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MIMO Channel Blind Identification in the
Presence of Spatially Correlated Noise

Walid Hachem Member, IEEEFrancois Desbouvrie8ember, IEEEand Philippe LoubatgrMember, IEEE

Abstract—We address the problem of the second-order blind More precisely, the received signal is first oversampled, as in
identification of a multiple-input multiple-output (MIMO) 3 fractionally spaced equalizer. The resulting cyclostationary
transfer function in the presence of additive noise. The additive signal, when vectorized appropriately, becomes multidimen-
noise is assumed to be (temporally) white, i.e., uncorrelated in _. . . i, _
time, but we do not make any assumption on its spatial correla- sional statlonary. _Under appropna_te cc_)ndltlons, whlch indeed
tion. This problem is thus equivalent to the second-order blind Mean that a sufficient amount of diversity has been introduced,
identification of a MIMO transfer function in the noiseless case the (vector) channel becomes minimum phase, and the problem
but from a partial auto-covariance function {R,}.xo. Our can be solved by second-order techniques.
approach consists of computing the missing central covariance The signal model used in the framework of second-order
coefficient R, from this partial auto-covariance sequence. It can | . . L . - .
be described simply within the algebraic framework of rational blind identification is t.hus, by essence, .a multldlmenslltl)nal
subspaces. We propose an identifiability result that requires Model. Later on, these ideas were generalized to the multi-input

very mild assumptions on the transfer function to be estimated. case (see, €.g., [8]-[16]). The noiseless transmission model is
Practical subspace-based identification algorithms are deduced then, using the so-called operator notation
and tested via simulations.

Index Terms—Colored noise, MIMO blind identification, v _ g 1
| | noise, ut = [H ()]s, &
rational spaces, stochastic realization.

where s,, is a zero-mearp-dimensional vector process such
[. INTRODUCTION that E[s,sT] = &, mlp, which represents the sequences
N DIGITAL communications, channel equalization/identifi2f Symbols emitted kb_yp sources sharing the same period;
cation techniques are called “blind” when they do not requirg (#) = 2x>0 Hrz™" is ag x p transfer function representing
the use of a training sequence, i.e., a sequence of symbols kndiachannel; and;; is the received x 1 signal. The parameter
by the receiver and used to update the equalizer. This featr® always supposed strictly greatgr thanAs staFed ab_ove,
may be of interest, even in a cooperative transmission franiS model accounts for oversampling the received signal at
work: When the channel impulse response varies with time, agnultiple of the symbol period, or receiving the signal on
in microwave data transmissions, a training sequence is usu@fy @@y of sensors (with more sensors than sources), or a
sent periodically. Suppressing this sequence increases the effddbination of both. o
tive data rate. Usually, the channel transfer fun%?on is modeled as FIR. We
A number of papers in the early 1990s have given a larggnote its degree by/: H(z) = 37, _, Hyz~*. H(z) is as-
impetus for the research of blind identification algorithms baseMed to be irreducible, which means that its rank is equal to
on second-order statistics; see, for instance, the recent surl@y2ll # # 0and forz = cc (see, e.g., [9], [13], and [17]). Irre-
papers [1] and [2] and books [3] and [4], as well as the refeduciPility is a “generic” property, as soon gs> p. An imme-
ences therein. When the received signal is sampled at symfigt€ consequence is th(z) can theoretically be recovered up
rate, the resulting channel model, in general, is nonminimutr‘?la(:()r15t_""mb><1’Orth_Ogonal matrlerom_the sole kr_10\_/vledge of
phase. It thus came as a breakthrough that blind identificatitiiff covariance function af;; by using a linear prediction algo-

couldindeed be achieved by second-order techniques [5]. In tH'™ (see e.g., [11], [13], and [14]). In this paper, we will use a
early algorithms of [5]-[7], the ambiguity about the positiorll'near prediction algorithm as part of our identification method.

of the zeroes of the channel with respect to the unit circle is -6t US Now consider the more realistic case of a noisy model.
removed by introducing specific redundancy into the data.
Yn = [H(2)]sn + wn. )
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denote the N + 1)¢ x (M + N + 1)p generalized Sylvester The results of [24] hold under restrictive assumptions on the

matrix associated witlt () transfer function to be identified [in particular, the degrees of
the columns of (z) must coincide]. In this paper, we propose
Hy -+ Hy 0 a new approach that provides satisfying identifiability results
Tn(H) = . (3) Wwithout making any strong assumption &N(z). The paper is
0 Hy - Hy organized as follows. Section Il outlines the general method-

ology. Since we will use the notion of rational spaces, the nec-
Then, it is clear thal'y (n) = Tn(H)Sy4n(n) + Wy(n), €SSary tools are also briefly reca!led forcqnvenjence of the non-
in which Sy n(n) = [sZ, ..., sT_ 1, % andWy(n) = expert reader. A genergl theoretical |d_ent|f|ab|I|ty result is then
foT W T The covariannc_e( m+afr)iﬁ€y, of Yx(n) is VN and formulated in terms of rational subspaces. In Sec-
tth: é;q'u’al ?0—1\‘ ' N ‘ tion I_II_, we first show that_the results of [24] follow fr_om our

identifiability result. More importantly, we take benefit of it to

introduce and motivate our new approach. Practical algorithms
implementing the results of [24] ([24] contains no algorithm) as
well as our new method are detailed in Section IV. Finally, some
Monte Carlo simulations are given in Section V and followed by
comments on the applicability of these methods.

RY = In(H)TH (H) + 0* Iy 41)q- )

Sincep < ¢, one can choos# such that N + 1)g > (M +
N +1)p. If this holds, theril'y (H)T#(H) is a singular matrix
so thatz? is identified as the smallest eigenvalueff;, which
essentially leads us back to the noiseless case.
Let us now discuss the hypotheses on the additive noise. The
fact thatw,, is a white noise is a reasonable assumption, but the Problem Statement and General Methodology
assumption that = o1, may be restrictive in certain contexts. Let us get back to the model (2), whel z) is irreducible.
Very often,y, represents the signal sampled behind a senstfe assume from now on that(w,w?,) = 3.8,, ,,,, whereX is
array. Ifw is a thermal noise that stems from the acquisition denknown. Therefore, (4) becomes
vices of sensors with hardware nonidealities, or if the prevailing v T
noise is ambient noise and the sensor array is sparse, then the Ry =Tn(H)Ty(H) + Inp1 © 2 ()
noise components are likely to be decorrelated but their vawhere® denotes the Kronecker product. As a consequence, the
ances do not necessarily coincide [18]. As another example, gigenvalue considerations of Section | no longer hold.
noise in underwater acoustics is the sum of ambient sea noisd;€t us denote by R, }.cz and by{ kY },,cz the auto-covari-
flow noise, and traffic noise and may thus be spatially correlat@@ice lags of the useful signid ()]s, and ofy,,, respectively.
[19], [20]. This is also the case in radio frequency communicAsS wy is assumed to be white afl(z) is a degre€\! polyno-
tions when ambient noise is the dominant noise source, sucial, itis clear thatkg = Ro + 3, R = R, for 1 < |n| < M,
communications in the HF or VHF frequency bands [21].  andR} = R, = 0for |n| > M. In particular,; contains little
Contributions [18], [20], and [21] address the problem dpformat_mn onEO; therefore,.th_ls term.W|II S|mply be ignored
blind identification of an unknown channel in the presence fimulations will show that this indeed is pertinent at low SNR).
additive colored noise. In these approaches, an instantaneoy&/e Will thus try to identify H(z) from the lags{ Ry, }1.>0 by
mixture model [i.e..H(z) = Ho] is assumed, and some model€1Ying on the convolutive nature of the channel only. We thus

for the noise covariance matrix is required since these methdglermulate our giroblem a,? follows. . .
LetH(z) = ,_, Hirz~ " beagxpirreducible FIR transfer

actually rely on a pertinent exploitation of the underlying Strucﬁmction and Ie{ /2. } be the auto-covariance sequence associ-
ture. . A .

In this paper, we are going to show thathe case where no ated with they x ¢ "spectral density'S(z) = H(z)H" (=~").

I i 4 . o . Set reasonable hypotheses under whiffx) is identifiable

a priori information on¥: is available it is possible, under cer- (Up to ap x p orthogonal matrix) from the partial sequence
ta'?f"”"'“?gs' .to identify a convolutive mixture [i.¢(z) —  {R.}1<n<m, and deduce constructive identification algo-

weo Hrz™% with M # 0] (up to ap x p orthogonal matrix) rithms.
from the second-order statistics gf. We proceed by solving a completion problem. The

This problem was first introduced in [22] in the cgse= 1. yonera| idea is as follows. Even though we do not know
There, it was shown that the unknownx 1 transfer function Ry, we do not deal with just any wide-sense stationary

H(z) is not necessarily identifiable. In case of identifiability, a@/eétor processy, but with the noiseless MA model (1).
identification procedure based on the classical stochastic regjnce RankS(z)) = p < ¢ for all z, this information
ization theory was proposed. However, it is based on a difficln be exploited efficiently via the structural equation
nonconvex optimization problem for which no satisfying solugy DHT (1) = S(z) = 224:—1\4 Riz~*. This equation
tion was proposed. Later on, it was shown in [23] (still in thgrovides an implicit relation among the covariance lags
casep = 1) that the SIMO FIR subspace identification method{Rk}lly:O, which, in turn, enables (under certain sufficient
which was introduced in [6] fof. = 1, could be generalized conditions) recovery of the central Iy, from {R; }}L | . Last,

to the case wherE is unknown ifg > 3. The case > 1 was onceR, is known,H(z) can be retrieved frontf (z)H” (z~1)

first considered in [24] in the polynomial case, and some resuliig any stochastic realization algorithm and, thus, for instance,
are available in the rational case [25]. Finally, the algorithm @&fy using the popular so-called linear prediction algorithm,
[26], based on state space models, gives a solution in the cagdich can be used here because of the irreducibility assump-
p =1 tion.

Il. OUTLINE OF THE METHOD
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Let us now outline our method. Our results are based on theProposition 1: The polynomial basi$u;(~)}¢_; is minimal

following observation. Since > p, there existl x g polyno- if and only if the matrix polynomial/(z) = [u1(2), ..., ua(2)]
mialsg(z) = Ei\:o grz—" of degreeN satisfying is irreducible and column reduced.
g()H(z) =0 forall » ©) Of course, there are many different minimal polynomial bases

that can be obtained by the above procedure. However, an in-
or, equivalently, satisfying(~)H(z)HT(z~1) = 0 for all ~. teresting feature is that all minimal polynomial bases share the
Let us assume that we can compute a setsfch polynomials same degree§hM; = deg(u;(2))}i=, . Usually, these minimal
g;(7), and letG(z) be ther x g matrix degrees{M;}¢_, are called the Kronecker indices associated
with S.
N
T T, \1T —n The dual spac& of S is the(q—d)-dimensional subspace of
G2)=lor(2), o - (A = Z Gz (7) alll1xgq rationpal transferfunctis)r@(z«)) satisfyingg(z)f(z)p: 0

. 3 = forall f € S. The Kronecker indice$M;+}4_{ of S+ are the
(the parameters and N will be specified later). Pub(z) = so-called dual Kronecker indices &f They satisfy the impor-
SoM v Baz™" = Ro + T(z), whereI (z) is supposed to be tant equality
known. SinceS(z) = H(z)HT(»71), itis clear that

d qg—d
G(2)Ro = —G(2)T(2). (8) M; =Y M;. (10)
Identifying on both sides the coefficient of * for 0 < k < N =t I=t
and setting o )
C. Ildentifiability Result Based on Rational Subspaces
G=I[G§, ..., GR]" 9)

We now turn back to our problem and make things more pre-

we see that we can compute the magfiR, from the data. IG cise. In particular, we will derive a simple identification lemma

has full column rankR, can be retrieved from (8), and finally, tat ill be used in two different ways in Section lll.
H(z) is identifiable from the full sequendg,, } . Let us first trivially remark that a polynomigi(z) sat|_sfy|ng

Our method is, thus, twofold. It relies on the actual poss@ belongs to the dual of some rational space enclosing (but not
bility of computing from{&,, }*_, polynomialsg(z) satisfying necessarily equal to) the rational space $|ﬁ(rx)) gener{:\ted
(6), but on the other hand, these polynomials should be “in st the columns ofi(z). Therefore, let be some fixed rational
ficient number” and their degrees “sufficiently high.” This isSPace such that Spat(z)) C S, and letd = dim(5). By as-
because the critical point is thétmust have full column rank; sumption,H (z) is irreducible (see the problem formulation in
intuitively, this is all the more likely to happen th@tcontains a Section 1I-A), and thus, it has full (normal) rank therefore,
large number of rows; therefore, the parameteand N (which ~ dim(Spar{H(z))) = p. We thus have < d < ¢. Let S+ de-
have not been determined for the moment) should be “larg&ote the dual space &f. In addition, letd < M; < --- < My
This indeed will be confirmed later on by the identification thefrespectivelyp < Mi- < ... < M- ) denote the Kronecker
orems. indices ofS (respectively, the dual Kronecker indices&far-

The properties of these polynomials (and particularly theianged in increasing order.
degrees) naturally fit into the framework of rational spaces, i.e.,Now, assume that we have at hand some algorithm for com-
of spaces of rational vectors over the field of rational functionputing the sefSx: made of all polynomials of-+ but of degree
Consequently, we first recall some general results on this subjester than or equal t&v. Then, one should stack in the matrix
that will prove of importance to our problem. For a detailed:(z) defined by (7) “as manyl x ¢ polynomialsg;(z) of S+

study, see [27] and [28]. as possible; however, only polynomials that are linearly inde-
) ) _ pendent over the fiel®(z) should be considered. To see this,
B. Brief Review of Rational Subspaces let {g;(z)};_, be a set of polynomials ofSy; that are linearly
Let us first recall that the seR?(z) of all ¢ x 1 rational independent oveR(z), and letG(z) = [¢{ (2), ..., g7 (2)]".

transfer functions is g-dimensional subspace over the fieldrhen, adding &r + 1)st rowg,+1(z) to G(z) is useless [as re-
R(z) of all scalar rational transfer functions. L&t be a gards the rank of the matrix defined by (9)] if this polynomial
d-dimensional (withd < ¢) subspace dR?(z). S admits bases g,.+1(z) belongs to the rational space spanned by(»)};_; .
U(z) = {w(z), ..., uq(z)} characterized by the fact thatln this case, it is easily seen that the+ 1 rows brought by
RanKU(z)) = d for almost allz. The rational matrix-valued g,1(z) to the matrixG are linear combinations of thé N -+ 1)
functionU(z) is then said to have a normal rank equalito ~ previous ones.

S admits, in particular, polynomial bases. One way of The maximumusefulvalue forr, which is considered to be
building polynomial bases is as follows. Among all polynoa function»(N) of N, is thus equal to the dimension of the
mials belonging taS, choose a polynomial; (z) of minimum rational subspace &+ generated by the s&x, but this di-
degree. Then, among all the remaining polynomialsSin mension depends on the position/gfwith respect to the dual
choose a polynomiaks(z) that is linearly independent with Kronecker indices{M;"} of S. If N < Mj" = min; M}",
u1(z) and of minimum degree. Doing this, we get a so-calletthen the equatiog(z)f(z) = 0 for all f(z) € S holds if and
minimal polynomial basis{w;(z)}¢ ;. Minimal polynomial only if g(z) = 0 for all z. Therefore,G(z) is the null ma-
bases are characterized by the well-known criterion [27], [28]x. If Mt < N < M;I, thenr(N) is easily seen to be
in the following. equal tos. Last, if N > M-, = max,; M;-, then one can
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extract fromSs: a set of(g — d) polynomials forming a basis ~ « C3) H(») is column reduced, i.e., Ra ;) = p, be-
of 8+; therefore, (V) = ¢ — d. This, of course, is the most cause ofC1).
favorable situation. Therefore, it is desirable to have an algo-From C2) and C3), the columns ofH (z) form a minimal
rithm for computing, from the sequendd&,, }2Z , the setSx  polynomial basis of the subspace = Spar{H(z)), due to
for N > M-, = max; M;-. If this holds,R, can be identified Proposition 1. Thus, the Kronecker indicg&/;};_, of S are
from (8) under a simple additional condition, as we now see.all equal toM, and consequently, the identifiability condition

Lemma 1:Let SpariH(z)) denote the rational subspaceof Lemma 1 (i.e.M; > 0) is, of course, satisfied.
spanned by the columns df(z), and letS be some ra-  Of course, according to that same lemma, we still have to ex-
tional subspace such that Spaf(z)) C S. Let d denote tractthe seSy, for N > M- . However, the method proposed
the dimension ofS, and let0 < M; < --- < M, and in[24]enablesthe computation of the set of all polynomials sat-
0< Mt <--- < Mq{d be its Kronecker and dual Kroneckerisfying (6) and of degree lower or equal t — 1, i.e.,Si;_;;
indices, respectively. Le§x be the set of all polynomials of therefore, the identification scheme of [24] is successful pro-
St of degree lower than or equal f§. Assume that we have vided M — 1 > Mq{p. As for size conditions, it is useful to
an algorithm for computingy; for N > M-, = max; M;-. notice that (10) read8/p = > /"7 M} < (¢ — p)M} , so
If M, > 1, thenR, is identifiable from the sequendé,, }. ;. that the conditiom/ — 1 > Mqi_p implies, in particular, that

Proof: AsN > M-, itis possible to extract fromiy; a ¢ > 2p + (p/(M — 1)).

setof(¢—d) polynomials(¢1(2), ..., g4—4(z)) formingabasis  Let us explain how we compute the polynomials&®f of
of L. LetG(z) = 0y Gz ™ = (q1(2)7, ..., g% 4(2))T degreeM — 1. Note that the assumptidd/ — 1) > M-, im-
be the correspondingg — d) x ¢ polynomial matrix. pliesin particular tha¢M — 1) > Mi-; therefore, this subset is
Then, G(z) satisfies (8). Let us now consider the matrinot trivially reduced tq0} (see the discussion in Section II-C).
g =[G, ..., G&]* associated with7(z). Let v be ag-di- The method is as follows. Lé{ be theM ¢ x M ¢ block Hankel
mensional constant vector satisfyigg = 0 or, equivalently, matrix given by
G(z)v = 0 for all . This condition holds if and only if the
constant polynomiak(z) = v belongs to the dual space &t Ry - Ry
i.e., toS. On the other hand, the assumptidfy > 0 means H= : . (12)
that S does not contain nonzero constant vectors, and thus, Ry 0
v = 0. ThereforegG is a full column rank matrix, an&, can
be identified from (8), as expected. m M can be factored as

In the next section, we are going to propose two algorithms T
for computing (forV large enough) the se8s: associated with Hy - Hy Ho 0
two different rational subspaceéscontaining SpafH (z)). For ~ H=| : .- : =oct
the first algorithm, the spacg coincides with Spaff(z)) it- Hy 0 HI . -+ HY
self, whereas for the second, it is no longer the case. (12)

where© and(C are Mq x Mp matrices. SinceHy; and Hy

have full column rank, it is clear tha? andC also have full
In this section, we will state the principle of two algorithmsolumn rankM p. Therefore, the rank of{ is also equal to

for computingR, from {R;}}; both of them are practical ap- Mp. Let J be theg-block exchange matrixi = Jasnr © I,

lll. SUBSPACEBASED METHODS

plications of Lemma 1. where® denotes the Kronecker product, ahéh . as (4, j) =
Sigj—(M41) 1=y Itis easy to _checl_< that Mq—d_imen_sional
A. Making Use of the Block—Hankel Matrix Associated to thdOW Vectorg = [go, ..., gar—1] (in which eachy,, is g-dimen-
Sequencd Ry, }1<n<m sional) satisfies
In Section Il, we consideredé&dimensional (withi > p) ra- gJH =0 and Hg" =0 (13)

tional subspacé enclosing (but not necessarily equal to) the ra-

tional subspace SpéH(z)) generat.ed by the columns 8f(z). i and only if gThi_1 (H) = 0. Therefore, Ké(Ty;_1(H)) =

Now, the most natural choice fdt is, of course, SpaH (z)) Ker (JH) N Ker'(HT) = Ker([JH HT]) (Ker stands for the
itself. This choice was implicitly adopted in a method proposegt kernel). Letg(z) = 224_51 g1z~ " be the(M — 1)— de-

in [24]. However, in order to compute the spagg for V large  gree polynomial associated with Then, it is easily seen that
enough, it is based on rather strong assump.uoné[(m). N gy 1 (H) = 0if and only if g(z)H(z) = 0 for all z. There-
order to better appreciate the content of Section IlI-B, we nojre, there is a one-to-one correspondence between the space
b”eﬂy reformulate the method proposed n [24] in the ||ght Okerl(JH) N Kerl(HT) and the SESJJ\_ffl of all po|yn0mia|s of

the preceding results. degree less than or equalid — 1 belonging taS+.
Let us assume the following. Let us summarize the discussion thus far into the following
* C1) The columnsh; (=) of H(z) all share the same degreegheorem.
M > 0. Theorem 1:Let H(z) = Zﬁio Hy2—* be aq x p polyno-

* C2) H(z) is irreducible, i.e., Ranl¢Z(2)) = p for all mial. Assume that1)to C3)hold. LetS = Spar{H(z)) denote
z # 0,includingz = cc. thep-dimensional rational subspace spanned by the columns of
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H(z), and let{ M;-}927, with 0 < M- < --- < M-, de- be computed from the data. Frofi{z) = H(2)H'(»71), we
note the dual Kronecker indices &t Let Sy; | = {g(2), s.t. have

dedg) < M —1andg(z)H(z) = 0}. Assume thatM — 1) >

M
M(f_p [which, in particular, implies that > 2p+(p/(M —1))]. Qul(z) = Z Qe k
Then, it possible to computéi;_, and to extract from Py
Si;_ 1 (g — p) linearly independent polynomialsy; (») i1 ‘ HT (21
PULG(z) = (g7(2), ..., g2 (2)T = SM3! Ghe*. We =[H(z) H(zc""")] |:_HT(Z—le—iom—) - (14

haveG(z)H(z) = 0, and the matrixg = [GF, ..., G%,_,]*

has full column rank. Therefore, the matfi can be identified In all this section, we will still assume thif (=) is irreducible

from (8). (see the problem formulation in Section 1I-A). We will also as-
The considerations exposed in this section are constrgime the following.

tive since they form the material that will be used later on ¢ C4) g > 2p.

for building an algorithm for identifyingRz,. However, the  C5) Normal Rank[H () H(zc'*™)]) = 2p.

practical implementation is not straightforward, and monget us denote here hy the rational subspace generated by the

work is needed. For sake of clarity, the necessary discussiorésumns of[H(z) H(z¢*™)] and byS’+ its dual space. The

postponed to Section IV. spaceS’, of course, contains SpéH (z)). Due to assumption
C5), &' (respectivelyS’+) has dimensiop (respectivelyg —
B. Alternate Rational Subspace Method 2p). The Kronecker indices &’ are denoted by 172, with

/ . ’ okt 1L 9=2p i
ConditionsC1) andC3) require thatd , is a full column rank 0< M <. < My, andthose by {M'5}j=1", with
SM{ < <M,

matrix. This assumption is often quite restrictive. Consider, f(g)r = ) 2P . .

instance, a microwave multiple path transmission, and suppos et us getinto the derivation. Sin€, (z) is known, one can
that the symbol shaping filters are FIR. Elem&pt(z) of H(z) extract forl\gacrN_tEe set O.f all degrev 1 x g ponno'mle}Is
is the channel that conveys information from sourtesensor 9(*) = 2= gr2™" salisfyingg(z)Qa(z) = 0 for all z; this
j. Itsimpulse response is often modeled as a finite sum of atté%_becausey(z)Qa(z) = 0 if and only if the (N + 1)q row
uated and time-delayed versions of the impulse response of!ﬁé‘ftorg =90, ... gn] belongs_to the left kernel of therown
shaping filter. As a consequence, the degrek; gfz) is related N+1)gx (2M+N+1)g generalized Sylvester mattBy (o)

in a straightforward manner to the maximum delay of all patf?sssoc'ated Withta(2)

between sourceand sensof. These delays might be distributed Q> . o 0

. . . —-M M

in such a way that two different columns Hf ), which repre- T B _ _ 15
sent the vector transfer functions associated with two different N(Qa) = K i ’ (15)
sources, do not have the same degree. As a matter of fact, the 0 Q2 - Q%

transmission media between these sources and the sensor A
might have different physical properties.

Furthermore, unde€l), the approach of Section IlI-A en-
ables computation of polynomials belonging to the dual of tht o his. i impli h
subspaces = Spar{H(=)) but of degrees bounded by — 1. 9(A)H(z) H(ze®™)] = 0. T 'S, In turn, implies that
On the other hand, the approach requires Mat 1 > M~ g(2)H(z) = 0 for all ~. Therefore, using the functio®,.(z)

q-p i i 1
This additional condition is difficult to interpret and can also benables extra_ct|on of poly_nom|als 61~ of degreen for all
. The following theorem is a consequence of Lemma 1.

restrictive. Consider, for example, the case whete?2, ¢ = 5, . M —k
andM = 5. Among the 14 triples\/{-, Ms-, Mj- satisfying Theorem 2; Let H(z) = 3 j—o Hyz~" be ag x p poly-
N n n 3 i . nomial. LetS’ denote the rational subspace spanned by the
0 < M < Ms < M; andzjzjL M;- = 10, only two satisfy o
the condition. I\ — 1 < M. one can compute < (¢ — p) columns Of[H(z)fQI(ze _ )] Let us assume th&l4) andC5)
' q-—p 9=P) hold, and let{ M/}:2 ,witho < M{ <--- < Mj;,, denote the
Kronecker indices of’. Let us assume the following.

roa\lk;, C5) and (14) ensure that the rational spaces spanned
by the columns ofQ.(z) and of [H(z) H(zc"*™)], respec-
ively, are equal and, thus, thatz)Q.(z) = 0 if and only

linearly independent polynomials 6f- of degreel/ — 1; how-
ever, we no longer have any reasonable condition guaranteein . _
that the correspgonding mat?/icéshave full column ragk. * C6) The ratlon_al spacé_’ does not contain nonzero con-
In this section, we propose a new alternative approach that stant vectors, i.e., that its smallest Kronecker infiéxis
overcomes these drawbacks. We will look for polynomials NoNZzero. .
belonging to the dual space of a rational subspscstrictly Let NV be an integer such thaV > 2 3°% ) deg(hi(z)),
containing Spaf¥ (z)); on the other hand, we will not en-Whereh;(z) is thef_ith column ofH(z). Then, it is p055|bl_e to
counter limitations on the degrees of these polynomials. GAMPUte(g — 2p) linearly independent degre® polynomials

—2 1 _ —
the whole, we will get new alternate identifiability conditions;{gg\gz)}?=1p of 85 PutG(z) = [g{(2), ..., 9(1T—2p(?)]T =
which happen to be less severe than those of Theorem 1. >_;_o Gx2~*. Then, the(N + 1)(¢ — 2p) x ¢ matrix G =

Theideais as follows. The unknown constant tétgin 5(z)  [G3, ---, G]* has full column rank; thereforezy can be

can be eliminated by considering the difference of the functis@entified from (8).

S(z) at two different points. Our approach is based on the use Proof: The inequaliiesM’} ,, < Y7 M’} =

of the functionQ(z) = S(z) — S(z¢**™), whereaisagiven 377, M! < P (deg(hi(z)+ deg(hi(zeio™))) = 2
real number. This function does not dependienand can thus >-7_, deg(k;(%)) hold (the second inequality is strict because
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[H(2)H(z¢'*™)] is not column reduced). Therefore, the conwe are going to minimize a quadratic form built on the Gram-
diton N > 2 3P| deg(hi(z)) implies thatN > M’ , . mianTn(Qa)Tn(Qa)T of an empirical estimaté@n (Q,) of
Hence, it is possible to compute — 2p) linearly independent T (@, ). To avoid trivial solutions, some constraint should also
degreeN elements(gi(2), ..., g,—2,(2)) of &’+. Since we be introduced into this minimization problem.

assume thad/] > 0, the matrixg = [GE, ..., G%]* has full Now, remember that the rows 6#(z) are linearly indepen-
column rank (see Lemma 1). m dent (over the field of rational functions) if and only (=)

As we now see, this new approach needs less restrictive has full normal ranKq — 2p). Therefore, our constraint should
sumptions orf (z) than that exploiting the block Hankel matrixbe chosen to enforce this theoretical requirement. Sice
H. is a polynomial matrix, it has full normal row rarfly — 2p) if

Let us first notice that the conditioreg(%;(z)) = M forall and only if it has full row rank'q — 2p) for at least one value
t, RanKHp) = p, andM —1 > Mql_p of Theorem 1 are now z € {C* U occ}. On the other side, there exist basesSot
relaxed. that have full rank at infinity. For instance, minimal polynomial

On the other hand, Theorem 2 shows tRgican be identified bases are irreducible and thus verify this property. This means
from any basis of’+, provided thatC6) M/ > 1;itis thusin- that we can choose without restricti6¥{z) in such a way that
teresting to evaluate whether this new identifiability conditiofi’s = G(z = oo) has full row rank. Finally, we can assume
is restrictive or not. lfdeg(H(z)) = 1, one can easily verify without loss of generality that the rows of the— 2p) x ¢ ma-
thatS’ contains at leagi independent constant vectors. Consdrix G are orthogonal.
quently, this rational subspace admits at leestro Kronecker ~ The problem thus amounts to looking for the solution of the
indices, andC6) is never satisfied. Ifleg(H(2)) = 2, it can constrained optimization problem
be established th&6) is not satisfied if ranH; Hs]) # 2p, . . . .
which is rather restrictive. However, for degrees higher than two, | minimize trac< [Go, ey GN} (TN (QQ)TJE (Qa))
it can be shown that6) is not satisfied only for a few peculiar
transfer functiongZ (z) and, therefore, becomes a mild condi- e é T) (16)
tion. [ O e N}

These results meet our expectations. Since the approach re
lies on the identification oy from { R,, }1 <<, the fact that
identifiability becomes difficult to satisfy whef is small is for which a solution is presented in the Appendix.
somewhat intuitive. In other words, the dispersive character ofAs for the second step of the algorithm, we estimate the
the channel plays a major role here. missing covariance laB, using (8). Stated as a matrix equality,

Finally, it is interesting to notice that the identifiability con-this equation becomes
dition M > 1 remains valid in the case whe#é(z) is ra- Go
tional. The identification algorithm can be adapted to this case . i
without major difficulty. We have chosen to restrict ourselves to| 0
the polynomial case for sake of clarity. Gn

under the constraint ~ GoGE =1, o,

. é Ry
IV. PRACTICAL CONSIDERATIONS ) M+1 .

~

methods, based on Lemma 1, were proposed. However, some : Gy
work is still needed before we effectively get practical algo- _
rithms. These implementation problems are considered in this R R '
section. In the remainder of this paper, the algorithm deduced LGN-m G 0
from the method described in Sections IlI-A and B will bén which the first matrix of the left-hand side (resp.
referred to as “algorithm A” and “algorithm B,” respectively.of the right-hand side) iSN + 1)(¢ — 2p) x ¢ [resp.

We first begin with the implementation of algorithm B. TheN + 1)(q — 2p) x (2M + 1)q].

implementation of algorithm A will be treated at the end of this Of course, this system must be solved in the mean-square

In the preceding section, two constructive identification — _ Go 5 0 (17)

R_y

section. sense. At this point, it is interesting to make use of the Her-
The first step of algorithm B consists of finding, fof large mitian character of the auto-covariance function (i.e., enforce
enough, a degre® (g — 2p) x ¢ polynomial matrixG(z) = R_,; = R%,), as well as to constrain the solutidty to be a

S o, Grz~¥, the rows of which belong t6'* and are linearly Hermitian matrix; besides, this Hermitian charactetifwill

independent. In other words, we look for a polynomial basis afso be used in the identification algorithmi{ =) when it ap-

the rational subspacg/ L. pears later in (19). Hence, instead of solving (17), we solve the
Let us first notice tha€(z)[H (2)H (zc¢'*™)] = 0ifand only ~ system deduced from (17) by vectorizing tg + 1)/2 un-

if [Go---Gn]Tn(Qn) = 0, whereT(Q,) is defined in (15). known entries ofizy, and modify the left-hand and right-hand

Therefore, it is obvious that the subspace where the rows of gide matrices accordingly (this equation is easy to write and,

(¢ — 2p) X (N 4+ 1)¢ matrix [Gy, ..., Gy] must be looked thus, is omitted here for lack of space).

for is the left kernel of thé N + 1)g x (2M + N + 1)q gen- The purpose of the third step is to identii( z) up to an or-

eralized Sylvester matri¥y (Q,,). In practice, this means thatthogonal matrix fromz, and from(}?n)nzL . M- Thiscan be
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performed by any blind second-order MIMO identification tech : : : : : :
nique that is available for the noiseless case. Now, for simulatic ,g... .. .... e, S SRR NS
purposes, we considered the version of the MIMO linear pre
diction technique presented in [11] and based on a least squ o&f pe pe R D
estimate ofH (). ' ' ' ‘ '

A brief outline of this method is given here for convenience : :
We begin by assuming th&f (=) is irreducible and columnre- ol .\ e
duced. Consequently, the degrees of the columd$(@f) coin- = : :
cide with the Kronecker indice§M;}¥_, of the rational sub-  °5r
space spanned by its columns. The MIMO linear predlcno
technique relies on the following result. On the one hand, tt ° : ; : : :
process;” described in (1) is a moving average process; onth gsL ...\ R o T R
other hand, it is known that for anf{’ > >-*_ M, there ex- ; : ' “ '
ists ag x ¢ polynomial matrixA(z) = I, + Yo, Az that ~ °2
satisfies

07k e

-o- SMN=10dB

-x- SN=5dB

] f f
500 1000 1500 2000 2500 3000
Number of samples

0.1
0

[A(2)]yy, = Hosn. (18)

Fig. 1. Noise covariance matrixZ) estimation.

This means thaj® is also finite-order autoregressive and that its
innovation process ifys,. Now, letD = HOHOT be the covari-
ance matrix of the innovation, and Bty = T (H)T7-(H) be
theq(K + 1) x g(K + 1) covariance matrix associated wi}i. 045
Then, the matricest = [A4, ..., Ax] andD are given by the

0.5

multivariate Yule-Walker equatiofl,, A|Rx = [D, 0]. The  *[
so-called minimum norm solution of this equation is 05k : ;
X \\ : . —~+ Algorithm A, HM rark deficient
- AY : M
A=—-1rR5_|, D = Ry + ArT (19) sk Y\ | T Moorthm, by rank deficlent |

) ) = \\ \f : -0~ Algorithm B, H,, full rank

where ()= stands for the Moore—Penrose pseudo-inverse, al ozs\\\ ..... 1 e Aot A .l cank
. . e . . DN : - d

r = [Ry, ..., Rk]. Note that in practice, it is important in ; : "

these kinds of methods to estimate the dimension of the “sigr %2
subspace” (i.e., the rank @ 1) properly. We have chosen
to estimate this dimension asgmin(A;11/A;), where{};} is
the set of eigenvalues Ry arranged in decreasing order. 01
We still need to compute the unknown transfer functibgx)

0.15F

from A and D. This can be done only up to sompex p con-  *%% 500 7000 - b;s'?o | 2000 s 3000
. . . “ . lumber of samples

stant orthogonal matrix, and as is well known, this final in- °

determinacy cannot be removed by using second-order tech- Fig. 2. Effect of RankiT ) on the estimation oF.

niques only. Therefore, Ity F{ be a factorization of the posi-

tive semi-definite matrixD. Then, Iy is related toHy by Fy = . 11 iahted | . d. In thi
H,U for some orthogona x p matrix /. From (1) and (18) in [11], a weighted least square estimate was proposed. In this

we haved(z)H(z) = Ho, and thus A(z)F(z) = F, Where’ paper, we just consider the standard plain least square estimate.

F(z) = 24_0 Foz=* = H(2)U. In other words, the coeffi- Let us now summarize the discussion. The whole identifica-
cientsky, F1, ..., Iy are the unique solutions of the equatloﬁIon procedure consists of the following steps.
1) Compute{Q¢ = (1 — e~ R, }M whereR, is an
[ 1 0 7 empirical estimate ofzy,.
A rEp ComputeTN(Qa) (for NV large enough) given in (15),
L r 0 and solve (16) to obta|ﬁ¥( ).
I 0 2) ComputeR, from G(z). )
1 B : 3) Build the estimated covariance matf, and estimate
Ay o (20) AandD as in (19).
A : : 4) Compute a x p matrix Fy satisfyingfoFZ = D.
K ' Fy 5) Finally, estimateH (=) (up to ap x p orthogonal matrix)
: L 0 | by solving (20) in the least-squares sense (of cousse,
0 1 and F; have to be replaced by their estimates).
L K

Finally, let us sketch the implementation of algorithm A.
in which the first matrix of the left-hand side (¥ + M + From (13), we see that the rows gfnow belong to the left
1)gx (M +1)q, and its solution in the least-squares sense givegarnel of theMq x 2Mq matrix @ = [JHH!], and all
consistent estimate @& (=) (see [11] for more details). Note thatthe discussion above can be adapted immediately. The only
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difference is that the first step is now replaced by the solutic ° "%
of the minimization problem
minimize trace( [éo, o CA?M,J ( AQAT)
. |:CA;'07 e é]\4_1:| T) (21) =+= S/ =5 dB, LP with WN assumption
s Tae - DGt T
A w AN : -o- SN=5d8B
under the constraint GoGE =1, , SRS N x- SN=10dB :
) RN O R — o
whereQ represents a consistent estimatebf AR \Q f _
Py TR E O RN TR S
V. EXPERIMENTAL RESULTS e ST v
: : T~ e~ T o :
In this section, some numerical simulations are performe 2~ o e e R SNt
on algorithms A and B. Two channel models are used. Tt : : : : : :
first model is used to illustrate the theoretical results of th ®'s 50 7000 7500 200 250 3000
preceding sections. The second model is more suited to tne umberclsamplss
digital communications context, which is one possible appli- Fig. 3. Transfer function estimation (algorithm A).
cation. In both models, the number of sourgeis equalto 2,
and that of the sensorgis equal to 7. In addition, the covari- : '
ance matrix of the noise process is choseXas [;;], with : : : : : :
sis = ()9 /(1 — u2) (it is thus & “stationary spatial AR *7f b T SR
process of order 1"). The paramejers chosen equal t0.9. -
0,5[_. . “.,___ ._.;.._.‘.%._._ ____+_____+_____+____—*
A. Simulations ; ;
. . . . . (Y] SPRTROIRRPR e L -+ S/N = 5dB, LP with WN assumption
The first model is used in the first three experiments. We s o g g 5 SN =108, LP with WN assumption
M = 4, and thegp(M + 1) = 70 unknown entries i (z) =~ N o SN=5d8 ;
> +_, Hyxz~* are chosen randomly, under a zero-mean uni i N T - SN=1008
variance Gaussian probability law. When needed (i.e., in tt oL T ; :
second and third experiments), we fotHe, to be rank defi-  °2
cient by setting its last column to zero; otherwigg,; generi-
cally has full column rank. The parameteiof Section I11-B is o2
chosen equal to 1. The reason why is that in the expression ; ; ;
()1(z), all the covariance lagR; with even indices: are can- o1 i i i i j

I
500 1000 1500 2000 2500 3000

celed. Therefore, these terms need not be estimated. Number of samples
Last, in each of the three experiments show later, our results Fig. 4. Transfer function estimation (algorithm B).

for a given channel are averaged over 50 runs; then, these results

are averaged over 20 channels.
In the first e>_<per|m_ent, we compute as Ry — Fo. Fig. 1 cansitive to the rank ),

shows the relative estimation ermpe= ||X—X| s/ [IZl| s (I*  The third experiment measures, for both algorithms, a relative

|| o denotes the Frobenius norm) versus the samples block SIvd onﬁI( )

) ) ) o =) after the whole identification process described in
for signal-to-noise ratios equal to 5 and 10 dB. This is & g0 ion |V has been performed. This experiment thus combines
measure of the performance of the estimiageof k.

Note that 4, thex: identification procedure, which is specific to this

this relative error is lower for the noise having the largest pow%éper, and the effect of the linear prediction algorithm, followed

this property is shown here for algorithm B only but, indeed, i ' |oa5t-squares identification. SinB z) can be identified
shared by both algorithms. It might be justified intuitively byonly up to ap x p arbitrary orthogonal matrix, the error criterion
the following observation. Le§¥(z) = H(z)H"(z ') + X. 0 choose is

Then, from (6), th&:-identification equation can also be written
G(2)5¥(z) = G(2)Z; consequently, estimation errors 6fz) 2
affect more sensitively the estimation ¥fwhen: is a matrix /
with small norm. E= |2 5=
In the second experiment, we visualize the effect of the rank / 1S (e)|13,., dw
of H,, on the identification of2. Remember that algorithm A 0
relies heavily on the assumption thidh, has full column rank R 2
but that algorithm B does not exploit this property. Fig. 2 also Z HRk - R;EF)‘ j
exhibits values of the relative estimation erroAs we can see, — | _* fro (22)
algorithm A performs slightly better than algorithm B if the full ZHRk ||fc7,o
rank assumption of ,, is satisfied; if not, it does not converge. k

On the other hand, simulations show that algorithm B is nearly

N . 2
S(C“") _ S(F)(Czw) o

dw
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whereS () (z) = F(2)FT(zY) =%, R »*istheco- °*[ T~ T+~ T = T
variance function deduced from the estimated transfer functic 5 5 5 5 f 3 : 5
F(Z) 05
Fig. 3 (resp. Fig. 4) visualize$ as a function of the sam-
ples block size in the case of algorithm A wittiy; having o4~
full column-rank (resp. algorithm B witlt/ 3, rank deficient). : : 5 : 5 ; 5 :
The error is compared with that obtained with the help of = oaf i Nrb bbb
“classical” linear prediction algorithm, i.e., an algorithm that as=
sumes (wrongly) that = o21,. As has been said in the intro- oss
duction, we begin in this classical algorithm by identifyitng
as the smallest eigenvalue of the covariance m&r{x given asf-
in (4); it is obvious that the estimates obtained with such an &
gorithm do not converge to the exact solution. Indeed, we ha
observed that the benefit of our algorithms becomes clearer a
clearer ag departs froms21.

0.2 1 1 1 1 i 1 i 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

As for the second model, we simulate a linear narrowbar Number of samples
array of sensors equispaced by a quarter of a wavelength. Both
sources transmit a BPSK i.i.d. digital sequence shaped by a Fig. 5. Noise covariance matr{:) estimation.

raised cosine filter with a roll-off factor of 0.2. In our simula-

tions, the impulse response of this filter is truncated to its ma °°
lobe. Signals from each source impinge on the array along
paths. For each path, the angle of arrival is a uniformly dit
tributed variable in the randé; ], the amplitude is zero-mean : ; : : : : : ;
Unit-Variance GaUSSian, and the delay iS Uniformly diStribUtE [ Y] SR .......... ..........
between zero and four times the symbol period. Let us wri "
H(z) as[hi(z) ha(2)]. As the received signal is sampled al osf- R o T LR win W sesumption
symbol rate, the maximum value of the transfer function degre ; 5 o P ator algorm 5 5
is alsoM = 4 here. This model does not generically guarante oasf---- - T P

07k s R P SR

for algorithm B only because algorithm A no longer provide:
consistent estimates. Here, = 0.8. Our results for a given . - - . : - -
channel are averaged over 40 runs; then, these results are ~© 1 200 300 4000 8000 - G0 7000 800 9000
eraged over ten channels.

The curve of Fig. 5 measures the quality of the estimation of Fig. 6. Transfer function estimation.
3. It depictsy for S/N = 5 dB. Fig. 6 showg for S/N =5
dB as well. We have observed that under realistic conditions, the modeled a®y = Ro + oI without a great error. There-
algorithm behaves well in rather adverse conditions (i.e., for lofgre, in practice, the method is useful at low SNR and when
SNRs) but degrades if the SNR increases. This is becauserf@ves away from a multiple of the identity matrix. If the SNR is
low SNR, the central covariance lagf of the received signal high, then estimating consistently is not so important, and in-
is very different from that of the useful signal, whereas if thgeed, in this case, a classical subspace algorithm, i.e., one which
noise is weak, estimating properly becomes difficult, and oneassumes that the noise is spatially white, would be more conve-
should make the approximatioh = o21. nient.

o This is the reason why a large number of samples is required

B. Applicability of the Method to estimate the channel properly. Our algorithms need a larger

Let us now make some comments on these results. In thismber of samples than those that are usually considered in
paper, we considered the general problem of second-order blatber related works [8]-[16]. In particular, in all experiments,
identification of a system corrupted by a noise, the covarianoeasonable results are obtained if the number of samples ex-
matrix > of which is totally unknown. Since there was ao ceeds 1000 (even more in the second model). This shows that
priori assumption ort, we were led to ignore the central co-our results are not applicable in the context of highly mobile
variance lagj. Therefore, we tried to identify the channel froncooperative systems. However, they can be useful in military ap-
the lags{ Rx }1~0 by relying on the convolutive nature of theplications such as passive listening, in which it is necessary to
channel only. extract the symbols transmitted by an unknown emitter. In this

Now, from a practical point of view, the price to pay for dropease, the receiver has, of course, no knowledge of any training
ping R} is, of course, a severe loss in performance. In fact, tisequence, and the identification of the channel has to be per-
proposed algorithms are pertinent whgf) = Ry + ¥ cannot formed blindly.

the full-column rank condition of, and H; needed by algo- a : 5 : : : : :
rithm A. Suppose, for instance, that for(2), all path delays are  gsf...... "8 <o, EERE RO SR S
less than three times the symbol period. Thim(h1(2)) = 3, A § : : :
and Hy is obviously rank deficient. Simulations are performec | . S S ?fj Titese-o. -~~—-o-

. . : . : LI
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VI. CONCLUSION We still need to specify the two matricé, andg; . Injecting

In this paper, we proposed a new subspace-based appro&%@, into (23), we see that the quantity to minimize is
based on second-order statistics, for identifying a discrete-time
noisy MIMO channel up to a constant orthogonal matrix.
Due to the specific assumptions on the noise, the problem h/@s__ trace| [Ko o1 ]
been formulated as the identification of the unknown filter
H(z) from the truncated auto-covariance seque(Bg),o

associated with the spectral densiyz) = H(2)HT (z71). AV2UTAATUAY? A 20T AATY
The method consists of identifyin, from (R, ),0; onceRy Do Dos

has been identified, the subsequent retrievali¢t) from the : T 4 AT77A—1/2 T T

full auto-covariance sequence can be performed by a variety wVUA_/ Lw
of classical methods and, for example, by the linear prediction D10 D1y
approach. Our approach consists of identifyiitg directly

from certainl x ¢ polynomialsg(z) satisfyingg(z)H(z) = 0 K§

and, thus, naturally fits in the field of rational subspaces. A ' T

general identification lemma is provided in this framework. In

practice, computing the flltg@(z) can be done either from the  _ tracd KoDooKZ + ¢ Do KT

block Hankel matrix associated with the seque(gg),,>1 or - -

from a function such a§(z) — S(z¢**~), which requires fewer + KoDoi¢y + d1Diigy). (26)
restrictive assumptions oH (). Finally, practical implemen-

tation considerations are addressed, and both algorithms & will minimize (26) with respect tg, for a givenK,. The
tested via numerical simulations. proper framework for performing this minimization is the inner-

product space of x (I — rp) matrices, endowed with the inner
product{ X, Y) = tracé X7'Y"). The gradient of¢ with respect
to ¢1 is given byVy, x = 2¢1 D11 + 2K Dy . It is then clear
o _that a minimizer ofy is given byV, x = 0. From the defini-
The minimization problems (16) and (21) are two particulafons of D;, andD,;, we see that

cases of the following problem. Let and B be two matrices

sharing the same number of rows=ind a matrixp of dimen- g -4\ — Spaf DL ) C SparfD::) = SparfVL A) (27
sionsr x I, wherer < rp = rankB), which satisfies simulta- partDio) partDo,) & SpariDiy) part ) @7)

APPENDIX
SOLUTION OF THE CONSTRAINED MINIMIZATION PROBLEM

neously where Spaf) stands for the range space; therefore, the equation
def T TN i e V4, x = 0is consistent and, thus, always has solutions. These
x = tracdpAA” ¢ ) is minimum (23) gre given by
and .
¢1 = —KoDo1 D7, +W (28)
¢pBBY ¢ =1,.. (24)

WhereD]i]L denotes the Moore—Penrose pseudo inverde; of
For instance, in (16)4 = Tx(Q), B = [I,, 0, ..., 0%, ¢ = andW is any matrix belonging to K&D1) [29], [30].
[Go, ..., Gy, 1 = g(N + 1), andr = q — 2p. Let us now minimizey with respect taky, taking into ac-
We begin with parameterizing the constraint (24). Let ~ count the constraink,Kg' = I,.. PluggingV,, x = 0 into
(26), the expression to be minimized is now trigd€o(Doo —
A ur Do D% D1o)+W Do YKT). From (27), we have K&D; ) C
o| VT Ker’(Dlo), and thus}W D,y = 0; since the choice ofV is ir-

) i relevant, we can choose the “minimum norm” solutiéh =
be an orthogonal eigenvalue decomposition of the symmetyjG, (2g) et us now consider the Schur complement matrix

semi-definite positive matri8B7 . In this decomposition is D,. = Doy — Doy D%, Dig. It can be shown easily thad, .
a diagonal matrix with real positive entries, the maftixV]is s symmetric semi-definite positive. Therefore, due to a clas-
orthogonal, and, U, andV’ are of dimensionsp X 15, X 75,  gjca| result, the matrid, that minimizes tracgio D, K1) is
and! x (I —rg), respectively. AU V] is a regular matrix, it opyained by arranging the eigenvectors corresponding to the

i i _ T
is always possible to set = [¢g ¢1][U V]", wherego and  gpqjiest eigenvalues db... In summary, the procedure is as
¢, are partitioned in conformity with/ andV. Let A*/2 be the follows.

diagonal square-root ¢f with positive diagonal entries, and let
A2 = (AY/2)~1, Plugging this expression into (24),is a
solution of (24) if and only if

BB =[U V]

» Perform an orthogonal eigenvalue decomposition (EVD)
of BBT to deducd/, V andA.
» Compute the matriceBq, Do1, andDy; defined in (26).
¢ = KoA~Y2UT + V7 (25) » Compute an orthogonal E}/D dd,., and deducey.
+ Computep; = —KyDgy; Dj;; the solution is then given
for somer x rg matrix K, satisfyingKoKZ = I,.. by ¢ = KoA~1/2UT + V7.
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