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the numbers 0.4 + j0.4, 0.4~ j0.4, —0.4 4 j0.4, —0.4 — 50.4 in
Table I reflect our belief that input points should correspond to one
of four catalog £1 =+ j. Fig. 1 shows the learning characteristics of
the fuzzy adaptive filters under SNR = 15 dB. In Fig. 1, we see that
learning speed can be greatly improved by incorporating these fuzzy
rules. The computation complexity of the complex LMS fuzzy filter
is shown in Table II.

We compared the bit error rates achieved by the optimal equalizer,
the radial basis function (RBF) equalizer with 64 centers [5], the
complex recursive least squares (RLS) fuzzy adaptive equalizer [4],
and the complex LMS fuzzy adaptive equalizers for different signal-
to-noise ratios, for the given channel with equalizer order n = 2 and
m = 1. These equalizers were first trained with 1000 symbols from
the output of the channel and then we evaluated the bit error rates
(BER’s) based on 10° more received symbols for each realization.
We see from Fig. 2 that the BER’s of the fuzzy equalizers are very
close to the optimal values. For the RLS and LMS fuzzy equalizers,
the BER curves are indistinguishable.

V. CONCLUSIONS

In this correspondence, we developed a complex fuzzy filter and
applied it to linear channel equalization problems with complex
components. From simulations, we show that the bit error rates of
the fuzzy equalizers were close to that of the optimal equalizer.
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Spherical Trigonometry, Yule’s Parcor
Identity, and FRLS Fully Normalized Lattice

Frangois Desbouvries

Abstract—Yule’s PARCOR identity is recognized as the cosine law of
spherical trigonometry. The six PARCORs propagated by the fullly nor-
malized FRLS lattice filter are the cosines of the six elements of a spherical
triangle, and this lattice algorithm is one solution to a spherical triangle
problem that arises naturally in navigation and astronomy. Exploiting
this new geometric interpretation yields unnoticed (and potentially useful)
recursions among FRLS quantities.

1. INTRODUCTION

The basic cell of the prewindowed fully normalized adaptive FRLS
lattice algorithm [1] consists of a recursion among three variables
only. The incoming entries are the forward and delayed backward
“double-,” “angle-,” or “information-" npormalized prediction errors,
el and 557! at order n together with the (n + 1)th-order PARCOR
pf;l] at time ¢ — 1. The algorithm first updates the PARCOR, then
computes the errors at order n + 1 as follows:

prr =ch(niHT

U= ()T AT - Gl
624-1 =[I— ﬂfz+1(ﬂfw+1)T]A1/2

“(en = prpnn I = () 7T (1b)
7]:14_1 =[I - (Pi+1)Tﬂi+1]‘l/2

[T = (pnan)T )T = () Ten] T (Ic)

These recursions received an elegant geometric interpretation (see
e.g., [2]-[4] and the references therein), when it appeared that (1b)
and (1c) as well as a reordering (1d) of (la)

Py =1 —eh(eh) 2
t—l)T]—T/Z

Aphpr — ena DI — e (s (1d)

were three particular applications of a general identity among partial
correlation coefficients, which could be traced back [2] to an old paper
by Yule [5]. More precisely, let us set ourselves in the space R
of N-dimensional vectors, and let Y, A, B, and C denote matrices
with N rows and an arbitrary number of columns. Let Py (resp. Pi")
stand for the orthogonal projection operator onto the subspace-of RY
spanned by the columns of Y (resp. onto its orthogonal complement),
and let M'/? denote the Cholesky factor (either lower or upper
triangular) of the symmetric positive definite matrix M (we assume
the regular case for simplicity). The partial correlation (PARCOR)
coefficient py (A, B) is defined as the “inner product” of two
normalized projection residuals py (A, B) 2 (P}J;A)T - P} B where
PEA 2 PEA(ATPEA)"T/?, Yule’s PARCOR Identity expresses
py,a(C, B) in terms of py (A4, C), py (B, A), and py (C, B):
pv.4(C, B) =T = py (C, A)py (4, O /%
- lpy(C, B) ~ py (C, A)py (4, B)]’
I = py (B, Apy (4, B) T2 @
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Fig. 1.

As a particular application, the lattice (1) is obtained by replac-
ing (4, B, C) by the permutations of (y¢, Y¢—n—1, 0) where
Y, vt, ¥yt—n—1, and o are defined in Table 1.

The main result of this paper consists of recognizing that (a
reorganized version of) Yule’s PARCOR identity coincides with the
cosine law of spherical trigonometry. This unexpected bridge between
FRLS adaptive filtering and spherical trigonometry (a branch of
classical trigonometry) sheds new light on the fully normalized FRLS
lattice; in this new geometrical framework, the recursions of Lee et
al. happen to be one particular solution to an important spherical
triangle problem that also arises naturally in air or sea navigation
and in astronomy. This link with spherical trigonometry is exhibited
in Section II and exploited in Section III, since some spherical
trigonometry formulae happen to admit PARCOR analogs which, in
turn, imply new (and potentially useful) relations among least-squares
quantities.

II. FRLS FuLLy NORMALIZED LATTICE
AND SPHERICAL TRIGONOMETRY

In the introduction, py (A, B) was introduced as the inner product
of two normalized projection residuals and can thus be interpreted (at
least in the scalar case) as the cosine of the angle between the two
vectors P A and Pg B. This well-known result is a first trigono-
metric interpretation of PARCORs. In this section, we introduce a
new trigonometric interpretation, but now both of PARCORs and of
Yule’s PARCOR identity.

Let A, B and C be three points on a sphere of unit radius. By
definition, the spherical triangle ABC' consists of the three arcs
AB, AC, and BC' of “great circles” obtained by intersecting the

* sphere and the three planes OAB, OAC and OBC passing through
its center O (see Fig. 1).

There are six elements a, b, ¢, A, B, C in a spherical triangle. The
angle BOC, say, is equal to the length of arc BC' and is denoted by
a. The dihedral angle A between planes OAB and OAC is defined
as the planar angle between two straight lines orthogonal to OA and
belonging to OAB and OAC, respectively. Note that A is equal
to the planar angle formed by tangents to the side of the angle at
vertex A. The remaining elements are defined similarly. a, b, ¢ are

classically referred to as the three sides, and A, B, C as the three
angles, of the spherical triangle. '

Spherical trigonométry consists of deriving all the relations among
the elements of a spherical triangle ABC'. This tool is of outstanding
importance in areas such as geodesy and astronomy, and in sea and
air navigation. We now show that it can also be applied to FRLS
adaptive filtering. . .

There are three degrees of freedom in a spherical triangle: Any
three elements determine the three remaining ones. Thus, there can
be no more than three distinct relationships among the six elements.
One such set [3(a), (b), ()] is obtained by permuting variables' into
the fundamental spherical trigonometry law of cosines (3a),

rcos a = cos bcos ¢+ sin bcos Asin cJ (3a) ‘

cos b = cos acos ¢+ sin acos Bsin ¢ (3b)
cos ¢ = cos acos b+ sin acos C'sin b. (3c)

We recognize that the law of cosines [(3a), say] is formally equal® to
Yule’s PARCOR identity (2) (and thus to the lattice recursions (1), as
a particular case) via the double identification of variables of Table I.
Consequently the six PARCORS in (1), which could already be seen
as cosines.of (planar) angles between projection residuals, are also the
cosines of the six elements of a spherical triangle in the 3-D space.

Let us briefly explain the underlying reasons for this surprising
result (see [6] for more details). The PARCOR py (A, B) is defined
in the plane spanned by Pi+ A and P B. Now, the FRLS transversal
and lattice recursions can be derived from the three particular planar
biorthogonalization steps (i.e., both P}J;’ g4 and PXJ;, 4B are a linear
combination of P+ A and P+ B) obtained by replacing A and B by
any two elements out of the set (y;, ¥s—n—1, o) of Table L. They
can thus be described in a constrained set (and not just any set)
of three planar triangles OAB, OAC, OBC (where OA = P ys,
OB = P y;_n_1, and OC = P ), which together form the 3-D
tetrahedron OABC of Fig. 1.

Now, tetrahedrons are very particular geometrical figures. They
play the same fundamental role in solid geometry as triangles in
planar geometry {7]. If, moreover, we require that the tetrahedron
have “unit length” (meaning OA = OB = OC = 1), which is
the case here, then the three vertices A, B, and C lie on a 3-D
sphere of unit radius. Thus, these three points determine not only the
tetrahedron OABC, but also the spherical triangle ABC'. Now, in
the same way that trigonometry consists of deriving relations among
the sides and angles of a planar tn'angie (hence the first; classical
trigonometric interpretation of PARCORS), spherical trigonometry
consists of deriving relations among the sides and angles of a unit-
leiigth tetrahedron or, equivalently, within a spherical triangle ABC';
hence, we get this new trigonometric interpretation. )

Let us now revisit (1a)—(1c) in this new framework. We are given
two sides b and ¢, plus the angle in between A (actually given
by their cosines):cos b = &}, cos ¢ = 7, * and cos A = p, Y5
and we want to compute cos @ = phyy, cos B = &fy, and
cos C = n, ;. This very “spherical triangle problem” (a spherical
triangle problem [8], [9] consists in determining three elements out
of the six given the three others) is a particularly important one. It
arises often in widely different contexts, such as navigation on ships

IThis constant feature of spherical trigonometry formulas should be kept
in mind in the sequel, where a set of formulas in which each element can be
deduced from each other simply by permuting variables, will be described by
one generic equation.

2Strictly speaking, the equality cos @ = py (C, B) holds in the scalar case
only. However, the analogy extends further to the general multidimensional
case since the spectral norm of a PARCOR p is bounded by 1 [2] whatever

the dimensions of p.
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TABLE I
CORRESPONDING OF THE VARIABLES
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o < py(C.B) > cosa o o  pyCB) & cosA
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or airplanes, when we solve the “terrestrial triangle” [9, p. 196]; and
in astrometry, when we convert the horizontal coordinates of a star
into its hour coordinates or vice versa, or its equatorial coordinates
into its ecliptic coordinates or vice versa {9, pp. 222-231], [10]. The
solution (la)—(1c) found by Lee et al. makes use of the cosine law
only. First, cos a = pfl+1 is computed through (3a) = (la). Then,
cos B'= el and cos C = n},,, are extracted by rearranging (3b)
into (1b) and (3c) into (1c), respectively.

III. CONTRIBUTIONS OF SPHERICAL
TRIGONOMETRY TO THE FRLS PROBLEM

Spherical trigonometry first arose in ancient Greece and has been
developed considerably since then [11]. It was still a research subject
two centuries ago when Gauss and then Riemann discovered that the
geometry on the sphere could be understood in the framework of
Riemannian (or elliptic) geometry [12]. Therefore, it is unexpected
that the connection of Section II should enlighten and extend this
classical subject.

Conversely, spherical trigonometry becomes a new element in the
toolbox used to derive FRLS algorithms: Any standard spherical
trigonometry textbook contains a variety of formulas, and the first
question that arises naturally is whether they have a PARCOR analog.
It happens that the formulas involving multiples or fractions of
the elements cannot be adapted directly. This is due to the major
difference between the two frameworks: In spherical trigonometry
we know elements, in FRLS adaptive filtering we know their cosines.
Among the formulae that can be adapted, one is already well known
(the scalar sine law), and then only a geometrical interpretation is
brought, but the other formulae seem original.

We begin by evoking the “duality principle” of spherical trigonom-
etry. Let A’ be the pole (w.r.t. the equator passing through B and C)
in the same hemisphere as A. Define B’ and C' similarly. A'B'C’
is the polar spherical triangle of ABC.In A'B'C’, ' = 7 — A and
A" = n — a. This is similar for the other elements [7, pp. 980-981].
As a consequence, any spherical trigonometry formula admits for
free a dual relation, obtained simply by replacing the variables
(ayb,c, A, B,C)by(n— A, n—B,7—C,m—a, m—b, m~¢),
respectively.

Among any four elements there exists one and only one relation.
These 15 relations are usually classified into four different groups
[13], which all admit a PARCOR analog.

1) The three cosine laws express one side, given the two other
sides plus the angle in between. They admit a dual group of
three formulas (the cosine law in the polar triangle), which
express one angle in terms of the other two angles plus the
side in between. :

2) The sine law is a self-dual group of three formulas, relating
two angles and the sides opposite to them.

3) Lastly, the cotangent law is a self-dual group of six formulas,
relating four consecutive elements.

On the other hand, there are many different relations among any
five or six elements, and it seems always possible to find new ones.
Thus, we will not try to furnish an exhaustive list, even simply of
those that admit a PARCOR analog. We just mention the useful “five
elements formula.”

Let us now list these relations. For want of space, we shall omit
all the proofs, as well as the scalar PARCOR formulae, since they
can be obtained without ambiguity via Table I from the associated
spherical trigonometry equation. This is no longer the case for
multidimensional formulae, which in turn need to be written down.

A. The Cosine Law in the Polar Trianglle
In the polar triangle, the cosine law reads

cos A = —cos Bcos C +sin Bcos asin C. 4

One can show [6] that (4) also holds for scalar PARCORs;
consequently, in the same way that py,a(C, B)
Flpv(C, B), py(C, A)v py (A, B)] where F[wv Y, 2]

(1 - ¥ Y2z — yz)(1 — 23)~V2, we have —py(C, B)
Fl~py,a(C, B), - px,5(C, A), —pv,c(4, B)]. In the
multidimensional case, the formula extends to the “polar version”
of Yule’s PARCOR identity:

fv,a(Cy B) = — py,5(C, A)py.c(A, B)

+I - pv.6(C, A)pv,s(A, )" py (C, B)
- [I = pr.c(B, A)py.c(A, B)'? 5)

i

i

in which the matrix p is defined for any PARCOR p as

pE (I =pp" )T =T )T
=(I=pp") T 2p(I = pTp).M? ®
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Note that p = j in the scalar case. In the multidimensional case,
p and p are different but they share the same singular values. The
FRLS application of (5) is the time-decreasing fully normalized lattice
algorithm.

B. The Sine Law
In the scalar case, the PARCOR analog of the spherical trigonom-

etry self-dual sine law
sin A

sin a

sin B _

sin b

sin C

sin ¢

Q)]

is true, and yields a known relation [14, relation (12)] when applied
to the FRLS framework. In the multidimensional case, (7) does not
have a PARCOR analog; however, sin c¢sin B = sin bsin C reads

{I-pv(4, [B, CDpy (B, C], A}*
=[I - pv(A, B)pv(B, A)]"/*?
[ = pv,5(4, C)py,5(C, A)]'/?
= [I - py (4, B)py (B, A) - py(4, C)py (C, A)]'/?
=[I - pv (4, O)pv(C, A)* ®

C. The Cotangent Formulas

These are the six self-dual formulas obtained by permuting vari-
ables in the generic equation

cos C'cos a = cot bsin a — sin C cot B. )

Following [7, pp. 987-988], one can show that the scalar PARCOR
analog of (9) holds. In the multidimensional case it reads

pv,c(4, B)py (B, C)
= {lI — pv (4, C)py(C, )] oy (4, O)}
[T = pv(C, B)py(B, O)'/*
— I - pv,c(A, B)py,c(B, A)'?

Al = py.B(A, C)py.B(C, A" ?py.5(4,C)}. (10)

D. The Five-Element Formulas

The six five-element formulas are described by (11a), the polar
version of which is (11b):

cos bsin ¢ = sin bcos Acos ¢ + sin acos B

(11a)
(11b)

cos Bsin C'= — sin Bcos acos C' + sin A cos b.

One can show that the PARCOR analogs hold, and in the multidi-
mensional case they read

py (C, A)[I - py (A, B)py (B, A))'/*
=[I - pv(C, A)py (4, O)'*py,a(C, B)py (B, A)
+[I = py(C, B)py (B, O *py,5(C, 4)
pv.B(C, AL = pv,c(A, B)py,c(B, AT
= —[I — pv,8(C, A)pv,B(4, CO)]"*py (C, B)pv,c(B, 4)
+ I = py,4(C, B)py,a(B, O\ *py (C, A). (12b)

(12a)

E. Alternatives to the Solution of Lee et al.

We now come back to the end of Section II. Surprisingly, the
algorithm of Lee et al. (using the cosine law only) does not seem to
be a classical solution of the underlying spherical triangle problem.
More commonly used are “Napier’s analogies” [7]-[9], [13] or the

cosine law for computing a plus the cotangent formulas for computing
B and C [13]. Other variants, using the five elements formulas [13],
the sine law [7], [13] or right spherical triangles [9] are also available.
Some of these solutions can be adapted to the FRLS framework.
For instance, [(1b) and (Ic)] can be replaced by the following
rearrangement of two five-elements formulas:
enr =T = phya (phy)) 12
{Et [I ( t~1)T77t—1]1/2
[ gn(fn) ]l/vat'z+11 Nfl 1}
- (Pn+1) Pn+1] 1z
Ani T = (eh) en]
- [[~ nn (nn ) ]1/2( n+l) Nn}
and there are probably other possibilities. However, though it admits

alternatives, the original solution found by Lee et al. will probably
remain the simplest of all.

(13a)

t
nn-{—l = [

(13b)
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