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ABSTRACT

An important problem in signal processing consists in esti-
mating an unobservable process x = {xn}n∈IN from an ob-
served process y = {yn}n∈IN. In Linear Gaussian Hidden
Markov Chains (LGHMC), recursive solutions are given by
Kalman-like Bayesian restoration algorithms. In this paper,
we consider the more general framework of Linear Gaussian
Triplet Markov Chains (LGTMC), i.e. of models in which the
triplet (x, r,y) (where r = {rn}n∈IN is some additional pro-
cess) is Markovian and Gaussian. We address unsupervised
restoration in LGTMC by extending to LGTMC the EM pa-
rameter estimation algorithm which was already developed in
classical state-space models.

1. INTRODUCTION

An important problem in signal processing consists in recur-
sively estimating an unobservable process x = {xn}n∈IN

from an observed process y = {yn}n∈IN. This is done clas-
sically in the framework of Hidden Markov Chains (HMC),
which have been extensively studied for many years (see e.g.
the recent tutorial [1]).

In this paper we deal with the recently introduced Pair-
wise [2] (PMC) and Triplet [3] Markov Chains (TMC). In
the PMC model we assume that the pair (x,y) is a Markov
Chain (MC), and in the TMC model that the triplet (x, r,y)
(in which r = {rn}n∈IN is some additional process) is an MC.
These models are more general than the HMC model and yet
enable the development of efficient restoration algorithms of
the hidden process x. In particular, a Kalman-like filtering al-
gorithm for TMC has been proposed in [4] [5], and smoothing
algorithms for TMC have been proposed in [6].

Now, in [4]-[6] the parameters were assumed to be known.
In this paper we thus address the unsupervised case and de-
velop the EM parameter estimation algorithm for linear Gaus-
sian TMC. The rest of this paper is organized as follows. In
section 2 we briefly recall the three embedded HMC, PMC
and TMC models. In section 3 we develop the EM algorithm
for linear Gaussian TMC. Finally in section 4 we perform
some simulations and compare the restoration results in both
the supervised and unsupervised cases.

2. PARTIALLY OBSERVED MARKOV CHAINS

2.1. HMC and Kalman filtering

HMC are widely used in such topics as speech recognition,
digital communications, tracking and control. In an HMC,
x is first assumed to be an MC (by the very meaning of the
words ”HMC”), and next the stochastic interactions of x and
y are designed in such a way that x can be efficiently restored
from y. Let us for instance consider the classical state-space
system :

{
xn+1 = Fnxn + Gnun

yn = Hnxn + Jnvn
, (1)

in which xn ∈ IRnx is the state, yn ∈ IRny is the observation,
un ∈ IRnu is the process noise and vn ∈ IRnv is the measure-
ment noise. Let x0:n = {xi}n

i=0 and y0:n = {yi}n
i=0. Let

also p(xn), p(x0:n) and p(xn|y0:n), say, denote the proba-
bility density function (pdf) (w.r.t. Lebesgue measure) of xn,
the pdf of x0:n, and the pdf of xn, conditional on y0:n, re-
spectively; the other pdf are defined similarly. The processes
u = {un}n∈IN and v = {vn}n∈IN are assumed to be in-
dependent, jointly independent and independent of x0. As a
consequence,

p(xn+1|x0:n) = p(xn+1|xn) ; (2)

p(y0:n|x0:n) =

n∏

i=0

p(yi|x0:n) ; (3)

p(yi|x0:n) = p(yi|xi) for all i, 0 ≤ i ≤ n . (4)

In other words, x is an MC, and since x is known only through
the observed process y, (1) is an HMC (with continuous state-
space).

The filtering problem consists in computing the poste-
rior pdf p(xn|y0:n). If furthermore x0 and wn = (un,vn)
are Gaussian, then p(xn|y0:n) is also Gaussian and is thus
described by its mean and covariance matrix. Propagating
p(xn|y0:n) amounts to propagating its parameters, and the
general recursive algorithm for computing p(xn|y0:n) reduces
to the celebrated Kalman filter.



2.2. Embedded Markovian models : HMC⊂ PMC⊂ TMC

Let us now call PMC a model in which the pair (x,y) is as-
sumed to be an MC. So in a PMC x and y are modeled alto-
gether (and in a symmetric way), and a PMC can indeed be
seen as a partially observed vector MC, in which we observe
one component y and we want to restore the other one x.

Our interest for PMC comes from the following observa-
tion. If (2) to (4) hold, then (x,y) is an MC, so any HMC
is also a PMC. The converse is not true, because if (x,y) is
a (vector) MC then the marginal process x is not necessar-
ily an MC; moreover, conditionnally on x0:n, the variables
{yi}n

i=0 form an MC and thus are not necessarily indepen-
dent [4]. On the other hand, due to the symmetry of the PMC
model, the conditional law of x0:n given y0:n is also Marko-
vian. This key computational property (which in the context
of HMC is well known, see e.g. [1, eq. (5.21) p. 1539]), in
turn, enables the derivation of efficient HMC-like restoration
algorithms. In particular, in the linear Gaussian case, the ex-
tension to PMC of the Kalman filter has been considered in
[4] [5].

The PMC model can be further generalized to the TMC
model [3] which we now recall. A TMC is a stochastic dy-
namical model which describes the interactions between 3
processes : the hidden process x, the observed process y, and
a third process r which, depending on the application, can
have different physical meanings. By definition, the triplet
t = (x, r,y) is a TMC if (x, r,y) is a (vector) Markov chain.
The interest of TMC is twofold :

• As far as modeling is concerned, if (r, (x,y)) is an MC
then the marginal process (x,y) is not necessarily an
MC, so TMC are not necessarily PMC;

• As far as restoration is concerned, the TMC (r,x,y)
can be viewed as the PMC ((r,x),y); so x∗ = (r,x)
can be restored from y by a PMC algorithm, and finally
x is obtained by marginalization (such algorithms have
been proposed in the discrete [3] or linear Gaussian [5]
cases).

It happens that TMC include some classical generaliza-
tions of model (1), such as jump-Markov state-space systems,
or state-space systems with colored process and / or measure-
ment noises [5] (other examples of TMC can be found in [7]).
Finally, let us notice that in practice computer experiments
have demonstrated the superiority of PMC [8] (resp. TMC
[9]) over HMC in the context of image segmentation.

3. PARAMETER ESTIMATION IN LINEAR
GAUSSIAN TMC

The aim of this section is to derive and implement the EM
parameter estimation algorithm in constant parameter linear
Gaussian TMC. Let x∗

n = [xT
n , rT

n ]T . From now on we shall

thus assume that

[
x∗

n+1

yn

]

︸ ︷︷ ︸
tn+1

=

[
Fx

∗,x∗

Fx
∗,y

Fy,x∗

Fy,y

]

︸ ︷︷ ︸
F

[
x∗

n

yn−1

]
+

[
wx

∗

n

wy
n

]

︸ ︷︷ ︸
wn

, (5)

in which w = {wn}n∈IN is independent and independent of
t0 = x∗

0, x∗
0∼N (x̂∗

0,P
∗
0) and

wn∼N (0,

[
Qx

∗,x∗

Qx
∗,y

Qy,x∗

Qy,y

]

︸ ︷︷ ︸
Q

). (6)

Then t = {tn}n∈IN is a Gauss-Markov process and we set
p(x∗

i |y0:j) ∼ N (x̂∗
i|j ,P

∗
i|j). We also set t0:n = {ti}

n
i=0 and

we assume that P∗
0, Q and Qy,y are invertible.

3.1. EM algorithm

Let Θ = (Θ0, Θ1), with Θ0 = (x̂∗
0,P

∗
0) and Θ1 = (F ,Q),

be the parameters in model (5). We want to compute the
EM algorithm [10] (see also [11] [12] [13] and the references
therein), which consists in the recursion

Θ(i) = arg max
Θ

q(Θ(i−1), Θ), (7)

in which

q(Θ(i−1), Θ)=EΘ(i−1)(ln pΘ(t0:N+1)|y0:N ) (8)

=

∫
(ln pΘ(t0:N+1))pΘ(i−1)(x∗

0:N+1|y0:N)dx∗
0:N+1.

Since t is a TMC, the joint pdf pΘ(t0:N+1) factorizes as

pΘ(t0:N+1) = pΘ0(x
∗
0)pΘ1(t1|x

∗
0)

N∏

n=1

pΘ1(tn+1|tn)

with

pΘ0(x
∗
0) ∼ N (x̂∗

0,P
∗
0),

pΘ1(t1|x
∗
0) ∼ N (FJ x∗

0,Q),

pΘ1(tn+1|tn) ∼ N (Ftn,Q)

and J = [ Inx∗×nx∗
, 0T

ny×nx∗
]T . Droping the explicit de-

pendence on the current candidate parameter Θ(i−1), the q-
function thus decouples as

q(Θ) = q−1(Θ0) + q0(Θ1) +

N∑

n=1

qn(Θ1). (9)



3.1.1. E-step

Let us address the E-step. Let us first take n ≥ 1. One can
show that

qn(Θ1) =EΘ(i−1) (ln pΘ1(tn+1|tn)|y0:N )

=

∫
(ln pΘ1(tn+1|tn))pΘ(i−1)(x∗

n,x∗
n+1|y0:N )dx∗

ndx∗
n+1

=
−1

2
(nt ln(2π)−ln |Q−1| − trace[FTQ−1Ctn+1,tn

]

− trace[Q−1FCT
tn+1,tn

] + trace[Q−1Ctn+1,tn+1 ]

+ trace[FTQ−1FCtn,tn
]),

in which |Q−1| denotes the determinant of Q−1, and

Ctn,tn
= E(tntT

n |y0:N )=

[
P∗

n|N 0

0 0

]
+

[
x̂∗

n|N

yn−1

][
x̂∗

n|N

yn−1

]T

,

Ctn+1,tn
=

[
Cov(x∗

n+1,x
∗
n|y0:N )0

0 0

]
+

[
x̂∗

n+1|N

yn

][
x̂∗

n|N

yn−1

]T

.

Let us now compute q−1(Θ0) and q0(Θ1). We have

q−1(Θ0) =
−1

2
(nx∗ ln(2π) − ln |P∗−1

0 | + trace(P∗−1
0 P∗

0|N )

+ (x̂∗
0|N − x̂∗

0)
T P∗−1

0 (x̂∗
0|N − x̂∗

0)),

q0(Θ1) =
−1

2
(nt ln(2π)−ln|Q−1|−trace[J TFTQ−1Ct1,x∗

0
]

− trace[Q−1FJCT
t1,x∗

0
] + trace[Q−1Ct1,t1 ]

+ trace[J TFTQ−1FJCx∗

0 ,x∗

0
]),

with Cx∗

0 ,x∗

0
= P∗

0|N + x̂∗
0|N (x̂∗

0|N )T and

Ct1,x∗

0
=

[
Cov(x∗

1,x
∗
0|y0:N )

0

]
+

[
x̂∗

1|N

y0

]
(x̂∗

0|N )T . (10)

3.1.2. M-step

We now address the M-step, i.e. the maximization w.r.t. Θ of
(9). Using standard matrix tools [14] [15] we get

x̂
∗(i)
0 = x̂∗

0|N , (11)

P
∗(i)
0 =P∗

0|N , (12)

F (i) = C̃tn+1,tn
C̃−1

tn,tn
, (13)

Q(i) =
1

N + 1
[C̃tn+1,tn+1−C̃tn+1,tn

C̃−1
tn,tn

C̃T
tn+1,tn

], (14)

in which

C̃tn+1,tn
= Ct1,x∗

0
J T +

N∑

n=1

Ctn+1,tn
, (15)

C̃tn,tn
= JCx∗

0 ,x∗

0
J T +

N∑

n=1

Ctn,tn
, (16)

C̃tn+1,tn+1 =

N∑

n=0

Ctn+1,tn+1 . (17)

3.2. Practical implementation

In order to implement the recursion (Θ(i−1) → Θ(i)), we see
from (11) (12) (13) (14) that we need to compute x̂∗

n|N , P∗
n|N

and Cov(x∗
n+1,x

∗
n|y0:N ) for all n.

First, x̂∗
n|N and P∗

n|N are given for instance by the RTS
smoothing algorithm for TMC [6, Proposition 3] (or alter-
nately by the TMC Two-Filter algorithm [6, Proposition 4]),
which we recall for convenience of the reader :

K∗
n|N = P∗

n|n[Fx
∗,x∗

− Qx
∗,y(Qy,y)−1Fy,x∗

]T P∗−1
n+1|n, (18)

x̂∗
n|N = x̂∗

n|n+K∗
n|N[x̂∗

n+1|N−x̂∗
n+1|n], (19)

P∗
n|N = P∗

n|n −K∗
n|NP∗

n+1|nK∗T
n|N

+ K∗
n|NP∗

n+1|NK∗T
n|N . (20)

So, we see from these equations that (x̂∗
n|N ,P∗

n|N ) can be
computed recursively (in the backward direction) provided
(x̂∗

n|n, P∗
n|n) and (x̂∗

n+1|n, P∗
n+1|n) are known; these, in turn,

can be computed recursively (in the forward direction) by the
TMC Kalman filter algorithm, see [4] [5]. On the other hand,
Cov(x∗

n+1,x
∗
n|y0:N ) is not directly given by the TMC RTS

smoother, but can be computed as

Cov(x∗
n+1,x

∗
n|y0:N ) = P∗

n+1|NK∗T
n|N . (21)

Proof 1

We have [6]

p(x∗
n|x

∗
n+1,y0:N ) = p(x∗

n|x
∗
n+1,y0:n)

∼ N (x̂∗
n|n+K∗

n|N(x∗
n+1−x̂∗

n+1|n),P∗
n|n−K∗

n|NP∗
n+1|NK∗T

n|N ).

On the other hand, p(x∗
n+1|y0:N ) ∼ N (x̂∗

n+1|N ,P∗
n+1|N ).

So

p(x∗
n,x∗

n+1|y0:N )∼ N (

[
x̂∗

n|N

x̂∗
n+1|N

]
,

[
P∗

n|N K∗
n|NP∗

n+1|N

P∗
n+1|NK∗T

n|N P∗
n+1|N

]
),

whence (21).
Let us finally summarize our estimation algorithm.
Expectation-Maximization algorithm

1. Initialization of the parameters.

Choose x̂
∗(0)
0 , P∗(0)

0 , F (0) and Q(0).

2. Iteration (i − 1) → (i).

Run a TMC smoother with parameters estimates Θ(i−1) =

(x̂
∗(i−1)
0 , P∗(i−1)

0 , F (i−1), Q(i−1)), compute (19), (20)
and (21), and finally compute Θ(i) from (11), (12), (13)
and (14).



4. SIMULATIONS

In this final section we perform some simulations. We con-
sider a linear Gaussian TMC model with parameters x̂∗

0 =
[.5, .5]T , P∗

0 = 2.5I2, and

F =




.12 .10 .11

.11 .10 .12

.10 .11 .12


 , Q =



.18 .15 .16
.15 .18 .14
.16 .14 .18


 ,

and we restore the hidden process x by 3 different algorithms.
The first figure illustrates the restored state, and the second
one the empirical MSE (in dB).

In the first two experiments, we use a TMC Kalman filter,
respectively in a supervised and unsupervised environment; in
the blind framework, the model parameters are first estimated
by the EM algorithm initialized by x̂

∗(0)
0 = [.6, .6]T , P∗(0)

0 =
3I2, and

F (0) =




.10 .09 .10

.13 .09 .07

.10 .15 .09


 , Q(0) =



.20 .12 .13
.12 .20 .15
.13 .15 .20


 .

All simulations are averaged over 100 realizations, and the

convergence criteria of the EM algorithm is ||Θ(i)−Θ(i−1) ||2
||Θ(i−1)||2

≤

0.1. In the third simulation we finally assume that the model
is a constant linear Gaussian HMC (with unknown parame-
ters), estimate its parameters via the EM algorithm and re-
store x thanks to a Kalman filter. As expected, the super-
vised TMC restoration algorithm outperforms the unsuper-
vised one, which itself outperforms the unsupervised Kalman
filter for HMC.
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