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A Minimal, Rotation-Based FRLS Lattice Algorithm

François Desbouvries and Phillip Regalia

Abstract—We propose an alternate Givens rotation-based least-squares
lattice algorithm. Based on spherical trigonometry principles, this al-
gorithm turns out to be a normalized version of the fast QRD-based
least-squares lattice filter, introduced independently by Ling and by
Proudler et al. In constrast with that algorithm, the storage requirements
of the new algorithm are minimal (in the system theory sense). From
this, we show that the new algorithm satisfies the backward consistency
property and, hence, enjoys stable error propagation.

I. INTRODUCTION

Yule’s PARCOR identity was recently shown to coincide with the
cosine law of spherical trigonometry. This observation establishes
a connection between fast recursive least-squares (FRLS) adaptive
filtering and spherical trigonometry [1], [2] because the prewindowed
fully normalized FRLS lattice algorithm of Leeet al. [3] consists
of three particular applications of Yule’s PARCOR identity. Let us
briefly recall this algorithm for convenience of the reader. Let�n;t
and�n;t be the doubly normalized forward and backward prediction
errors, respectively, at ordern and time t, and let �n+1;t be the
n + 1st-order PARCOR at timet: (We restrict ourselves to scalar
signals for simplicity). The algorithm of Leeet al. consists of the
well-known recursions

�n+1;t = �n;t�n;t�1 + 1� �2n;t�n+1;t�1 1� �2n;t�1

�n+1;t =(1� �
2

n+1;t)
�1=2

(�n;t � �n+1;t�n;t�1)

� (1� �
2

n;t�1)
�1=2

�n+1;t =(1� �
2

n+1;t)
�1=2

(�n;t�1 � �n+1;t�n;t)

� (1� �
2

n;t)
�1=2

: (1)

Recast in the spherical trigonometry framework [1], [2], the six
PARCOR’s propagated by this algorithm are the cosines of the
six elements of a spherical triangle, namely, the anglesA;B; and
C and their corresponding sidesa; b; and c; the correspondences
are cosA = �n+1;t�1; cos b = �n;t; cos c = �n;t�1; cos a =
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�n+1;t; cosB = �n+1;t, andcosC = �n+1;t: Thus, (1) can be seen
as one particular solution to the spherical triangle problem that, given
two sidesb andc of a spherical triangle plus the angleA in between,
consists of determining the remaining three elementsa; B; andC:

It turns out that this algorithm (using only the cosine law three
times) is not, in spherical trigonometry, a standard solution of the
spherical triangle problem(A; b; c) ! (a;B; C): Among other alter-
natives, one classical way for (partially) solving the problem consists
in using a so-called “Gauss system” [4]–[6]. In this correspondence,
we obtain a new algorithm based on two such Gauss systems, which
yields, in effect, a normalized version of the QRD-based LS lattice
filter, introduced independently by Ling [7] and Proudleret al. [8],
[9]. The main advantage of our algorithm over that of [7]–[9] is
that the storage requirements are cut in half, thereby purging the
“redundancy” present in that algorithm. Indeed, the new algorithm
now propagates a minimal (in the system theory sense) number of
internal variables, all of magnitude bounded by 1. Now, minimality is
known to be a key structural constraint behind backward consistency
[10], and from this viewpoint, we prove that this algorithm enjoys
stable error propagation.

This correspondence is organized as follows. In Section II, we give
a geometric interpretation of the fast QRD-based lattice filter in terms
of spherical trigonometry. In this framework, it becomes obvious that
some appropriate normalization should be performed, which leads to
our new algorithm in Section III. Stable error propagation is proved
in Section IV, with concluding remarks in Section V.

II. SPHERICAL COORDINATE TRANSFORMATIONS, GAUSS

SYSTEMS, AND LEAST-SQUARES LATTICE FILTERS

Consider a unit sphere in 3-D space centered at the pointO: Let
C0 be an arbitrary point, and consider a line beginning atO and
passing throughC 0, with C its intersection with the unit sphere.
The position ofC 0 can be described, for example, by the spherical
coordinates(R; �1; '1), whereR is the length of the vectorOC0,
and the two angles satisfy�1 2 [��; �] and'1 2 [��=2; �=2] or,
alternately, by the Cartesian coordinates(x1 = R cos'1 cos �1; y1 =

R cos'1 sin �1; z1 = R sin'1) (see Fig. 1).
Let us rotate the initial coordinate system(O; x1; y1; z1)

by an angle c around the y1 axis, giving a new coordinate
system (O; x2; y2; z2); with y2 = y1: The coordinates of
C 0 in the new system are(x2 = R cos'2 cos �2; y2 =

R cos'2 sin �2; z2 = R sin'2): Let us now write the
mapping [x1; y1; z1]

T c
! [x2; y2; z2]

T in terms of the
elements of the spherical triangleABC, using the relations
a = �=2 � '2; b = �=2 � '1; A = � � j�1j, and B = j�2j:

If we let � denote�1=j�1j = �2=j�2j, we get a “Gauss system”
(unnormalized ifR 6= 1)

cosB sin a

� sinB sin a

cos a

R =

cos c 0 sin c

0 1 0

� sin c 0 cos c

� cosA sin b

� sinA sin b

cos b

R

(2)

whose three rows yield, respectively, the five-element formula, the
sine law, and the cosine law of spherical trigonometry. These
equations appear naturally in astronomy [4]–[6]. Indeed, passing
back and forth between the horizontal coordinates of a star and
its hour coordinates, or between its equatorial coordinates and its
ecliptic coordinates, consists of performing such a change of spherical
coordinates(�1; '1)

c
! (�2; '2); this can be done using (2) since,
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Fig. 1. Illustrating the spherical coordinate system.

in these applications, one is interested only in solving the partial
problem (A; b; c) ! (a; B):

These equations also arise in adaptive filtering and may be linked
via the classical geometric framework [11] of FRLS algorithms
[2]. Let A;B; and C belong to the space t+1 of (t + 1)-
dimensional vectors, with inner producthu; vi = uT�v, where
� = diagf�t; � � � ; �; 1g with � the forgetting factor. LetY be a
data matrix witht + 1 rows, and letP?Y = III � Y (Y T�Y )�1Y T�
be the projection matrix onto the orthogonal complement subspace

to the column space ofY: Let us identify
!

OA with P?Y A;
!

OB

with P?Y B;
!

OC with P?Y C, and
!

OC0 with P?Y C, whereP?Y C =
P?Y ChP?Y C;P?Y Ci�1=2 designates scaling to unit length. Last, let
the PARCOR�Y (u; v) be defined ashP?Y u; P?Y vi: The PARCOR
analogs to the first and third rows of (2) are [2]

�Y;B(A;C) 1� �2Y (B;C)
�Y (B;C)

hP?Y C;P
?

Y Ci1=2

=
�Y (A;B) 1� �2Y (A;B)

� 1� �2Y (A;B) �Y (A;B)

�
��Y;A(B;C) 1� �2Y (A;C)

�Y (A;C)
hP?Y C;P

?

Y Ci1=2: (3)

Now, let fyig andfdig denote the input and desired-response time

series, respectively, of the adaptive filter. Letyyyi
def

= [0 � � � 0 y0 � � � yi]
T ;

dddi
def

= [0 � � � 0 d0 � � � di]
T , and �

def

= [0 � � � 0 1]T belong to t+1, and
set Y to the (t + 1) � n matrix [yyyt�1 � � �yyyt�n]: The successive
correspondences(A = �;B = yyyt; C = yyyt�n�1); (A = �;B =
yyyt�n�1; C = yyyt) and (A = �;B = yyyt�n�1; C = dddt�1) yield,
respectively

�n;t 1� �2n;t

� 1� �2n;t �n;t

�
p
��n+1;t�1 Eb

n(t� 2)

ebn;t�1= 
n(t� 1)

=
ebn+1;t= 
n+1(t)

�n+1;t Eb
n(t� 1)

(4)

�n;t�1 1� �2n;t�1

� 1� �2n;t�1 �n;t�1

�
p
��n+1;t�1 E

f
n(t� 1)

e
f
n;t= 
n(t� 1)

=
e
f
n+1;t= 
n+1(t� 1)

�n+1;t E
f
n(t)

(5)

�
�n;t�1 1� �2n;t�1

� 1� �2n;t�1 �n;t�1

�
p
��n;t�2

en;t�1= 
n(t� 1)

=
en+1;t�1= 
n+1(t� 1)

�n;t�1
: (6)

Here,efn;t; e
b
n;t anden;t are, respectively, the unnormalizeda poste-

riori forward prediction error, backward prediction error, and filtering
error, at ordern and timet: The termEf

n(t)
def

= hP?Y yyyt; P
?

Y yyyti (resp.

Eb
n(t� 1)

def

= hP?Y yyyt�n�1; P
?

Y yyyt�n�1i) is the forward (resp. back-

ward) prediction error energy. The term
n(t � 1)
def

= hP?Y �; P?Y �i

is a “likelihood variable,” and�n;t�1 = hP?Y dddt�1; P
?

Y yyyt�n�1i is
an auxiliary variable. We recognize in (4) and (5) the rotations of
the prediction part, and in (6) that of the filtering part, of the fast
QRD-based lattice [7]—[9], which is thus essentially made of three
unnormalized Gauss systems.

III. A M INIMAL GIVENS ROTATION-BASED LATTICE ALGORITHM

The algorithm above is nonminimal in its storage requirements,
which impedes a direct verification of stable error propagation (e.g.,

[12]). In effect, the parameters�n;t and 1� �2n;t of the forward
rotation are determined according to

E
f
n(t) =[( �E

f
n(t� 1))2 + (efn;t= 
n(t� 1))2]1=2 (7)

�n;t =
e
f
n;t= 
n(t� 1)

E
f
n(t)

; 1� �2n;t =
�E

f
n(t� 1)

E
f
n(t)

: (8)

Similarly, �n;t�1 and 1� �2n;t�1 are determined according to

Eb
n(t� 1) = [( �Eb

n(t� 2))2

+ (ebn;t�1= 
n(t� 1))2]1=2 (9)

�n;t�1 =
ebn;t�1= 


(t�1)
n

Eb
n(t� 1)

;

1� �2n;t�1 =
�Eb

n(t� 2)

Eb
n(t� 1)

: (10)

Thus, this algorithm requires storing5M + (M + 1) variables at
each iteration (whereM is the maximum order of the filter),

namely, the variables E
f
n(t� 1)

M�1

n=0

; Eb
n(t� 2)

M�1

n=0
;

ebn;t�1= 
n(t� 1)
M�1

n=0
; f�n+1;t�1 E

f
n(t� 1)gM�1n=0 , and

f�n+1;t�1 Eb
n(t� 2)gM�1n=0 for the prediction section, as well

as f�n;t�2gMn=0 for the filtering part.
Now, in many applications, the quantity of ultimate interest

is often the filtered error eM+1;t�1, which is computed
from eM+1;t�1= 
M+1(t� 1) and 
M+1(t� 1), where

M+1(t� 1) is given by


n+1(t� 1) = 1� �2n;t�1 
n(t� 1): (11)

We now show that in such cases, the storage requirements of the fast
QRD-based least-squares lattice can be cut in half. In particular, the
vectors to which the rotations (4) and (5) are applied are closely
related to the parameters of these rotations so that it is not in
fact necessary to compute [as in (8) and (10)] the parameters of
these rotations. More precisely, (4) and (5) can be replaced by the
correspondingnormalized Gauss systems, i.e., the algorithm that
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TABLE I
MINIMAL LATTICE ALGORITHM

transforms the coordinates ofP?Y C, rather thanP?Y C:

�n;t 1� �2n;t

� 1� �2n;t �n;t

��n+1;t�1 1� �2n;t�1
�n;t�1

=
�n+1;t 1� �2n+1;t

�n+1;t
(12)

�n;t�1 1� �2n;t�1

� 1� �2n;t�1 �n;t�1

��n+1;t�1 1� �2n;t
�n;t

=
�n+1;t 1� �2n+1;t

�n+1;t
: (13)

The algorithm made of (12) and (13) for the prediction part, and
keeping (6) and (11) for the filtering part, is summarized in Table I;
the storage requirements of the prediction part are reduced to2M+1

parameters (the minimal value [10]), namely, the square-root signal

energy E
f
0
(t), the doubly normalized backward prediction error

residualsf�n;t�1gM�1n=0 , and the PARCOR’sf�n+1;t�1gM�1n=0 : The
filtering part still uses theM + 1 parametersf�n;t�1gMn=0:

This algorithm is a rotation version of that suggested in [2, Section
E]. As each prediction stage of our algorithm performs the mapping
(�n+1;t�1; �n;t; �n;t�1) ! (�n+1;t; �n+1;t; �n+1;t), it is clearly
related to (1), as well as to the algorithm of [13, (10) and (11)],
which perform the same global transformation. This can be explained
by spherical trigonometry principles: Since there are three degrees of
freedom in a spherical triangle, there can be no more that three distinct
relationships among the six elements. One such set is comprised of
the three cosine laws, i.e., (1) in the FRLS framework, from which
any other spherical trigonometry formula may be deduced.

IV. STABLE ERROR PROPAGATION

The verification of stable error propagation follows the methodol-
ogy of [10], in which stable error propagation is shown subordinate
to a backward consistency property. The time updates in Table I may
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be written as a state recursion

�(t) = T [�(t� 1); yt] (14)

in which

�(t) = [ E
f
0
(t); �0;t; � � � ; �M�1;t; �1;t; � � � ; �M;t] (15)

is the state vector comprising the variables that need be written for
storage at each iteration, andT [�; �] is the mapping that implements
the subroutine of Table I at each iteration.

As in [10] and [12], we denote bySi the set of reachable states�(t)
in exact arithmetic, as the past inputyt; yt�1; yt�2; � � � is varied over
all possibilities. If the computed state vector, call it~�(t) (including
thus roundoff errors), satisfies

~�(t) 2 Si (16)

then ~�(t) may be understood as the exact solution reached by some
perturbed past input sequence~yt; ~yt�1; ~yt�2; � � � : The influence of the
perturbation~�(t)��(t) on the future evolution of (14) is then identical
to the influence of a corresponding perturbation on the past input
sequence. With persistently exciting future datayt+1; yt+2; � � �, the
influence of this perturbation will be exponentially decaying owing to
exponential data weighting(�< 1): For more detail on this simple
argument, we refer the reader to [10], [12], [14], and [15]. It thus
suffices to examine whether the consistency condition (16) can be
enforced in the present algorithm.

To this end, we can connect the variables of the state vector (15)
to the variables of the QR algorithm studied in [10]. The PARCORS
f�n;tg correspond, in the notations of [10], to�n;t = sin�n(t),
whereas the doubly normalized backward prediction errors become
�n;t = sin �n(t): From [10, Prop. 5], the set of reachable state
variables is characterized by the simple inequalitiesj�n�1(t)j<�=2
and j�n(t)j<�=2 for ordersn = 0; 1; � � � ;M; combined with one
prediction error energy being positive. This yieldsSi in the present
algorithm as

j�n�1;tj< 1; j�n;tj< 1; and E
f
0
(t)> 0 (17)

for all n and t: Provided the computed variables always satisfy
these inequalities, consistency applies, which then implies stable error
propagation [10], [12], [14], [15].

To examine satisfaction of the consistency constraints (17), assume
that the expression holds at timet, i.e., j�n�1;tj< 1 and j�n;tj< 1;
we then examine whether it remains in effect at timet+1: The first
computation reads as

E
f
0
(t+ 1) = �1=2 E

f
0
(t)

yt+1
> 0;

�0;t+1 = �0;t+1 =
yt+1

E
f
0
(t+ 1)

)j�0;t+1j = j�0;t+1j< 1:

(The intermediate variables�n;t intervene in the computation�(t+
1) = T [�(t); yt+1] but are not written for storage). The computation
(12) becomes

�n�1;t+1 1� �2n�1;t+1

� 1� �2n�1;t+1 �n�1;t+1

��n;t 1� �2n�1;t
�n�1;t

= aaa

= �n;t+1 1� �2n;t+1
�n;t+1

= bbb

:

Now, with j�n;tj< 1 and j�n�1;tj< 1, we getkaaak< 1: If the norm
of the numerical rotation on the left-hand side is less than1=kaaak, we

obtainkbbbk< 1: This holds, in particular, if the rotation is numerically
passive. The propertykbbbk< 1 then ensures that the inferred variables
�n;t+1 and�n;t+1 fulfill j�n;t+1j< 1 and j�n;t+1j< 1 so that these
computed variables remain consistent. The same argument applied to
(13) shows thatj�n;t+1j< 1 as well so that the rotation required by
the next order index is well defined. Thus, if�(t) 2 Si, then the
updated state vector so computed likewise satisfies�(t + 1) 2 Si:

This gives backward consistency and, thus, stable error propagation.

V. CONCLUDING REMARKS

An alternate rotation-based lattice algorithm was derived. In con-
trast with the algorithm of Ling [7] and Proudleret al. [8], [9],
the present algorithm is minimal in the storage requirements. From
this, stable error propagation is shown easily on verifying that the
computed variables remain backward consistent. The consistency test
of the algorithm amounts to verifying that the square-root signal
energy remains positive and that all other variables are bounded
by unit magnitude. This can be structurally induced by correct
programming or at least tested with negligible overhead if less careful
programming methods are employed.

Our contribution extends the family of minimal fast least-squares
algorithms beyond those identified in [10] and [14]; in contrast to the
backward consistent algorithm of [10], for which the order recursions
are both ascending and descending, all recursions in the present
algorithm are ascending, which thereby affords pipelining of the
computations.
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