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A Minimal, Rotation-Based FRLS Lattice Algorithm now propagates a minimal (in the system theory sense) number of
internal variables, all of magnitude bounded by 1. Now, minimality is
Frargois Desbouvries and Phillip Regalia known to be a key structural constraint behind backward consistency

[10], and from this viewpoint, we prove that this algorithm enjoys
stable error propagation.

Abstract—We propose an alternate Givens rotation-based least-squares  This correspondence is organized as follows. In Section Il, we give
lattice algorithm. Based on spherical trigonometry principles, this al- 5 gaometric interpretation of the fast QRD-based lattice filter in terms
gorithm turns out to be a normalized version of the fast QRD-based f spherical tri trv. In this f K itb bvi that
least-squares lattice filter, introduced independently by Ling and by of spherica rlgonome ry._ n - IS framework, | ecomeso_\”ous a
Proudler et al. In constrast with that algorithm, the storage requirements SOMe appropriate normalization should be performed, which leads to

of the new algorithm are minimal (in the system theory sense). From our new algorithm in Section Ill. Stable error propagation is proved
this, we show that the new algorithm satisfies the backward consistency jn Section IV, with concluding remarks in Section V.
property and, hence, enjoys stable error propagation.

1. SPHERICAL COORDINATE TRANSFORMATIONS, GAUSS

SYSTEMS, AND LEAST-SQUARES LATTICE FILTERS

Yule’'s PARCOR identity was recently shown to coincide with the Consider a unit sphere in 3-D space centered at the pairtet
cosine law of spherical trigonometry. This observation establishgs be an arbitrary point, and consider a line beginningaand
a connection between fast recursive least-squares (FRLS) adapaggsing throughC”, with C its intersection with the unit sphere.
filtering and spherical trigonometry [1], [2] because the prewindow%e position ofC"" can be described, for example, by the spherical
fully normalized FRLS lattice algorithm of Leet al. [3] consists coordinates R, 8., o1 ), where R is the length of the vecto©C',
of three particular applications of Yule’s PARCOR identity. Let USind the two ahglés satishy € [~ 7] andp1 € [~ /2,7/2] or,

briefly recall this algorithm for convenience of the reader. Lt alternately, by the Cartesian coordinates = R cos o1 cos 8,y =
andz,, ; be the doubly normalized forward and backward predlctmﬂ cosgr sinfr, 2 = Rsingy) (see Fig. 1)
errors, respectively, at order and timet, and letp,4+1, be the Let us rofate the initial coordinate systert. 1. y1, 1)

n + 1st-order PARCOR at time. (We restrict ourselves to scalarby an anglec around they, axis, giving a neW cbordinate

signals for simplicity). The algorithm of Leet al. consists of the system (O, 2, y2.22), With yo = yi.. The coordinates of
well-known recursions C' in the new system are(rs = Rcosgscosfy,ys =

Prd1t =Vnelnt—1+4/1— V2 pngre—1y/1—02 Rcospasinbs,z; = c Rsin g2). TLEt. us now write the
' ' in terms of the

mapping  [x1.y1, z1]" 5 [z, y2, 22]

|. INTRODUCTION

vn+1,t=(1—ﬂi+1,L)71/2(1/n,t—pn+1,t77n,t71) elements of the spherical triangled BC, using the relations
(1—n2, )72 a = 7[2 = p2,b =72 —¢,A =7 —|68] andB = |6;].
—(1— 2 Ny If we let e denotef, /|61 = 62/|02|, we get a “Gauss system”
Mttt = (1= Prgr,e) ™ (tmt = Pt avn) (unnormalized ifR # 1)
1=V (1)
™t cos Bsina cosc 0 sinc —cos Asinb
Recast in the spherical trigonometry framework [1], [2], the sijf |¢sinBsina (R = 0 1 0 esinAsinb | R
PARCOR'’s propagated by this algorithm are the cosines of th cosa —sinec 0 cosc cos b
six elements of a spherical triangle, namely, the angle®, and (2)
C and their corresponding sides b, and ¢; the correspondences ) . )
are cos A = b 9b _es ' o P  _ whose three rows yield, respectively, the five-element formula, the
COSA = pPpti1,t—1,C08 = Vp,t,COSC = MNpt—1,C08a =

sine law, and the cosine law of spherical trigpnometry. These
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z M t—1 1/ 1- 7);21,1—1 |: —'\/Xﬂ'n,zfz

AA X —y/1- U UERE en =t/ /7t =1)
< ‘n — Yn t— 1
:{P +1, =1/ 3/t ( )}. ©)
Ty t—1

% \ ’
’ Here,e;f‘,,,ef,yt ande,, , are, respectively, the unnormalizadhoste-
riori forward prediction error, backward prediction error, and filtering

2 TR TR error, at orden and timet. The termE; (1)< (Pity,, Pity,) (resp.
- ~ Eb(t— 1) (Pty, , . Py, ., ) is the forward (resp. back-

v % ward) prediction error energy. The term (t — 1) = ef (Pfo, Pfo)
is a “likelihood variable,” andr,, .~ = (Pydi—1, Piry,_,_,) is
¢ an auxiliary variable. We recognize in (4) and (5) the rotations of
! | the prediction part, and in (6) that of the filtering part, of the fast
{ QRD-based lattice [7]—[9], which is thus essentially made of three
{ unnormalized Gauss systems.

Il. A M INIMAL GIVENS ROTATION-BASED LATTICE ALGORITHM
] ) ] ) The algorithm above is nonminimal in its storage requirements,
Fig. 1. lllustrating the spherical coordinate system. which impedes a direct verification of stable error propagation (e.g.,

[12]). In effect, the parameterns, ; and /1 — v , of the forward
in these appllcatlons one is interested only in solving the part't%tanon are determined according to

problem (A, b,¢) — (a, B).

These equations also arise in adaptive filtering and may be linke T
via the classical geometric framework [11] of FRLS algorlthms\? () =[( \/)\E” t=1) €he/ Vn(t = 1)) @)

2]. Let A,B, and C belong to th &' of (t + 1)-
[2). Let 4. 5. and C belong to the spac&™" of (f + 1) e VN el ./,\E,,

dimensional vectors, with inner product,v) = u” Av, where Unt =
VEL ()

= diag{\’, -+, A, 1} with X the forgetting factor. Left” be a \ Bl (1)
data matrix witht + 1 rows, and letP}s = T —Y(Y7AY)"'YTA

be the projection matrix onto the orthogonal complement subspa§ﬁm|ar|y fn.i—1 and f1_ 12 ,_, are determined according to
to the column space of. Let us identify O with PAA, OB '

with PLB,0C with PEC, and OC' with Pi-C', where PEC = VEL(t—1) —[(\/)\E (t—2))
P#C(P#C, P+ C)~Y/? designates scaling to unit length. Last, let . fonE = 1))/ 9
the PARCORpy (u,v) be defined agPgu, Piv). The PARCOR (et /Y ] ®)
analogs to the first and third rows of (2) are [2] ef,,,f_1/ m(f Y
P nn,l—l =
py,8(A,C)\1 = p3(B.C) |, pL ~ ploni/2 EL(t—1)
{ PR (Pc, PEO)

[_ 2 _VAE(=2)
_ pv(A,B) 1—p3 (A, B) L= —W- (10)
1-p3(4,B)  py(4,B)
—py,a(B,C)/1—-p3(A,C) 12 Thus, this algorithm requires storingll + (M + 1) variables at
ov (A, C) (P C. Py C) () each iteration (whereM is the maxirjnulm order of the filter),
X ‘e M—1
Now, let {y;} and{d;} denote the input and desired-response timeamely, the variable El(t - 1)} ,{ Eb(t — 2)} ,

series, respectlvely, of the adaptive filter. 4.6€ [0--- 0 yo - - .]” n=0 e
def def

f M—1
di=[0---0do---d;]", ande=[0---0 1]” belong tolRH'l, and {"nt 1/ (t — } Apntr—1y ER(t =1}, 50 and
setY to the (t+ 1) x n matrix [y,_, ---y,_,]. The successive {p,t1,—1/EL(t—2 },\1[ ! for the prediction section, as well

correspondenceéd = o,B = 9,,C =y, , ,),(4 = 0,B = as{m,: 2}, for the filtering part.
Y_p_1-C =y,)and(A = ¢.B = y,_,,_,,C = di—1) yield, Now, in many applications, the quantity of ultimate interest
respectively is often the filtered erroren4+1,—1, which is computed

5 from  ent1e—1// v (t—1) and /vm+i(t—1), where
2 s
Un,t Vi~ {—\/Xbﬂnﬂ,tﬂ Eb(t - ?)} w11 (t —1) is given by
— /1—1/2 Un t en,tfl/\/ A?/'L(t_l)

- { e/ Furr () } @ Vot =1) = /1= 0} 1V (t = 1). (11)

n En t—1 . .
ot ( We now show that in such cases, the storage requirements of the fast

~ \/T 7 QRD-based least-squares lattice can be cut in half. In particular, the

i1 T =1 _\/X/’r_'+1ﬂf—1 y En(t—1) vectors to which the rotations (4) and (5) are applied are closely

—/1=n2, N t—1 el m(t—1) related to the parameters of these rotations so that it is not in

o / m fact necessary to compute [as in (8) and (10)] the parameters of

_ |/ VoL (5) these rotations. More precisely, (4) and (5) can be replaced by the
pn+1,f\/E/L (t) correspondingnormalized Gauss systems, i.e., the algorithm that
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TABLE |
MINIMAL LATTICE ALGORITHM

Initialization:

n’l,—] :”n,—lzpn-l'],-l:()y forn:Oyly---yM—l;
VE}(=1) =0 (exact start) or \/ E{ (1) = § > 0 (soft start)

fortimer=0,1,2,...:

12 [pfer_
W) =1, ey=4d, VE(j)t(t):“A io(t 1)“, Vos=MNos = 2
t

VE§@®)
Vh®)=y/1-13,

[ Mo l—n%,,] [—A"Z no,,_l] _ [eu/\/Y] (z)]
— ”"”(2),, Tos €0t o

for order n=0,...,M-1:

prediction:
2
[ N1 M] [_pn+l,t—l 1- V,%,,] — [Vn+l,n /1 —p’2l+l’t}
v 1- nrzz,t—l The-1 Vn,t Pr+lt

[ Vit Vv I—V’%v‘] [_pn+1,t—l\/ l—ﬂ,z.,‘_l] _ [nn+l,t\/ 1 "P3+l,t]
—/1-V2, Vit Nny—1 *

Vntly = (Vn+l,t\/1 _p12|+1,t )/\/1 —p'21+|,t

M1, = (nn+l,z\/1 ‘P&H,f )/\/l —P,%H,:
filtering:

\/Y"H(t) = \/l - n3+1,l \/7n+l(t)

[ Thnt14 ,/1—n,2,+1,,} [_,11/27r,,+1,z-1 ]: [e,,+2,,/\ /yn+2(t)]
-V 1 "”,2;+1,; Mn+1s en+1,t/\/ Yr1® T+l

end for order loop

eMi1s = (3M+1,1/\/ YM+1(t)) v Y1 (D)

end for time loop.

transforms the coordinates #t-C, rather thanPi-C: residuals{n, :—1}2", and the PARCOR'Sp,i+1,:—1}215". The
2 filtering part still uses thel + 1 parametergm, .— } L,.
Vnt V L=va, {—pnm a1 —=m2 } This algorithm is a rotation version of that suggested in [2, Section
— /1 =02, Vn .t Mn,t—1 E]. As each prediction stage of our algorithm performs the mapping

5 (pn+1 =1 Vn ts Mn t—1 ) — (Pn+1 s Vnd1,ts M+ ,f,), it is Clearly
— {’7"+1-f\/1 - f’n+1,f} (12) related to (1), as well as to the algorithm of [13, (10) and (11)],
Prti,t which perform the same global transformation. This can be explained
P m PN ra by spherical trigonometry principles: Since there are three degrees of
- ’ { . % mt } freedom in a spherical triangle, there can be no more that three distinct
— T M =1 ! relationships among the six elements. One such set is comprised of

~vngrea /1= P2 the three cosine laws, i.e., (1) in the FRLS framework, from which
- { Prti e T } (13) any other spherical trigonometry formula may be deduced.

The algorithm made of (12) and (13) for the prediction part, and
keeping (6) and (11) for the filtering part, is summarized in Table I;
the storage requirements of the prediction part are reducedi/te- 1

parameters (the minimal value [10]), namely, the square-root signa ’ . ot ’
ogy of [10], in which stable error propagation is shown subordinate

energy y/ E; (¢), the doubly normalized backward prediction €M%y a backward consistency property. The time updates in Table | may

IV. STABLE ERROR PROPAGATION
[The verification of stable error propagation follows the methodol-
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be written as a state recursion obtain||b|| < 1. This holds, in particular, if the rotation is numerically

passive. The propertyb|| < 1 then ensures that the inferred variables

E(t) =TIE(t — 1), y:] (14) Nn,t41 @nd py e TUlfill |9, 141] <1 and|p, 1] <1 so that these
in which computed variables remain consistent. The same argument applied to
; (13) shows thatv, .+1] < 1 as well so that the rotation required by
§(t) = [y Eo (im0, = 5mni—1.65 proes =+ par,i] (15)  the next order index is well defined. Thus, éft) € S;, then the

is the state vector comprising the variables that need be written t#dated state vector so computed likewise satisfiest 1) € Si.
storage at each iteration, afid-, -] is the mapping that implements This gives backward consistency and, thus, stable error propagation.
the subroutine of Table | at each iteration.

As in [10] and [12], we denote b§; the set of reachable staigs)
in exact arithmetic, as the past input y+—1, y+—2, - - - IS varied over
all possibilities. If the computed state vector, caIE(ﬁ) (including
thus roundoff errors), satisfies

£t)e S

V. CONCLUDING REMARKS

An alternate rotation-based lattice algorithm was derived. In con-
trast with the algorithm of Ling [7] and Proudlest al. [8], [9],
the present algorithm is minimal in the storage requirements. From
this, stable error propagation is shown easily on verifying that the
. computed variables remain backward consistent. The consistency test
thené(t) may be understood as the exact solution reached by sogfethe algorithm amounts to verifying that the square-root signal
perturbed past input sequengey:—1, §:—2, - - -. The influence of the energy remains positive and that all other variables are bounded

(16)

perturbatior€ (¢)—&(t) on the future evolution of (14) is then identicalpy unit magnitude. This can be structurally induced by correct
to the influence of a corresponding perturbation on the past ingsfogramming or at least tested with negligible overhead if less careful

sequence. With persistently exciting future data:, y¢+2, - - -, the

programming methods are employed.

influence of this perturbation will be exponentially decaying owing to Our contribution extends the family of minimal fast least-squares
exponential data weighting\ < 1). For more detail on this simple algorithms beyond those identified in [10] and [14]; in contrast to the
argument, we refer the reader to [10], [12], [14], and [15]. It thusackward consistent algorithm of [10], for which the order recursions

suffices to examine whether the consistency condition (16) can f&
enforced in the present algorithm.

both ascending and descending, all recursions in the present

algorithm are ascending, which thereby affords pipelining of the

To this end, we can connect the variables of the state vector (gmputations.

to the variables of the QR algorithm studied in [10]. The PARCORS
{pn+} correspond, in the notations of [10], {0, . sin ¢n (1),
whereas the doubly normalized backward prediction errors become
M, = sinf,(¢). From [10, Prop. 5], the set of reachable statel!]
variables is characterized by the simple inequalities 1 (¢)| < 7/2
and ¢, (t)| <« /2 for ordersn = 0,1,---, M, combined with one
prediction error energy being positive. This yielfsin the present
algorithm as

(2]

(3]

[n—1 4] <1, |pnsl<1, and /E{(t)>0 (17)

for all » and ¢. Provided the computed variables always satisfy[4]
these inequalities, consistency applies, which then implies stable errgyj
propagation [10], [12], [14], [15].

To examine satisfaction of the consistency constraints (17), assuni@
that the expression holds at tintgi.e., [7.—1.¢| <1 and|pn ¢| < 1; ]
we then examine whether it remains in effect at titme 1. The first
computation reads as
[8l

1/2 !
E(‘]f(t—l— 1) = H)‘ m >0,
Yt+1
Yt+1
N0, t+1 = V0,41 = —F—7—7—7= [9]
El(t+1)
= |no,e41| = |vo,e| <1 (10]

(The intermediate variables, ., intervene in the computatiof(t +
1) = T'[&(t), y++1] but are not written for storage). The computatiorni1]
(12) becomes

Vn—1,t+1 1- V;Zz—l,t+1 [12]

1- V;Zz—l,t+1 UV —1 141 [13]

{—/’n,t 1- 77;21—1,t:| - |:77n.,t+1

Nn—1,t
Now, with |pn ¢| <1 and|n.—1,| < 1, we get||a|| < 1. If the norm
of the numerical rotation on the left-hand side is less théfu||, we

\/1 - P?z,t+1:| ’
Pn. t+1

v v

d:c[a d:c[b

(14]

[15]
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