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MIMO Channel Blind Identification in the
Presence of Spatially Correlated Noise

Walid Hachem, Member, IEEE, François Desbouvries, Member, IEEE, and Philippe Loubaton, Member, IEEE

Abstract—We address the problem of the second-order blind
identification of a multiple-input multiple-output (MIMO)
transfer function in the presence of additive noise. The additive
noise is assumed to be (temporally) white, i.e., uncorrelated in
time, but we do not make any assumption on its spatial correla-
tion. This problem is thus equivalent to the second-order blind
identification of a MIMO transfer function in the noiseless case
but from a partial auto-covariance function =0. Our
approach consists of computing the missing central covariance
coefficient 0 from this partial auto-covariance sequence. It can
be described simply within the algebraic framework of rational
subspaces. We propose an identifiability result that requires
very mild assumptions on the transfer function to be estimated.
Practical subspace-based identification algorithms are deduced
and tested via simulations.

Index Terms—Colored noise, MIMO blind identification,
rational spaces, stochastic realization.

I. INTRODUCTION

I N DIGITAL communications, channel equalization/identifi-
cation techniques are called “blind” when they do not require

the use of a training sequence, i.e., a sequence of symbols known
by the receiver and used to update the equalizer. This feature
may be of interest, even in a cooperative transmission frame-
work: When the channel impulse response varies with time, as
in microwave data transmissions, a training sequence is usually
sent periodically. Suppressing this sequence increases the effec-
tive data rate.

A number of papers in the early 1990s have given a large
impetus for the research of blind identification algorithms based
on second-order statistics; see, for instance, the recent survey
papers [1] and [2] and books [3] and [4], as well as the refer-
ences therein. When the received signal is sampled at symbol
rate, the resulting channel model, in general, is nonminimum
phase. It thus came as a breakthrough that blind identification
couldindeed be achieved by second-order techniques [5]. In the
early algorithms of [5]–[7], the ambiguity about the position
of the zeroes of the channel with respect to the unit circle is
removed by introducing specific redundancy into the data.
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More precisely, the received signal is first oversampled, as in
a fractionally spaced equalizer. The resulting cyclostationary
signal, when vectorized appropriately, becomes multidimen-
sional stationary. Under appropriate conditions, which indeed
mean that a sufficient amount of diversity has been introduced,
the (vector) channel becomes minimum phase, and the problem
can be solved by second-order techniques.

The signal model used in the framework of second-order
blind identification is thus, by essence, a multidimensional
model. Later on, these ideas were generalized to the multi-input
case (see, e.g., [8]–[16]). The noiseless transmission model is
then, using the so-called operator notation

(1)

where is a zero-mean -dimensional vector process such
that , which represents the sequences
of symbols emitted by sources sharing the same period;

is a transfer function representing
the channel; and is the received signal. The parameter

is always supposed strictly greater than. As stated above,
this model accounts for oversampling the received signal at
a multiple of the symbol period, or receiving the signal on
an array of sensors (with more sensors than sources), or a
combination of both.

Usually, the channel transfer function is modeled as FIR. We
denote its degree by : . is as-
sumed to be irreducible, which means that its rank is equal to
for all and for (see, e.g., [9], [13], and [17]). Irre-
ducibility is a “generic” property, as soon as . An imme-
diate consequence is that can theoretically be recovered up
to a constant orthogonal matrix from the sole knowledge of
the covariance function of by using a linear prediction algo-
rithm (see, e.g., [11], [13], and [14]). In this paper, we will use a
linear prediction algorithm as part of our identification method.

Let us now consider the more realistic case of a noisy model.

(2)

We suppose here that is an additive -dimensional white
noise [i.e., if ] uncorrelated with .
Let . Most existing identification algorithms
based on second-order statistics consider the case where

, where is an unknown scalar parameter (see [9]–[11],
[13], [14], and [16]). One can identify from the covariance
matrix of the vector , provided the
parameter is chosen “large enough.” To show this, let
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denote the generalized Sylvester
matrix associated with

...
... (3)

Then, it is clear that ,
in which and

. The covariance matrix of is
thus equal to

(4)

Since , one can choose such that
. If this holds, then is a singular matrix

so that is identified as the smallest eigenvalue of , which
essentially leads us back to the noiseless case.

Let us now discuss the hypotheses on the additive noise. The
fact that is a white noise is a reasonable assumption, but the
assumption that may be restrictive in certain contexts.
Very often, represents the signal sampled behind a sensor
array. If is a thermal noise that stems from the acquisition de-
vices of sensors with hardware nonidealities, or if the prevailing
noise is ambient noise and the sensor array is sparse, then the
noise components are likely to be decorrelated but their vari-
ances do not necessarily coincide [18]. As another example, the
noise in underwater acoustics is the sum of ambient sea noise,
flow noise, and traffic noise and may thus be spatially correlated
[19], [20]. This is also the case in radio frequency communica-
tions when ambient noise is the dominant noise source, such as
communications in the HF or VHF frequency bands [21].

Contributions [18], [20], and [21] address the problem of
blind identification of an unknown channel in the presence of
additive colored noise. In these approaches, an instantaneous
mixture model [i.e., ] is assumed, and some model
for the noise covariance matrix is required since these methods
actually rely on a pertinent exploitation of the underlying struc-
ture.

In this paper, we are going to show thatin the case where no
a priori information on is available, it is possible, under cer-
tain conditions, to identify a convolutive mixture [i.e.,

with ] (up to a orthogonal matrix)
from the second-order statistics of.

This problem was first introduced in [22] in the case .
There, it was shown that the unknown transfer function

is not necessarily identifiable. In case of identifiability, an
identification procedure based on the classical stochastic real-
ization theory was proposed. However, it is based on a difficult
nonconvex optimization problem for which no satisfying solu-
tion was proposed. Later on, it was shown in [23] (still in the
case ) that the SIMO FIR subspace identification method,
which was introduced in [6] for , could be generalized
to the case where is unknown if . The case was
first considered in [24] in the polynomial case, and some results
are available in the rational case [25]. Finally, the algorithm of
[26], based on state space models, gives a solution in the case

.

The results of [24] hold under restrictive assumptions on the
transfer function to be identified [in particular, the degrees of
the columns of must coincide]. In this paper, we propose
a new approach that provides satisfying identifiability results
without making any strong assumption on . The paper is
organized as follows. Section II outlines the general method-
ology. Since we will use the notion of rational spaces, the nec-
essary tools are also briefly recalled for convenience of the non-
expert reader. A general theoretical identifiability result is then
given and formulated in terms of rational subspaces. In Sec-
tion III, we first show that the results of [24] follow from our
identifiability result. More importantly, we take benefit of it to
introduce and motivate our new approach. Practical algorithms
implementing the results of [24] ([24] contains no algorithm) as
well as our new method are detailed in Section IV. Finally, some
Monte Carlo simulations are given in Section V and followed by
comments on the applicability of these methods.

II. OUTLINE OF THE METHOD

A. Problem Statement and General Methodology

Let us get back to the model (2), where is irreducible.
We assume from now on that , where is
unknown. Therefore, (4) becomes

(5)

where denotes the Kronecker product. As a consequence, the
eigenvalue considerations of Section I no longer hold.

Let us denote by and by the auto-covari-
ance lags of the useful signal and of , respectively.
As is assumed to be white and is a degree polyno-
mial, it is clear that , for ,
and for . In particular, contains little
information on ; therefore, this term will simply be ignored
(simulations will show that this indeed is pertinent at low SNR).

We will thus try to identify from the lags by
relying on the convolutive nature of the channel only. We thus
reformulate our problem as follows.

Let be a irreducible FIR transfer
function, and let be the auto-covariance sequence associ-
ated with the “spectral density” .
Set reasonable hypotheses under which is identifiable
(up to a orthogonal matrix) from the partial sequence

, and deduce constructive identification algo-
rithms.

We proceed by solving a completion problem. The
general idea is as follows. Even though we do not know

, we do not deal with just any wide-sense stationary
vector process but with the noiseless MA model (1).
Since Rank for all , this information
can be exploited efficiently via the structural equation

. This equation
provides an implicit relation among the covariance lags

, which, in turn, enables (under certain sufficient
conditions) recovery of the central lag from . Last,
once is known, can be retrieved from
via any stochastic realization algorithm and, thus, for instance,
by using the popular so-called linear prediction algorithm,
which can be used here because of the irreducibility assump-
tion.
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Let us now outline our method. Our results are based on the
following observation. Since , there exist polyno-
mials of degree satisfying

for all (6)

or, equivalently, satisfying for all .
Let us assume that we can compute a set ofsuch polynomials

, and let be the matrix

(7)

(the parameters and will be specified later). Put
, where is supposed to be

known. Since , it is clear that

(8)

Identifying on both sides the coefficient of for
and setting

(9)

we see that we can compute the matrix from the data. If
has full column rank, can be retrieved from (8), and finally,

is identifiable from the full sequence .
Our method is, thus, twofold. It relies on the actual possi-

bility of computing from polynomials satisfying
(6), but on the other hand, these polynomials should be “in suf-
ficient number” and their degrees “sufficiently high.” This is
because the critical point is thatmust have full column rank;
intuitively, this is all the more likely to happen thatcontains a
large number of rows; therefore, the parametersand (which
have not been determined for the moment) should be “large.”
This indeed will be confirmed later on by the identification the-
orems.

The properties of these polynomials (and particularly their
degrees) naturally fit into the framework of rational spaces, i.e.,
of spaces of rational vectors over the field of rational functions.
Consequently, we first recall some general results on this subject
that will prove of importance to our problem. For a detailed
study, see [27] and [28].

B. Brief Review of Rational Subspaces

Let us first recall that the set of all rational
transfer functions is a-dimensional subspace over the field

of all scalar rational transfer functions. Let be a
-dimensional (with ) subspace of . admits bases

characterized by the fact that
Rank for almost all . The rational matrix-valued
function is then said to have a normal rank equal to.

admits, in particular, polynomial bases. One way of
building polynomial bases is as follows. Among all polyno-
mials belonging to , choose a polynomial of minimum
degree. Then, among all the remaining polynomials in,
choose a polynomial that is linearly independent with

and of minimum degree. Doing this, we get a so-called
minimal polynomial basis . Minimal polynomial
bases are characterized by the well-known criterion [27], [28]
in the following.

Proposition 1: The polynomial basis is minimal
if and only if the matrix polynomial
is irreducible and column reduced.

Of course, there are many different minimal polynomial bases
that can be obtained by the above procedure. However, an in-
teresting feature is that all minimal polynomial bases share the
same degrees . Usually, these minimal
degrees are called the Kronecker indices associated
with .

The dual space of is the -dimensional subspace of
all rational transfer functions satisfying
for all . The Kronecker indices of are the
so-called dual Kronecker indices of. They satisfy the impor-
tant equality

(10)

C. Identifiability Result Based on Rational Subspaces

We now turn back to our problem and make things more pre-
cise. In particular, we will derive a simple identification lemma
that will be used in two different ways in Section III.

Let us first trivially remark that a polynomial satisfying
(6) belongs to the dual of some rational space enclosing (but not
necessarily equal to) the rational space Span generated
by the columns of . Therefore, let be some fixed rational
space such that Span , and let dim . By as-
sumption, is irreducible (see the problem formulation in
Section II-A), and thus, it has full (normal) rank; therefore,
dim Span . We thus have . Let de-
note the dual space of. In addition, let
(respectively, ) denote the Kronecker
indices of (respectively, the dual Kronecker indices of) ar-
ranged in increasing order.

Now, assume that we have at hand some algorithm for com-
puting the set made of all polynomials of but of degree
lower than or equal to . Then, one should stack in the matrix

defined by (7) “as many” polynomials of
as possible; however, only polynomials that are linearly inde-
pendent over the field should be considered. To see this,
let be a set of polynomials of that are linearly
independent over , and let .
Then, adding a st row to is useless [as re-
gards the rank of the matrix defined by (9)] if this polynomial

belongs to the rational space spanned by .
In this case, it is easily seen that the rows brought by

to the matrix are linear combinations of the
previous ones.

The maximumusefulvalue for , which is considered to be
a function of , is thus equal to the dimension of the
rational subspace of generated by the set , but this di-
mension depends on the position ofwith respect to the dual
Kronecker indices of . If ,
then the equation for all holds if and
only if for all . Therefore, is the null ma-
trix. If , then is easily seen to be
equal to . Last, if , then one can
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extract from a set of polynomials forming a basis
of ; therefore, . This, of course, is the most
favorable situation. Therefore, it is desirable to have an algo-
rithm for computing, from the sequence , the set
for . If this holds, can be identified
from (8) under a simple additional condition, as we now see.

Lemma 1: Let Span denote the rational subspace
spanned by the columns of , and let be some ra-
tional subspace such that Span . Let denote
the dimension of , and let and

be its Kronecker and dual Kronecker
indices, respectively. Let be the set of all polynomials of

of degree lower than or equal to. Assume that we have
an algorithm for computing for .
If , then is identifiable from the sequence .

Proof: As , it is possible to extract from a
set of polynomials forming a basis
of . Let
be the corresponding polynomial matrix.
Then, satisfies (8). Let us now consider the matrix

associated with . Let be a -di-
mensional constant vector satisfying or, equivalently,

for all . This condition holds if and only if the
constant polynomial belongs to the dual space of ,
i.e., to . On the other hand, the assumption means
that does not contain nonzero constant vectors, and thus,

. Therefore, is a full column rank matrix, and can
be identified from (8), as expected.

In the next section, we are going to propose two algorithms
for computing (for large enough) the sets associated with
two different rational subspacescontaining Span . For
the first algorithm, the space coincides with Span it-
self, whereas for the second, it is no longer the case.

III. SUBSPACE-BASED METHODS

In this section, we will state the principle of two algorithms
for computing from ; both of them are practical ap-
plications of Lemma 1.

A. Making Use of the Block–Hankel Matrix Associated to the
Sequence

In Section II, we considered a-dimensional (with ) ra-
tional subspace enclosing (but not necessarily equal to) the ra-
tional subspace Span generated by the columns of .
Now, the most natural choice for is, of course, Span
itself. This choice was implicitly adopted in a method proposed
in [24]. However, in order to compute the space for large
enough, it is based on rather strong assumptions on . In
order to better appreciate the content of Section III-B, we now
briefly reformulate the method proposed in [24] in the light of
the preceding results.

Let us assume the following.

• C1) The columns of all share the same degree
.

• C2) is irreducible, i.e., Rank for all
, including .

• C3) is column reduced, i.e., Rank , be-
cause ofC1).

From C2) and C3), the columns of form a minimal
polynomial basis of the subspace Span , due to
Proposition 1. Thus, the Kronecker indices of are
all equal to , and consequently, the identifiability condition
of Lemma 1 (i.e., ) is, of course, satisfied.

Of course, according to that same lemma, we still have to ex-
tract the set for . However, the method proposed
in [24] enables the computation of the set of all polynomials sat-
isfying (6) andof degree lower or equal to , i.e., ;
therefore, the identification scheme of [24] is successful pro-
vided . As for size conditions, it is useful to
notice that (10) reads so
that the condition implies, in particular, that

.
Let us explain how we compute the polynomials of of

degree . Note that the assumption im-
plies in particular that ; therefore, this subset is
not trivially reduced to (see the discussion in Section II-C).
The method is as follows. Let be the block Hankel
matrix given by

... ..
. (11)

can be factored as

... ..
. ...

. . .

(12)

where and are matrices. Since and
have full column rank, it is clear that and also have full
column rank . Therefore, the rank of is also equal to

. Let be the -block exchange matrix: ,
where denotes the Kronecker product, and

. It is easy to check that a -dimensional
row vector (in which each is -dimen-
sional) satisfies

and (13)

if and only if . Therefore, Ker
Ker Ker Ker (Ker stands for the
left kernel). Let be the de-
gree polynomial associated with. Then, it is easily seen that

if and only if for all . There-
fore, there is a one-to-one correspondence between the space
Ker Ker and the set of all polynomials of
degree less than or equal to belonging to .

Let us summarize the discussion thus far into the following
theorem.

Theorem 1: Let be a polyno-
mial. Assume thatC1) toC3)hold. Let Span denote
the -dimensional rational subspace spanned by the columns of
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, and let , with , de-
note the dual Kronecker indices of. Let , s.t.
deg and . Assume that

[which, in particular, implies that ].
Then, it possible to compute and to extract from

linearly independent polynomials .

Put . We
have , and the matrix
has full column rank. Therefore, the matrix can be identified
from (8).

The considerations exposed in this section are construc-
tive since they form the material that will be used later on
for building an algorithm for identifying . However, the
practical implementation is not straightforward, and more
work is needed. For sake of clarity, the necessary discussion is
postponed to Section IV.

B. Alternate Rational Subspace Method

ConditionsC1)andC3) require that is a full column rank
matrix. This assumption is often quite restrictive. Consider, for
instance, a microwave multiple path transmission, and suppose
that the symbol shaping filters are FIR. Element of
is the channel that conveys information from sourceto sensor
. Its impulse response is often modeled as a finite sum of atten-

uated and time-delayed versions of the impulse response of the
shaping filter. As a consequence, the degree of is related
in a straightforward manner to the maximum delay of all paths
between sourceand sensor. These delays might be distributed
in such a way that two different columns of , which repre-
sent the vector transfer functions associated with two different
sources, do not have the same degree. As a matter of fact, the
transmission media between these sources and the sensor array
might have different physical properties.

Furthermore, underC1), the approach of Section III-A en-
ables computation of polynomials belonging to the dual of the
subspace Span but of degrees bounded by .
On the other hand, the approach requires that .
This additional condition is difficult to interpret and can also be
restrictive. Consider, for example, the case where , ,
and . Among the 14 triples satisfying

and , only two satisfy
the condition. If , one can compute
linearly independent polynomials of of degree ; how-
ever, we no longer have any reasonable condition guaranteeing
that the corresponding matriceshave full column rank.

In this section, we propose a new alternative approach that
overcomes these drawbacks. We will look for polynomials
belonging to the dual space of a rational subspacestrictly
containing Span ; on the other hand, we will not en-
counter limitations on the degrees of these polynomials. On
the whole, we will get new alternate identifiability conditions,
which happen to be less severe than those of Theorem 1.

The idea is as follows. The unknown constant termin
can be eliminated by considering the difference of the function

at two different points. Our approach is based on the use
of the function , where is a given
real number. This function does not depend onand can thus

be computed from the data. From , we
have

(14)

In all this section, we will still assume that is irreducible
(see the problem formulation in Section II-A). We will also as-
sume the following.

• C4) .
• C5) Normal Rank .

Let us denote here by the rational subspace generated by the
columns of and by its dual space. The
space , of course, contains Span . Due to assumption
C5), (respectively, ) has dimension (respectively,

). The Kronecker indices of are denoted by , with
, and those of by , with

.
Let us get into the derivation. Since is known, one can

extract for each the set of all degree polynomials
satisfying for all ; this

is because if and only if the row
vector belongs to the left kernel of theknown

generalized Sylvester matrix
associated with

...
... (15)

Now, C5) and (14) ensure that the rational spaces spanned
by the columns of and of , respec-
tively, are equal and, thus, that if and only
if . This, in turn, implies that

for all . Therefore, using the function
enables extraction of polynomials of of degree for all

. The following theorem is a consequence of Lemma 1.
Theorem 2: Let be a poly-

nomial. Let denote the rational subspace spanned by the
columns of . Let us assume thatC4) andC5)
hold, and let , with , denote the
Kronecker indices of . Let us assume the following.

• C6) The rational space does not contain nonzero con-
stant vectors, i.e., that its smallest Kronecker indexis
nonzero.

Let be an integer such that ,
where is the th column of . Then, it is possible to
compute linearly independent degree polynomials

of . Put
. Then, the matrix

has full column rank; therefore, can be
identified from (8).

Proof: The inequalities

hold (the second inequality is strict because
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is not column reduced). Therefore, the con-
dition implies that .
Hence, it is possible to compute linearly independent
degree elements of . Since we
assume that , the matrix has full
column rank (see Lemma 1).

As we now see, this new approach needs less restrictive as-
sumptions on than that exploiting the block Hankel matrix

.
Let us first notice that the conditions for all

, Rank , and of Theorem 1 are now
relaxed.

On the other hand, Theorem 2 shows thatcan be identified
from any basis of , provided thatC6) ; it is thus in-
teresting to evaluate whether this new identifiability condition
is restrictive or not. If , one can easily verify
that contains at least independent constant vectors. Conse-
quently, this rational subspace admits at leastzero Kronecker
indices, andC6) is never satisfied. If , it can
be established thatC6) is not satisfied if rank ,
which is rather restrictive. However, for degrees higher than two,
it can be shown thatC6) is not satisfied only for a few peculiar
transfer functions and, therefore, becomes a mild condi-
tion.

These results meet our expectations. Since the approach re-
lies on the identification of from , the fact that
identifiability becomes difficult to satisfy when is small is
somewhat intuitive. In other words, the dispersive character of
the channel plays a major role here.

Finally, it is interesting to notice that the identifiability con-
dition remains valid in the case where is ra-
tional. The identification algorithm can be adapted to this case
without major difficulty. We have chosen to restrict ourselves to
the polynomial case for sake of clarity.

IV. PRACTICAL CONSIDERATIONS

In the preceding section, two constructive identification
methods, based on Lemma 1, were proposed. However, some
work is still needed before we effectively get practical algo-
rithms. These implementation problems are considered in this
section. In the remainder of this paper, the algorithm deduced
from the method described in Sections III-A and B will be
referred to as “algorithm A” and “algorithm B,” respectively.
We first begin with the implementation of algorithm B. The
implementation of algorithm A will be treated at the end of this
section.

The first step of algorithm B consists of finding, for large
enough, a degree polynomial matrix

, the rows of which belong to and are linearly
independent. In other words, we look for a polynomial basis of
the rational subspace .

Let us first notice that if and only
if , where is defined in (15).
Therefore, it is obvious that the subspace where the rows of the

matrix must be looked
for is the left kernel of the gen-
eralized Sylvester matrix . In practice, this means that

we are going to minimize a quadratic form built on the Gram-
mian of an empirical estimate of

. To avoid trivial solutions, some constraint should also
be introduced into this minimization problem.

Now, remember that the rows of are linearly indepen-
dent (over the field of rational functions) if and only if
has full normal rank . Therefore, our constraint should
be chosen to enforce this theoretical requirement. Since
is a polynomial matrix, it has full normal row rank if
and only if it has full row rank for at least one value

. On the other side, there exist bases of
that have full rank at infinity. For instance, minimal polynomial
bases are irreducible and thus verify this property. This means
that we can choose without restriction in such a way that

has full row rank. Finally, we can assume
without loss of generality that the rows of the ma-
trix are orthogonal.

The problem thus amounts to looking for the solution of the
constrained optimization problem

minimize trace

under the constraint

(16)

for which a solution is presented in the Appendix.
As for the second step of the algorithm, we estimate the

missing covariance lag using (8). Stated as a matrix equality,
this equation becomes

...

..
.

...
...

. .
.

...

...

(17)

in which the first matrix of the left-hand side (resp.
of the right-hand side) is [resp.

].
Of course, this system must be solved in the mean-square

sense. At this point, it is interesting to make use of the Her-
mitian character of the auto-covariance function (i.e., enforce

), as well as to constrain the solution to be a
Hermitian matrix; besides, this Hermitian character ofwill
also be used in the identification algorithm of when it ap-
pears later in (19). Hence, instead of solving (17), we solve the
system deduced from (17) by vectorizing the un-
known entries of , and modify the left-hand and right-hand
side matrices accordingly (this equation is easy to write and,
thus, is omitted here for lack of space).

The purpose of the third step is to identify up to an or-
thogonal matrix from and from . This can be
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performed by any blind second-order MIMO identification tech-
nique that is available for the noiseless case. Now, for simulation
purposes, we considered the version of the MIMO linear pre-
diction technique presented in [11] and based on a least square
estimate of .

A brief outline of this method is given here for convenience.
We begin by assuming that is irreducible and column re-
duced. Consequently, the degrees of the columns of coin-
cide with the Kronecker indices of the rational sub-
space spanned by its columns. The MIMO linear prediction
technique relies on the following result. On the one hand, the
process described in (1) is a moving average process; on the
other hand, it is known that for any , there ex-
ists a polynomial matrix that
satisfies

(18)

This means that is also finite-order autoregressive and that its
innovation process is . Now, let be the covari-
ance matrix of the innovation, and let be
the covariance matrix associated with.
Then, the matrices and are given by the
multivariate Yule–Walker equation . The
so-called minimum norm solution of this equation is

(19)

where stands for the Moore–Penrose pseudo-inverse, and
. Note that in practice, it is important in

these kinds of methods to estimate the dimension of the “signal
subspace” (i.e., the rank of ) properly. We have chosen
to estimate this dimension as , where is
the set of eigenvalues of arranged in decreasing order.

We still need to compute the unknown transfer function
from and . This can be done only up to some con-
stant orthogonal matrix, and as is well known, this final in-
determinacy cannot be removed by using second-order tech-
niques only. Therefore, let be a factorization of the posi-
tive semi-definite matrix . Then, is related to by

for some orthogonal matrix . From (1) and (18),
we have , and thus, , where

. In other words, the coeffi-
cients are the unique solutions of the equation

...

...
...

...

. . .

...

...
(20)

in which the first matrix of the left-hand side is
, and its solution in the least-squares sense gives a

consistent estimate of (see [11] for more details). Note that

Fig. 1. Noise covariance matrix(�) estimation.

Fig. 2. Effect of Rank(H ) on the estimation of�.

in [11], a weighted least square estimate was proposed. In this
paper, we just consider the standard plain least square estimate.

Let us now summarize the discussion. The whole identifica-
tion procedure consists of the following steps.

1) Compute , where is an
empirical estimate of .

Compute (for large enough) given in (15),
and solve (16) to obtain .

2) Compute from .
3) Build the estimated covariance matrix , and estimate

and as in (19).
4) Compute a matrix satisfying .
5) Finally, estimate (up to a orthogonal matrix)

by solving (20) in the least-squares sense (of course,
and have to be replaced by their estimates).

Finally, let us sketch the implementation of algorithm A.
From (13), we see that the rows of now belong to the left
kernel of the matrix , and all
the discussion above can be adapted immediately. The only
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difference is that the first step is now replaced by the solution
of the minimization problem

minimize trace

under the constraint

(21)

where represents a consistent estimate of.

V. EXPERIMENTAL RESULTS

In this section, some numerical simulations are performed
on algorithms A and B. Two channel models are used. The
first model is used to illustrate the theoretical results of the
preceding sections. The second model is more suited to the
digital communications context, which is one possible appli-
cation. In both models, the number of sourcesis equal to 2,
and that of the sensorsis equal to 7. In addition, the covari-
ance matrix of the noise process is chosen as , with

(it is thus a “stationary spatial AR
process of order 1”). The parameteris chosen equal to .

A. Simulations

The first model is used in the first three experiments. We set
, and the unknown entries in

are chosen randomly, under a zero-mean unit-
variance Gaussian probability law. When needed (i.e., in the
second and third experiments), we force to be rank defi-
cient by setting its last column to zero; otherwise, generi-
cally has full column rank. The parameterof Section III-B is
chosen equal to 1. The reason why is that in the expression of

, all the covariance lags with even indices are can-
celed. Therefore, these terms need not be estimated.

Last, in each of the three experiments show later, our results
for a given channel are averaged over 50 runs; then, these results
are averaged over 20 channels.

In the first experiment, we compute as . Fig. 1
shows the relative estimation error (

denotes the Frobenius norm) versus the samples block size
for signal-to-noise ratios equal to 5 and 10 dB. This is a good
measure of the performance of the estimateof . Note that
this relative error is lower for the noise having the largest power;
this property is shown here for algorithm B only but, indeed, is
shared by both algorithms. It might be justified intuitively by
the following observation. Let .
Then, from (6), the -identification equation can also be written

; consequently, estimation errors on
affect more sensitively the estimation ofwhen is a matrix
with small norm.

In the second experiment, we visualize the effect of the rank
of on the identification of . Remember that algorithm A
relies heavily on the assumption that has full column rank
but that algorithm B does not exploit this property. Fig. 2 also
exhibits values of the relative estimation error. As we can see,
algorithm A performs slightly better than algorithm B if the full
rank assumption on is satisfied; if not, it does not converge.

Fig. 3. Transfer function estimation (algorithm A).

Fig. 4. Transfer function estimation (algorithm B).

On the other hand, simulations show that algorithm B is nearly
insensitive to the rank of .

The third experiment measures, for both algorithms, a relative
error on after the whole identification process described in
Section IV has been performed. This experiment thus combines
both the identification procedure, which is specific to this
paper, and the effect of the linear prediction algorithm, followed
by a least-squares identification. Since can be identified
only up to a arbitrary orthogonal matrix, the error criterion
we choose is

(22)
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where is the co-
variance function deduced from the estimated transfer function

.
Fig. 3 (resp. Fig. 4) visualizes as a function of the sam-

ples block size in the case of algorithm A with having
full column-rank (resp. algorithm B with rank deficient).
The error is compared with that obtained with the help of a
“classical” linear prediction algorithm, i.e., an algorithm that as-
sumes (wrongly) that . As has been said in the intro-
duction, we begin in this classical algorithm by identifying
as the smallest eigenvalue of the covariance matrix given
in (4); it is obvious that the estimates obtained with such an al-
gorithm do not converge to the exact solution. Indeed, we have
observed that the benefit of our algorithms becomes clearer and
clearer as departs from .

As for the second model, we simulate a linear narrowband
array of sensors equispaced by a quarter of a wavelength. Both
sources transmit a BPSK i.i.d. digital sequence shaped by a
raised cosine filter with a roll-off factor of 0.2. In our simula-
tions, the impulse response of this filter is truncated to its main
lobe. Signals from each source impinge on the array along six
paths. For each path, the angle of arrival is a uniformly dis-
tributed variable in the range , the amplitude is zero-mean
unit-variance Gaussian, and the delay is uniformly distributed
between zero and four times the symbol period. Let us write

as . As the received signal is sampled at
symbol rate, the maximum value of the transfer function degree
is also here. This model does not generically guarantee
the full-column rank condition on and needed by algo-
rithm A. Suppose, for instance, that for , all path delays are
less than three times the symbol period. Then, ,
and is obviously rank deficient. Simulations are performed
for algorithm B only because algorithm A no longer provides
consistent estimates. Here, . Our results for a given
channel are averaged over 40 runs; then, these results are av-
eraged over ten channels.

The curve of Fig. 5 measures the quality of the estimation of
. It depicts for dB. Fig. 6 shows for

dB as well. We have observed that under realistic conditions, the
algorithm behaves well in rather adverse conditions (i.e., for low
SNRs) but degrades if the SNR increases. This is because for
low SNR, the central covariance lag of the received signal
is very different from that of the useful signal, whereas if the
noise is weak, estimating properly becomes difficult, and one
should make the approximation .

B. Applicability of the Method

Let us now make some comments on these results. In this
paper, we considered the general problem of second-order blind
identification of a system corrupted by a noise, the covariance
matrix of which is totally unknown. Since there was noa
priori assumption on , we were led to ignore the central co-
variance lag . Therefore, we tried to identify the channel from
the lags by relying on the convolutive nature of the
channel only.

Now, from a practical point of view, the price to pay for drop-
ping is, of course, a severe loss in performance. In fact, the
proposed algorithms are pertinent when cannot

Fig. 5. Noise covariance matrix(�) estimation.

Fig. 6. Transfer function estimation.

be modeled as without a great error. There-
fore, in practice, the method is useful at low SNR and when
moves away from a multiple of the identity matrix. If the SNR is
high, then estimating consistently is not so important, and in-
deed, in this case, a classical subspace algorithm, i.e., one which
assumes that the noise is spatially white, would be more conve-
nient.

This is the reason why a large number of samples is required
to estimate the channel properly. Our algorithms need a larger
number of samples than those that are usually considered in
other related works [8]–[16]. In particular, in all experiments,
reasonable results are obtained if the number of samples ex-
ceeds 1000 (even more in the second model). This shows that
our results are not applicable in the context of highly mobile
cooperative systems. However, they can be useful in military ap-
plications such as passive listening, in which it is necessary to
extract the symbols transmitted by an unknown emitter. In this
case, the receiver has, of course, no knowledge of any training
sequence, and the identification of the channel has to be per-
formed blindly.
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VI. CONCLUSION

In this paper, we proposed a new subspace-based approach,
based on second-order statistics, for identifying a discrete-time
noisy MIMO channel up to a constant orthogonal matrix.
Due to the specific assumptions on the noise, the problem has
been formulated as the identification of the unknown filter

from the truncated auto-covariance sequence
associated with the spectral density .
The method consists of identifying from ; once
has been identified, the subsequent retrieval of from the
full auto-covariance sequence can be performed by a variety
of classical methods and, for example, by the linear prediction
approach. Our approach consists of identifying directly
from certain polynomials satisfying
and, thus, naturally fits in the field of rational subspaces. A
general identification lemma is provided in this framework. In
practice, computing the filters can be done either from the
block Hankel matrix associated with the sequence or
from a function such as , which requires fewer
restrictive assumptions on . Finally, practical implemen-
tation considerations are addressed, and both algorithms are
tested via numerical simulations.

APPENDIX

SOLUTION OF THECONSTRAINEDMINIMIZATION PROBLEM

The minimization problems (16) and (21) are two particular
cases of the following problem. Let and be two matrices
sharing the same number of rows. Find a matrix of dimen-
sions , where rank , which satisfies simulta-
neously

trace is minimum (23)

and

(24)

For instance, in (16), , ,
, , and .

We begin with parameterizing the constraint (24). Let

be an orthogonal eigenvalue decomposition of the symmetric
semi-definite positive matrix . In this decomposition, is
a diagonal matrix with real positive entries, the matrix is
orthogonal, and , , and are of dimensions , ,
and , respectively. As is a regular matrix, it
is always possible to set , where and

are partitioned in conformity with and . Let be the
diagonal square-root of with positive diagonal entries, and let

. Plugging this expression into (24),is a
solution of (24) if and only if

(25)

for some matrix satisfying .

We still need to specify the two matrices and . Injecting
(25) into (23), we see that the quantity to minimize is

trace

trace

(26)

We will minimize (26) with respect to for a given . The
proper framework for performing this minimization is the inner-
product space of matrices, endowed with the inner
product trace . The gradient of with respect
to is given by . It is then clear
that a minimizer of is given by . From the defini-
tions of and , we see that

Span Span Span Span (27)

where Span stands for the range space; therefore, the equation
is consistent and, thus, always has solutions. These

are given by

(28)

where denotes the Moore–Penrose pseudo inverse of,
and is any matrix belonging to Ker [29], [30].

Let us now minimize with respect to , taking into ac-
count the constraint . Plugging into
(26), the expression to be minimized is now trace

. From (27), we have Ker
Ker , and thus, ; since the choice of is ir-
relevant, we can choose the “minimum norm” solution

in (28). Let us now consider the Schur complement matrix
. It can be shown easily that

is symmetric semi-definite positive. Therefore, due to a clas-
sical result, the matrix that minimizes trace is
obtained by arranging the eigenvectors corresponding to the
smallest eigenvalues of . In summary, the procedure is as
follows.

• Perform an orthogonal eigenvalue decomposition (EVD)
of to deduce , and .

• Compute the matrices , , and defined in (26).
• Compute an orthogonal EVD of , and deduce .
• Compute ; the solution is then given

by .
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