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Abstract: The connections between two families
of methods for the harmonic retrieval problem
are explored: the recently derived unitary
Hessenberg methods and the state-space model
based methods. It is shown that in a noise-free
situation, the unitary Hessenberg methods can be
understood as one particular case of a very
popular high resolution algorithm, the Toeplitz
approximation method (TAM) of S.Y. Kung.

1 Introduction

Originating with Pisarenko in 1972, various algorithms
have emerged for solving the harmonic retrieval (HR)
problem, the most popular signal processing
application of which is the estimation of the directions
of arrival of plane waves impinging on a linear array.
Among them, two particular families of second-order
techniques arose in parallel: the unitary Hessenberg
(UH) methods and the state-space model based
methods. However, these techniques originated from
slightly different considerations. The efforts leading to
the UH methods were essentially devoted to developing
efficient algorithms, making full use of the rich
algebraic structure of the problem, while the state-
space viewpoint was more focused on sensitivity
considerations to the input parameters. This may
explain why the connections between these two
techniques, which at first sight seem rather distinct, do
not seem to be well known. It is natural though that
such connections should exist, since in both cases the
unknown parameters are computed via an eigenvalue
decomposition (EVD) of some unitary matrix. The aim
of this short paper is to exhibit their common features.
More precisely, we show that, in a noise-free situation,
the UH methods can be understood, to some extent, as
one particular case of a more general, very popular
high resolution algorithm, the Toeplitz approximation
method (TAM) of S.Y. Kung.

2  UH methods for the HR problem

Consider the standard signal model consisting of p
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superimposed  sinusoids
additive noise:

corrupted by zero-mean
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where {A4;} are complex zero-mean uncorrelated ran-
dom variables, and s; and v, are uncorrelated. The nth-
order covariance matrix RYof x; is thus equal to the
sum of the ‘signal’ or ‘source’ covariance matrix RS
plus that of the noise R,}. If we assume a noise-free sit-
uation [Note 1], R} reduces to the singular (we assume
n = p) matrix R, denoted for short as R,
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with p?= E(/4}%), and the problem is to find {z; = &>V,
p; € R}P-;. Eqn. 1 is referred to in the mathematical
literature as the Caratheodory representation of posi-
tive semidefinite Toeplitz matrices, independently of
any underlying signal model [1].

The reflection coefficients s; of R, satisfy |s;] < 1 for 1
<isp-1land|s)| =1 Let ¢ 2V(1 - |sf*), and let H, be
the UH lower matrix, defined as
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Note 1: Though unrealistic in practise, this assumption is necessary here,
because the UH methods rely on the uniqueness of the Caratheodory rep-
resentation in the singular case, as will be explained.

IEE Proc.-Radar, Sonar Navig., Vol. 143, No. 6, December 1996



-8 C 0
C1 ST
, (2)
0

(This is indeed a parametrisation of all UH lower
matrices with positive superdiagonal elements). A clas-
sical result (see, for example, [2]) asserts that the Kry-
lov vectors &l 2[1 0 ... 0], ¢lH,, ... are the successive
rows of 1~/ry L, where L, (an (n + 1) x p matrix) is the
lower triangular Cholesky factor of R,;:

R, =L, LI, LI = /rg(e, Hey, - (H))"e1)  (3)
Recently, this structural property was exploited for
solving the HR problem. Let H, = XAXH, with XX* =
I and A = diag.(A)%,, |A] = 1 for all j, be a unitary
EVD of the unitary matrix H,. Inserting this EVD into
eqn. 3, we obtain
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Comparing this with eqn. 1, we conclude that {A,
Vi rolxy |} 21 are the unknown frequencies and associated
weights [Note 2], due to the uniqueness (up to permu-
tations), in the singular case, of the Caratheodory rep-
resentation [1].
These nice results gave rise to the family of UH
methods for solving the HR problem (see, for example,
[3-6]). They consist of two distinct parts:

(i) (a) Compute the reflection coefficients {s;} 72y, Is] <1
for 1 <i=p-1and|s| =1, associated to the (noise-
free) first singular positive semi-definite matrix R, out
of the series Ry, Ry, ..., R

I L
(b) then compute H, from {s;}/; according to
eqn. 2.

(ii) perform a unitary EVD H,, = XAXH of H, and set
[X1 xp] = [\/VO OT]X Then {)‘ya |xj|}]p:1 = {Zia pi}zp:l‘
Lastly, it is worth mentioning that step (ii) can be per-
formed efficiently by a large variety of specific algo-
rithms (see [3] and the references in [4]), which all
exploit the Schur parametrisation (i.e. eqn. 2) of H,. If
such an algorithm is used, then actually (i)-(b) can be
avoided, since in this case the explicit computation of
H, is not required. Computing a full eigenvector basis
of H, can sometimes be avoided as well (see [3] for
detaif)s).

3 Relation with the TAM of S.Y. Kung

In a well known paper [7], S.Y. Kung addressed the
HR problem in the general case where the data are cor-

Note 2: Note that there are as many Caratheodory representations for
R, as numbers s, on the unit circle. The role played in eqns. 2-4 by the
Jast reflection coefficient s, is thus of paramount importance: any other
value on the unit circle would lead via eqn. 4 to frequencies and weights
having no connection with those present in the signal.
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rupted by a possibly coloured additive noise, and gave
a pertinent heuristic formulation of it. However, he
could not find an exact solution, except in the very spe-
cial case of additive white noise, and thus focused on
an SVD-based suboptimal solution which he named the
TAM. Later on, this algorithm was further studied in
the context of state-space model based signal process-
ing (see, for example, [8-10] and the survey paper [11]),
and has been recognised to be equivalent in certain
cases to ESPRIT [10, 11]. We shall now recall its main
features in such a way that further connection with the
UH methods of Section 2 becomes apparent.

Let us assume as well that no noise is present. R
then reduces to RS and can be expressed as in eqn. 1.
Thus there exists one particular basis E of the ‘signal
subspace’ Span(R,) (i.e. the column space of R}) that
has the Krylov vector structure E = [ey = [p; ... pp]T,
DHe,, (DH)%e,...]", with D = diag(z,)~;. Thus, any other
basis also possesses the same structure:

R, = Ufni1)x, V! = 3T invertible, such that

uff
R, = (ET ) (TEH) = | WF | [v, Flvg-- ],
N—_——— :

U VH
with F = TDT!

Since F and D are similar, the parameters {z;} are the
cigenvalues of the matrix F associated with any basis U
of Span(R,).

Recovering the weights p; along the same lines [Note
3] requires some additional knowledge: we need a full
factorisation of R, (i.e. U and V, and not just a basis U
of the signal subspace), as well as a full EVD F =
XAX-! of F. The idea is that, among all possible factor-
isations of R, (corresponding to all invertible matrices
T), the relevant one is the Caratheodory representation,
for which F is diagonal. One should thus come back to
this privileged factorisation (starting from any other
one R, = UVH), which is done by diagonalising F.
More precisely,
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with [x; ... x,] 2ufX and [y, ... y,J¥ & Xlv,. Conse-
quently, using the same arguments as above, we con-
clude that {4, (xp;)"?} 21 = {zs P}l
Now, in practice, numerical considerations make it
relevant (i) to perform a Hermitian factorisation (i.e. U
= V) of R,, since this ensures that F is unitary and thus
well conditioned for EVD ([11], p. 286); moreover, X
can be chosen unitary too, and in this case x; = y; and
(ii) to compute U from an EVD of the covariance
matrix (due to the robustness to additive noise on the
matrix entries ([11], p. 296). Summarising, the TAM

Note 3: That is, using EVD ideas (this is not the only possibility, since
there exist other formulas for expressing the weights).
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method reduces in the noise-free case to the following
algorithm:

(i) (¢) Compute a matrix square root U of R,, by per-
forming an EVD of R,: R, = (U'AV?)(A2U'H) 2 UUH,

(b) then compute F from U (by, for example, solving
a least-squares or total least-squares system; see [11], p.
295 for details).

(i) Perform a unitary EVD F = XAX¥ of F and com-
pute [x; ... x,] = uflX. Then {4, x|}/ = {z;, p;}/=1-

We are now ready to compare UH and state-space
model based methods. Since we are in a noise-free situ-
ation, the numerical necessity to have an estimated sig-
nal subspace as close as possible to the true one is
mitigated, and thus the choice made by the TAM algo-
rithm (R,'? is made of eigenvectors) is not as relevant
as in the noisy case. So we can free ourselves of this
constraint and consider that the Hermitian factorisa-
tion of R,, can be chosen arbitrarily.

The connection with UH methods is now obvious:
they correspond to the particular case of the state-
space model based algorithms, when the square root of
R,, is chosen to be its Cholesky factor L,. In that case,
F = H, (this fact was already observed by the state-
space model based method researchers ([9], p. 1791),
but no link with the UH methods was hinted at). Of
course, F is computed in each method in a totally dif-
ferent way (compare step (i) of both methods), but at
least theoretically these two first steps lead to the same
result (the results might obviously be quite different
when working on covariance lag estimates). Moreover,
u, is then equal to Vre;; performing the general vector-
matrix multiplication [x; ... x,] = uiX reduces to multi-
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plying the first components of the eigenvectors basis by
Vry (see eqn. 4).
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