necessarily indepen-

dent. Kalman Filtering (KF) and Particle Filtering (PF)

have been extended from HMC to PMC [2] [3] [4].

On the other hand, the problematic of multi-target fil-

ters regained interest thanks to a new approach based on

Random Finite Sets (RFS) which are sets of random vari-

ables with random and time-varying cardinal [5] [6]. The
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interest of RFS based methods is that they avoid the use of

a complex association mechanism which aims at optimiz-

ing the association between observations and targets. The

PHD Filter is one such RFS based solution. It consists

in propagating the PHD (or intensity), which is a positive

density function operating in the single target state space

domain and which enables to deduce the number of targets

as well as the states of each target. PHD-based solutions

involve the computation of complex integrals and thus the

PHD cannot be computed exactly. In practice, two imple-

mentations of the PHD filter, with variants, are popular.

On the one hand, the GM implementation [7] assumes that

the PHD is a GM, but requires that each target (when it is

detected) and associated measurement follow a linear and

Gaussian model; on the other hand, the SMC implemen-

tation of the PHD [8] [9] consists in approximating the

PHD by a set of weighted particles and does not require

any assumption as regards the dynamics of the targets.

However, both the GM and SMC implementations are

based on the assumption that the state of a target and its

associated measurement follow an HMC model. In this

paper, we thus focus on multi-object filtering in the case

where each target and the associated measurement follow

a PMC model, and we extend the classical PHD filter for

tracking a random number of PMC. The practical interest

of this extension is twofold. First, it enables to take into

account more complex tracking situations. For instance,

in a PMC model the pdf of a state xk at time k given xk−1

can also depend on the associated measurement at time

k−1, yk−1, and given xk the associated measurement yk

can also depend on xk−1 and yk−1. The second advan-

tage is that the PMC formulation of the PHD filter enables

to deduce explicitly the measurements associated to each

estimated state, even in the particular case where the PMC

model reduces to an HMC one, which can be of interest

in tracking applications. Finally, as in HMC models, the

PMC-PHD filter cannot be computed exactly, so we pro-

pose a GM implementation of the PHD filter for linear and

Gaussian PMC.

The paper is organized as follows. In Section 2 we

first recall the multi-target filtering problem in terms of

RFS. Section 3 is devoted to PMC models and to linear

and Gaussian PMC models in which exact single-object

filtering is feasible. In Section 4, we extend the PHD filter

from HMC to PMC models, and we derive a GM imple-

mentation of the PHD filter for linear and Gaussian PMC.

We perform simulations in section 5.



2. MULTI-TARGET FILTERING

2.1. RFS description of the model

In a standard multi-object tracking problem both the num-

ber of targets and their states are unknown at a given time

k. It is thus convenient to represent the set of targets by

a RFS (i.e. a set of random vectors with random cardi-

nal) Xk = {xk,1, · · · ,xk,n}, where n is an unknown

integer and xk,i is a vector of IRm for all k and i. The

measurements at time k can also be represented by RFS

Zk = {zk,1, · · · , zk,q}, where q is also an unknown (and

random) integer and zk,i ∈ IRp for all k and i.
Let us next describe the link between RFS Xk−1 and

RFS Xk. Assume that the set of targets is represented

by RFS Xk−1 at time k − 1. Then a target at time k is

either: a target from RFS Xk−1 which has survived; a new

target which spawns from another target of the previous

RFS Xk−1; or a new target. These constraints can also be

formulated using RFS: let us denote by

• ∪
ς∈Xk−1

Sk|k−1(ς) the set of surviving targets between

k − 1 and k;

• ∪
ς∈Xk−1

Bk|k−1(ς) the set of targets spawned from

set Xk−1;

• Γk the set of birth targets.

Then given RFS Xk−1, RFS Xk is the union of three RFS:

Xk =

[

∪
ς∈Xk−1

Sk|k−1(ς)

]

∪

[

∪
ς∈Xk−1

Bk|k−1(ς)

]

∪ Γk.

(1)

We assume in this paper without loss of generality that

Bk|k−1(ς) = ∅, i.e. there is not spawning.

We now specify physical constraints for the measure-

ments available at time k and describe the relation be-

tween RFS Zk and Xk. A measurement at time k is either:

a measurement due to a detected target of RFS Xk; or a

false alarm (or clutter) measurement. These constraints

can again be formulated in terms of RFS: let us denote by

• Kk the set of clutter measurements;

• ∪
x∈Xk

ϑ(x) the set of measurements due to detected

targets.

Then the measurements RFS Zk, conditionally on a re-

alization of the targets RFS Xk, can be described as the

union of two RFS:

Zk = Kk ∪

[

∪
x∈Xk

ϑ(x)

]

. (2)

Let us finally describe the dynamic behavior of a sin-

gle surviving target between instants k − 1 and k, and the

relation between a measurement due to a detected target

and the target itself. We assume here that the states and

corresponding observations follow an HMC model, i.e.

that the pdf of the couple (x0:k
∆
= {x0 · · ·xk},y0:k

∆
=

{y0 · · ·yk}) can be factorized as:

p(x0:k,y0:k) = p(x0)
k∏

i=1

fi|i−1(xi|xi−1)×
k∏

i=0

gi(yi|xi).

(3)

2.2. The PHD filter

A PHD (or intensity) is a real and positive function v(x)
which has the following property: let S ⊂ IRm and X be

an RFS of targets, then

∫

S

v(x) dx = E(|X ∩ S|), (4)

where |X ∩ S| is the cardinal of the set of targets which

belong to region S. In other words, the integral of PHD

v(x) over region S is the expected number of objects in

this region.

In this RFS framework, the multi-target filtering prob-

lem can be seen as the propagation of the intensity vk(x)
of the targets at time k given all past measurements up

to time k. The so-called PHD filter is a set of equations

which propagate recursively the PHD. It can be derived

under the following hypotheses [6]: targets evolve and

generate measurements independently of one another; the

clutter is independent of measurements due to detected

targets; the clutter and targets follow a Poisson distribu-

tion.

Let us note ps,k(x) the probability that a target with

state x at time k − 1 still exists at time k; pd,k(x) the

probability that a target with state x is detected at time k;

κk the PHD of clutter RFS Kk at time k; γk the PHD of

birth RFS Γk at time k. The propagation of the PHD vk(x)
is the succession of a prediction step and of an updating

step [6]:

vk|k−1(x) =

∫

ps,k(xk−1)fk|k−1(x|xk−1)×

vk−1(xk−1)dxk−1 + γk(x), (5)

vk(x) = [1− pd,k(x)] vk|k−1(x)+

∑

z∈Zk

pd,k(x)gk(z|x)vk|k−1(x)

κk(z)+
∫
pd,k(x)gk(z|x)vk|k−1(x) dx

. (6)

(5)-(6) cannot be computed exactly, except in the linear

and Gaussian case where we assume that vk|k(x) is a GM.

However, even in this case, the mixture grows exponen-

tially so prunning and merging techniques are necessary.

It leads to the GM implementation of the PHD filter which

we briefly recall [7]. Let us assume that the probabilities

of survival ps,k(x) and of detection pd,k(x) do not depend

on x and that the HMC model is

xk = Fkxk−1 + uk, (7)

yk = Hkxk + vk, (8)

where u1 · · · ,uk and v1, · · · ,vk are independent zero-

mean Gaussian noise, with E(uku
T
k ) = Qu

k and E(vkv
T
k )



= Rv
k. Let us also assume that intensities γk(xk) and

vk(xk) are GM, i.e.

vk−1(x) =

Jk−1∑

i=1

w
(i)
k−1N (x;m

(i)
k−1;P

(i)
k−1), (9)

γk−1(x) =

Jγ∑

i=1

w(i)
γk−1

N (x;m(i)
γk−1

;P(i)
γk−1

), (10)

where N (x;m;P) is the Gaussian pdf with variable x,

mean m and covariance matrix P. Since ps,k does not

depend on xk−1 and fk|k−1(xk|xk−1) is a Gaussian pdf,

the mean of which is linear in xk−1, if we inject (9) and

(10) in (5) we get a new GM. Further injecting this new

mixture in (6) still provides a GM.

3. PMC MODELS

3.1. HMC vs PMC models

A pairwise process {ξk = (xk,yk)}k≥0 is called a PMC

if {ξk} is an MC, i.e. the state and the observation jointly

form an MC. So the pdf of the couple (x0:k, y0:k) = ξ0:k
can be factorized as follow:

p(ξ0:k) = p0(ξ0)× p1|0(ξ1|ξ0)× · · · × pk|k−1(ξk|ξk−1).
(11)

This class of models encompasses and extends the class

of HMC models (3): note that in a PMC the transition pdf

pk|k−1(ξk|ξk−1) can be factorized as p(xk |xk−1,yk−1)×
p(yk|xk,xk−1,yk−1), so (11) reduces to (3) if p(xk|xk−1,
yk−1) reduces to fk|k−1(xk|xk−1) and p(yk|xk,xk−1,
yk−1) to gk(yk| xk). However, in a PMC the states {xk}
are not necessarily an MC, and conditionally on x0:k, ob-

servations {yi}
k
i=0 are no longer necessarily independent

(however they form an MC).

Sequential filtering relies on the following relation (here

N calls for numerator):

p(xk|y0:k) =
∫
p(xk−1|y0:k−1)pk|k−1(xk,yk|xk−1,yk−1)dxk−1

Ndxk

.

(12)

As in a classical HMC, this equation if often not com-

putable and PF implementations have been proposed [3].

However, in a linear and Gaussian PMC (i.e. transitions

pk+1|k are Gaussian with mean linear in (xk,yk)), exact

filtering is possible as we now recall.

3.2. KF for Gaussian PMC

Let us now consider the following model:
[
xk

yk

]

=

[
F1

k F2
k

H1
k H2

k

]

︸ ︷︷ ︸

Bk

[
xk−1

yk−1

]

+wk (13)

where w1 · · ·wk are independent, wk ∼ N (0,Σk) with

Σk =

[
Qk Sk

ST
k Rk

]

, and x0 ∼ N (m0;P0). It remains

possible in a Gaussian PMC to propagate exactly the fil-

tering pdf p(xk|y0:k) [10, eqs. (13.56) and (13.57)]. In

model (13) p(xk|y0:k−1) and p(xk|y0:k) are Gaussians.

So let us set

p(xk|y0:k−1) = N (xk;mk|k−1;Pk|k−1), (14)

p(xk|y0:k) = N (xk;mk|k;Pk|k). (15)

Then p(xk|y0:k−1) and p(xk|y0:k) can be computed from

p(xk−1|y0:k−1) via the following equations:

mk|k−1 = F1
kmk−1|k−1 + F2

kyk−1, (16)

Pk|k−1 = Qk + F1
kPk−1|k−1F

1
k

T
, (17)

mk|k = mk|k−1 +Kk(yk − ỹk), (18)

Pk|k = Pk|k−1−Kk(S
T
k +H1

kPk−1|k−1F
1
k

T
), (19)

ỹk = H1
kmk−1|k−1 −H2

kyk−1, (20)

Kk = (Sk + F1
kPk−1|k−1H

1
k

T
)L−1

k , (21)

Lk = (H1
kPk−1|k−1H

1
k +RT

k ). (22)

The classical linear and Gaussian model described in (7)-

(8) is a particular case of this model, where we set F1
k =

Fk, H1
k = HkFk and F2

k = H2
k = 0, Qk = Qu

k , Sk =
Qu

kH
T
k and Rk = Rv

k + HkQ
u
kH

T
k . It is easy to check

that in this case, Eqs. (16)-(22) reduce to the classical KF

equations.

4. PHD FILTER FOR PMC

We next extend the problematic of multi-target filtering to

PMC models. To that end we need to modify the approach

of Section 2. More precisely, contrary to the classical ap-

proach, here we characterize a target (xk,yk) by its state

xk and associated observation yk. In this case, the RFS

Xk at time k should be written as Xk = {[xk,1,yk,1]
T , · · · ,

[xk,n,yk,n]
T }. We now look for estimating the number

of couples and their extended state (so the states of targets

and their associated measurements) at time k, from all the

past measurements Z0:k, contrary to the classical PHD fil-

ter where we only look for estimating the number of tar-

gets and their states at time k. We assume that the prob-

abilities of survival and detection of the couple (xk,yk)
depend only on state xk. The transition of the couple

ξk−1 = (xk−1,yk−1), when it survives, is given by pdf

pk|k−1(ξk|ξk−1). Finally the likelihood of a measurement

z with the couple is now gk(z|xk,yk) = δz(yk): indeed,

the measurement z associated to the couple (xk,yk) can

only be yk.

One can next adapt the derivation of the PHD filter

in [6]. Assume that the PHD of RFS Xk−1 is given by



vk−1(xk−1,yk−1). Then the PMC-PHD filter reads:

vk|k−1(x,y) =

∫

ps,k(xk−1)pk|k−1(x,y|xk−1,yk−1)×

vk−1(xk−1,yk−1)dxk−1dyk−1 + γk(x,y),
(23)

vk(x,y) = [1− pd,k(x)] vk|k−1(x,y)+

∑

z∈Zk

pd,k(x)vk|k−1(x, z)δz(y)

κk(z)+
∫
pd,k(x)vk|k−1(x, z) dx

. (24)

4.1. A GM implementation of the PMC-PHD Filter

As in the case of HMC models, the PMC based PHD filter

(23)-(24) cannot be computed exactly in general, except

in the following particular case. Let us now assume that

the dynamics of each couple is described by (13), that the

probabilities of survival and detection are constant, that

the intensity of birth couples is

γk(x,y) =

Jγ,k∑

i=1

w
(i)
γ,kN (x,y;m

(i)
γ,k,P

(i)
γ,k) (25)

and that the PHD at time k − 1 is approximated by

vk−1(x,y) = v1k−1(x,y) + v2k−1(x,y), (26)

where

v1k−1(x,y) =

J1
k−1∑

i=1

w
1,(i)
k−1N (x,y;m

1,(i)
k−1 ,P

1,(i)
k−1 ), (27)

v2k−1(x,y) =

J2
k−1∑

i=1

w
2,(i)
k−1N (x;m

2,(i)
k−1 ,P

2,(i)
k−1 )δz(i)(y),

(28)

where z(i) belong to a given set Z = {z(1), · · · , z(J
2
k−1)}

with possible repetitions. We will explain the signification

of v1k−1 and v2k−1 when we will deduce v1k and v2k.

Combining (23) with (13) we see that vk|k−1 is the

following GM:

vk|k−1(x,y) = v1k|k−1(x,y) + v2k|k−1(x,y) + γk(x,y),

(29)

where

v1k|k−1(x,y) =

J1
k−1∑

i=1

w
1,(i)
k|k−1N (x,y;m

1,(i)
k|k−1,P

1,(i)
k|k−1),

(30)

v2k|k−1(x,y) =

J2
k−1∑

i=1

w
2,(i)
k|k−1N (x,y;m

2,(i)
k|k−1,P

2,(i)
k|k−1),

(31)

where

w
1,(i)
k|k−1 = ps,kw

1,(i)
k−1 , (32)

w
2,(i)
k|k−1 = ps,kw

2,(i)
k−1 , (33)

m
1,(i)
k|k−1 = Bkm

1,(i)
k−1 , (34)

m
2,(i)
k|k−1 = Bk

[

m
2,(i)
k−1

z(i)

]

, (35)

P
1,(i)
k|k−1 = Σk +BkP

1,(i)
k−1B

T
k , (36)

P
2,(i)
k|k−1 = Σk +

[
F1

k

H1
k

]

P
2,(i)
k−1 [F

1
k

T
H1

k

T
]. (37)

Let us now implement (24). So we start from (29),

which we rewrite as

vk|k−1(x,y) =

Jk|k−1
∑

i=1

w
(i)
k|k−1N (x,y;m

(i)
k|k−1,P

(i)
k|k−1),

(38)

where

m
(i)
k|k−1 =

[

m
x,(i)
k|k−1,

m
y,(i)
k|k−1

]

, (39)

P
(i)
k|k−1 =




P

x,(i)
k|k−1 P

xy,(i)
k|k−1

P
xy,(i)
k|k−1

T
P

y,(i)
k|k−1



 . (40)

Then

vk(x,y) = v1k(x,y) + v2k(x,y), (41)

where

v1k(x,y) = (1− pd,k)vk|k−1(x,y), (42)

v2k(x,y) =
∑

z∈Zk

v2d,k(x, z)δz(y), (43)

where

v2d,k(x, z) =

Jk|k−1
∑

i=1

w
2,(i)
k (z)N (x;m

2,(i)
k (z);P

2,(i)
k ),

(44)

and

w
2,(i)
k (z) =

pd,kw
(i)
k|k−1q

(i)
k (z)

κk(z) + pd,k
∑Jk|k−1

i=1 w
(i)
k|k−1q

(i)
k (z)

, (45)

q
(i)
k (z) = N (z;m

y,(i)
k|k−1;P

y,(i)
k|k−1), (46)

m
2,(i)
k = m

x,(i)
k|k−1 +K

(i)
k (z−m

y,(i)
k|k−1), (47)

P
2,(i)
k = P

x,(i)
k|k−1 −K

(i)
k P

xy,(i)
k|k−1

T
, (48)

K
(i)
k = P

xy,(i)
k|k−1(P

y,(i)
k|k−1)

−1. (49)

Finally, PHD vk(x,y) has the same form of vk−1(x,y),
see (26)-(28). Term v2k(x,y) is due to detected targets and



so if y does not belong to the set Zk, then v2k(x,y) = 0.

The reason is that if a target is detected, then the associ-

ated measurement is necessarily in Zk. PHD v1k(x,y) is

due to non-detected targets but it remains possible to have

an estimate of states and associated measurements even if

they are not detected.

Remark 1 Let us remark that the PHD at time k − 1
could be rewritten as vk−1(x,y) = p1k−1(y|x)ṽ

1
k−1(x) +

p2k−1(y|x) ṽ2k−1(x) where ṽjk−1(x) =
∫
vjk−1(x,y)dy

and pjk−1(y|x) = vjk−1(x,y)/
∫
vjk−1(x,y)dy for j = 1

or j = 2. It is easy to show that ṽ1k−1(x) and ṽ2k−1(x) are

GM as a function of x,
∫
p1(y|x)dy =

∫
p2(y|x)dy = 1

and so
∫
ṽ1k−1(x) +ṽ1k−1(x) dx =

∫
vk−1(x,y)dxdy.

If we consider the linear and Gaussian HMC, i.e. F2
k =

H2
k = 0, F1

k = Fk, H1
k = HkF

1
k, Rk = Rv

k+HkQ
u
kH

T
k

and if we take for birth targets m
(i)
γk =

[

m
1,(i)
γk

Hkm
1,(i)
γk

]

and

P
(i)
γk =

[

P
1,(i)
γk P

1,(i)
γk HT

k

HkP
1,(i)
γk Rk +HkP

1,(i)
γk HT

k

]

, then one can

check that ṽk(x) =
∫
vk(x,y)dy is propagated by using

the GM implementation of the PHD filter [7]. In other

words, the Gaussian PMC-PHD filter reduces to the GM-

PHD filter when the PMC reduces to an HMC, except that

in our formulation we explicitly deduce information on

the measurements associated to targets. This is a main dif-

ference with the GM implementation of the PHD filter for

HMC models, which only enables to estimate the number

of targets and the states. So, the PMC-PHD filter enables

the use of more general models than the HMC-PHD filter

and is not penalized when the dynamical model reduces to

an HMC.

4.2. Extraction of states and measurements associated

As in the classical implementation of the PHD filter, ex-

traction of states consists in looking for local maxima of

vk. A solution is to consider couples such that weights

w
.,(i)
k in v1k(x,y) =

∑J1
k

i=1 w
1,(i)
k N (x,y; m

1,(i)
k ,P

1,(i)
k )

and v2k(x,y) =
∑J2

k

i=1 w
2,(i)
k N (x; m

2,(i)
k ,P

2,(i)
k )δz(i)(y)

are above a given threshold, typically 0.5. In this case, an

estimate of a state and associated observation is [m
1,(i)
k−1 ]

or [m
2,(i)
k−1 , z

(i)].
However, this GM implementation is not directly com-

putable since the mixture grows exponentially. Pruning

techniques which consists in deleting components with

weight under a given threshold are applicable here. In

addition, one should merge close components. However,

(41), (42) and (43) suggest that we should consider two

merging steps, one for the PHD associated to non-detected

targets v1k and one for the PHD associated to detected tar-

gets v2k because their forms are different. For the merging

step of PHD v1k, one can use the traditional procedure de-

scribed in [7] in augmented dimension. For the second

one, one can also use the same procedure to decide when

we merge two Gaussians (i) and (j), provided the mea-

surement associated to the two Gaussians is the same.

5. SIMULATIONS

We track and observe Cartesian coordinates of targets, xk =
[px, ṗx, py, ṗy]

T
k . Let us consider PMC model (13) where

we set

F1
k =







1/2 T 0 0
0 1 0 0
0 0 1/2 T
0 0 0 1







, F2
k =

[
1/2 0 0 0
0 0 1/2 0

]

,

H1
k =

[
1 0 0 0
0 0 1 0

]

︸ ︷︷ ︸

Hk

×F1
k, H2

k =

[
1 0 0 0
0 0 1 0

]

×F2
k,

Qk = σ2
v








T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T








, Sk = HkQk and

Rk = diag[σ2
x, σ

2
y]

︸ ︷︷ ︸

Rv
k

+HkQkH
T
k . It is possible to compute

fk|k−1(xk|xk−1) = N (xk;Fkxk−1,Qk) and gk(yk|xk) =

N (yk;Hkxk;R
u
k) where Fk =







1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1







. In this

experiment, we set T = 1s, σv = 1m2/sec3, σx = σy =
10m. We generate a mean of 20 false alarms measure-

ments, and the probability of survival and of detection are

ps = 0.98 and pd = 0.95. The scenario is displayed in

Fig. 1 (only coordinate px is displayed).
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Fig. 1. Scenario with 6 targets - True tracks, estimates of

the PMC PHD filter and measurements

We compare an HMC and a PMC based PHD filters.

The first filter uses pdfs fk|k−1(xk|xk−1) and gk|k−1 (yk|xk)
computed above while the second one uses pdf pk|k−1

(xk,yk |xk−1,yk−1). The signals are generated from the

PMC model, so it is expected that the PMC-PHD filter

performs better. However, in this PMC model, fk|k−1 and

gk|k−1 are computable, so it is interesting to consider the

contribution of the PMC-model to the PHD filter. The



pruning and merging thresholds are respectively Tp =
10−5 and U = 4m for both algorithms; for the HMC-

PHD filter, we keep at most Jmax = 100 Gaussians and

for the PMC PHD filter we keep J1
max = 50 Gaussians for

the PHD of non-detected targets v1k and J2
max = 50 Gaus-

sians for the PHD of detected targets v2k. We consider that

a Gaussian is a target when its weight is above 0.5.

To compare both algorithms, we use the Optimal Sub-

pattern Assignment (OSPA) metric which enables to com-

pare multi-target filtering algorithms [11]. Let X = {x1,
· · · , xm} and Y = {y1, · · · , yk} be two finite sets. X
represents the estimated finite set of the targets and Y rep-

resents the true finite set of the targets. For 1 ≤ p < +∞
and c > 0, we denote d(c)(x, y) = min(c, ||x− y||) (||.||
is the euclidean norm) and Πk the set of permutations on

{1, 2, ..., n}. The OSPA metric is defined by :

d
c

p(X,Y )
∆
=

(

1

n

(

min
π∈Πk

m∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

)) 1
p

(50)

if m ≤ n and d
c

p(X,Y )
∆
= d

c

p(Y,X) if m > n. We use

p = 1 and c = 20 in our simulations. The OSPA distances

averaged over 100 Monte-Carlo runs for both algorithms

are displayed in Fig. 2. We observe that the PMC-PHD fil-

ter outperforms the HMC one. Here p(xk,yk|xk−1,yk−1)
6= fk|k−1(xk|xk−1)gk(yk|xk); so the PMC-PHD filter

does not reduce to the HMC-PHD filter which is no longer

optimal for the considered data. In conclusion, using the

couple of pdfs fk|k−1(xk|xk−1) and gk(yk|xk) may be

insufficient to model a tracking issue: states at time k de-

pend on states at time k− 1 but may also depend on mea-

surements at time k− 1. In this this experiment, introduc-

ing the pdf of the pair improves the performances of the

PHD filter by considering such dependences.
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Fig. 2. OSPA Distance

6. CONCLUSION

In this paper, we introduced PMC models in a multi-target

filtering context. We adapted the PHD filter to PMC mod-

els. The advantages of the PMC based PHD filter are

twofold. PMC models enable to take into account more

general pdf transitions than those used in HMC models;

moreover such an approach enables to deduce also the

measurement associated to each target. Our approach was

validated by simulations.
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