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ABSTRACT

An important problem in signal processing consists in es-
timating an unobservable processx = {xn}n∈IN from an
observed processy = {yn}n∈IN. In Linear Gaussian Hid-
den Markov Chains (LGHMC), the classical recursive solu-
tion is given by the Kalman filter. In this paper, we consider
Linear Gaussian Triplet Markov Chains (LGTMC) by as-
suming that the triplet(x, r,y) (in which r = {rn}n∈IN is
some additional process) is Markovian and Gaussian. We
first show that this model encompasses and generalizes the
classical linear stochastic dynamical models with autore-
gressive process and / or measurement noise. We next pro-
pose (for the regular and for the perfect-measurement cases)
restoration Kalman-like algorithms for general LGTMC.

1. INTRODUCTION

Let us consider the classical linear dynamical stochastic sys-
tem : {

xn+1 = Fnxn + Gnun

yn = Hnxn + Jnvn
, (1)

in which xn ∈ IRnx is the state,yn ∈ IRny is the obser-
vation, andFn, Gn, Hn andJn are known deterministic
matrices. The input noiseun ∈ IRnu and the measurement
noisevn ∈ IRnv are assumed to be independent, jointly
independent and independent ofx0.

Let x0:n = {xi}n
i=0 and y0:n = {yi}n

i=0. Let also
p(xn), p(x0:n) and p(xn|y0:n), say, denote the probabil-
ity density function (pdf) (w.r.t. Lebesgue measure) ofxn,
the pdf ofx0:n, and the pdf ofxn, conditionally ony0:n,
respectively; the other pdf are defined similarly. A funda-
mental problem associated with (1) (the so-called filtering
problem) is the recursive computation of the posterior pdf
p(xn|y0:n). If furthermorex0 andnn = [uT

n ,vT
n ]T are

Gaussian variables, thenp(xn|y0:n) is also Gaussian and
is thus described by its mean and covariance matrix. Propa-
gatingp(xn|y0:n) amounts to propagating these parameters,
and the algorithm we get is the celebrated Kalman filter1.

1As is well known, one can equivalently drop the Gaussian assumption

Since this pionnering work, the Kalman filter has been
generalized in many directions. To name just a few exam-
ples, square-root type algorithms have been proposed; the
independence assumptions on{un} and {vn} have been
dropped; and the extension to non-linear and / or non- Gaus-
sian systems has been considered.

Yet another direction in which it is possible to extend
the Kalman filter consists in releasing some conditional in-
dependence assumptions amongx andy. Let us come back
to model (1). We see thatx is a Markov Chain (MC), and
since it is known only through the observed processy, (1)
is an HMC. Now, if (1) holds then both{(xn, yn)}n∈IN

and{(xn+1, yn)}n∈IN are (vector) MC. Conversely, start-
ing only from one of these assumptions (i.e. assuming a so-
called ”Pairwise” MC (PMC) model) is a more general point
of view, which nevertheless enables efficient restoration al-
gorithms; extending the Kalman filter to a model where
{(xn, yn)} (resp. {(xn+1, yn)}) is Markovian has been
considered in [1] (resp. [2]).

Let nowr = {rn}n∈IN be some additional process, and
let us settn = [xT

n , rT
n ,yT

n−1]
T . A Triplet MC (TMC) is

a model in which we only assume that{tn} is a (vector)
MC. This model generalizes the PMC model, and yet en-
ables (in the LG regular case) the development of an effi-
cient Kalman-like restoration algorithm [3].

Let us turn to the contents of this paper. In section 2,
we show that the classical linear models with autoregressive
process and/or measurement noise are, among other mod-
els, some important particular cases (mostly with perfect,
i.e. with unnoisy measurements) of the general linear TMC
model; so the triplet model, which initially was designed as
a Markovian extension of (1), happens also to encompass
(and generalize) the early classical generalizations (as re-
gards processes{un} and{vn}) of model (1). In section
3, we propose a restoration algorithm for general LGTMC
with perfect measurements. Finally, some applications are
considered in section 4.

and derive the Kalman filter as the recursive solution of a linear minimum
mean-square error estimation procedure.



2. LINEAR TMC : DEFINITION & APPLICATIONS

2.1. The linear TMC model

Letx = {xn}n∈IN be the hidden state process,y = {yn}n∈IN

the observed process andr = {rn}n∈IN an additional (pos-
sibly artificial) process. The processt = {tn}n∈IN, with
tn = [xT

n , rT
n ,yT

n−1]
T is a linear TMC [3] if xn+1

rn+1

yn


︸ ︷︷ ︸

tn+1

=

 Fx,x
n Fx,r

n Fx,y
n

Fr,x
n Fr,r

n Fr,y
n

Fy,x
n Fy,r

n Fy,y
n


︸ ︷︷ ︸

Fn

 xn

rn

yn−1

 +

 wx
n

wr
n

wy
n


︸ ︷︷ ︸

wn

,

(2)
in which w = {wn}n∈IN is a zero-mean process which is
independent and independent oft0 = [xT

0 , rT
0 ,0T ]T . We

assume that matrixFn is known.

2.2. Some particular cases

Let us first see that some classical and widely used mod-
els are particular linear TMC; they differ from one another
by the matricesFn (some submatrices of which are equal
to zero); by the physical meaning of the additional process
r = {rn}n∈IN; and/or by independence assumptions among
subvectors ofwn.

2.2.1. Linear HMC

The standard state-space model is a very particular linear
TMC, since (2) reduces to (1) if we assume that matrices
Fx,r

n , Fx,y
n , Fr,x

n , Fr,y
n , Fy,r

n andFy,y
n are all equal to

zero, and that{wx
n}, {wr

n} and{wy
n} are independent.

2.2.2. Autoregressive process noise

The case where in (1){un} becomes an MC has been intro-
duced in [4] (see also [5]); this model can be written asxn+1

un+1

yn

=

Fn Gn 0nx×ny

0nu×nx Au
n 0nu×ny

Hn 0ny×nu 0ny×ny

xn

un

yn−1

+
0nx×1

ξu
n

Jnvn

. (3)

2.2.3. Autoregressive measurement noise

The case where in (1){vn} becomes an MC has been first
addressed in [6], then generalized in [7] (see also [4] and
[5]). This model is widely used in a lot of applications, and
in particular in speech enhancement and coding, see e.g.
[8]; it can be rewritten asxn+1

vn+1

yn

=

Fn 0nx×nv 0nx×ny

0nv×nx Av
n 0nv×ny

Hn Jn 0ny×ny

xn

vn

yn−1

+
Gnun

ξv
n

0ny×1

. (4)

2.2.4. Autoregressive model noise

Sorenson [9] introduced a model which extends the two pre-
vious ones by assuming that{un} and{vn} are simultane-
ously Markovian (but still independent); see also [10] for a
full algorithmic treatment and applications to radar tracking.
This model can be further generalized by assuming that[

un+1

vn+1

]
︸ ︷︷ ︸

nn+1

=
[

Au
n Au,v

n

Av,u
n Av

n

]
︸ ︷︷ ︸

An

[
un

vn

]
+

[
ξu
n

ξv
n

]
,︸ ︷︷ ︸

ξn

(5)

whereξ = {ξn}n∈IN is zero mean, independent and inde-
pendent ofn0. The associated triplet model isxn+1

nn+1

yn

=

 Fn Gn 0nx×ny

0nn×nx An 0nn×ny

Hn Jn 0ny×ny

xn

nn

yn−1

+
0nx×1

ξn

0ny×1

 , (6)

with Gn = [Gn,0nx×nv ] andJn = [0ny×nu ,Jn]; it re-

duces to the model introduced by Sorenson ifA(u,v)
n =

0nu×nv , A(v,u)
n = 0nv×nu and{ξu

n} and{ξv
n} are inde-

pendent.

2.2.5. Linear PMC model and its extensions

The PMC model introduced in [2] reads[
xn+1

yn

]
︸ ︷︷ ︸

Zn+1

=
[

F1
n F2

n

H1
n H2

n

]
︸ ︷︷ ︸

Fn

[
xn

yn−1

]
+

[
G11

n G12
n

G21
n G22

n

]
︸ ︷︷ ︸

Gn

[
un

vn

]
︸ ︷︷ ︸

nn

,

(7)
wheren = {nn}n∈IN is a zero-mean process which is inde-
pendent and independent ofx0. This model can be seen as
a linear TMC. If we now assume thatn is Markovian, then
the model becomesxn+1

nn+1

yn

=

 F1
n G

1

n F2
n

0nn×nx An 0nn×ny

H1
n G

2

n H2
n


xn

nn

yn−1

+
0nx×1

ξn

0ny×1

 , (8)

with G
1

n = [G11
n ,G12

n ] and G
2

n = [G21
n ,G22

n ], which,
again, is a particular linear TMC.

3. LGTMC : RESTORATION ALGORITHMS

The aim of this section is to derive an algorithm for com-
puting recursivelyp(xn|y0:n) in the case of an LGTMC.

Let us first gather the unobserved variablesxn andrn

into a commun vectorx∗n = [xT
n , rT

n ]T . Then (2) can be
rewritten more compactly as[

x∗n+1

yn

]
︸ ︷︷ ︸

tn+1

=
[
Fx∗,x∗

n Fx∗,y
n

Fy,x∗

n Fy,y
n

]
︸ ︷︷ ︸

Fn

[
x∗n
yn−1

]
+

[
wx∗

n

wy
n

]
︸ ︷︷ ︸

wn

. (9)



Let

E(wnwT
m)=

[
Qx∗,x∗

n Qx∗,y
n

Qy,x∗

n Qy,y
n

]
δn,m =Qnδn,m . (10)

Model (2) is indeed a partially observed vector MC, in
which we observe some components{yn}, and we want to
restore (part of) the remaining ones{x∗n}; so our algorithm
computesp(x∗n|y0:n), and nextp(xn|y0:n) is obtained by
marginalization. Let us remark thatp(x∗n|y0:n) can be com-
puted efficiently for, even though TMC are not necessarily
HMC (sincex is not necessarily an MC), the conditional
law of x∗ given y is Markovian; this key computational
property, in turn, enables the derivation of fast algorithms.

3.1. Regular LGTMC

Let us first address the case whereQy,y
n is positive definite.

In this case a Kalman-like filtering algorithm has been pro-
posed in [3]; it is recalled here for convenience of the reader.

Letp(x∗0) ∼ N (x̂∗0,P
∗
0) andp(wn) ∼ N (0,Qn). Then

p(x∗n|y0:n) andp(x∗n+1|y0:n) are Gaussian. Let

p(x∗n|y0:n) ∼ N (x̂∗n|n,P∗
n|n), (11)

p(x∗n+1|y0:n) ∼ N (x̂∗n+1|n,P∗
n+1|n). (12)

Thenx̂∗n+1|n+1 andP∗
n+1|n+1 can be computed from̂x∗n+1|n

andP∗
n+1|n via the following equations :

x̂∗n+1|n = [Fx∗,x∗

n −Qx∗,y
n (Qy,y

n )−1Fy,x∗

n ] x̂∗n|n
+ Qx∗,y

n (Qy,y
n )−1yn

+ [Fx∗,y
n −Qx∗,y

n (Qy,y
n )−1Fy,y

n ] yn−1, (13)

P∗
n+1|n = [Qx∗,x∗

n −Qx∗,y
n (Qy,y

n )−1Qy,x∗

n ]

+ [Fx∗,x∗

n −Qx∗,y
n (Qy,y

n )−1Fy,x∗

n ]×P∗
n|n ×

[Fx∗,x∗

n −Qx∗,y
n (Qy,y

n )−1Fy,x∗

n ]T , (14)

K∗
n+1|n+1 = P∗

n+1|n(Fy,x∗

n+1 )T

× [Qy,y
n+1 + Fy,x∗

n+1 P∗
n+1|n(Fy,x∗

n+1 )T ]
−1

, (15)

x̂∗n+1|n+1 = x̂∗n+1|n + K∗
n+1|n+1

× [yn+1−Fy,x∗

n+1 x̂∗n+1|n−F
y,y
n+1yn], (16)

P∗
n+1|n+1 = P∗

n+1|n −K∗
n+1|n+1[Q

y,y
n+1 +

Fy,x∗

n+1 P∗
n+1|n(Fy,x∗

n+1 )T ] (K∗
n+1|n+1)

T
. (17)

3.2. Perfect measurement LGTMC

As we have seen in section 2.2, some useful models are
particular linear TMC with perfect (i.e., unnoisy) measure-
ments. In this section we thus address the restoration prob-
lem in casewy

n = 0ny×1. Adapting a classical method used
in LGHMC, we shall first perform a state-space transforma-
tion in order to reduce the dimension ofx∗n; we will then
obtain a new stochastic linear dynamical system, and will
propose an estimation algorithm for that system.

3.2.1. State-space transformation

Let us first consider the following alternate partition ofx∗n :

x∗n =
[

(xn)nx×1

(rn)nr×1

]
=

[
(xn)(nx+nr−ny)×1

(rn)ny×1

]
; (18)

Let us partitionFy,x∗

n as

Fy,x∗

n =
[
(Fy,x

n )ny×nx̄ , (Fy,r
n )ny×ny

]
, (19)

and let us assume thatFy,r
n is invertible. In this case the

following transformation[
In∗x−ny 0(n∗x−ny)×ny

Fy,x
n Fy,r

n

]
︸ ︷︷ ︸

Tn

[
xn

rn

]
︸ ︷︷ ︸

x∗n

=
[

xn

yn −Fy,y
n yn−1

]
(20)

is invertible, and thus defines the state-space transformation:[
Tn+1 0

0 Iny

][
x∗n+1

yn

]
︸ ︷︷ ︸

t̃n+1

=
[
Tn+1 0

0 Iny

]
Fn

[
T−1

n 0
0 Iny

][
Tn 0
0 Iny

][
x∗n

yn−1

]
︸ ︷︷ ︸

t̃n

+
[
Tn+1 0

0 Iny

][
wx∗

n

0ny×1

]
. (21)

The firstnx∗ equations read :[
xn+1

yn+1

]
=

[
Fx,x

n Fx,y

n

Fy,x

n Fy,y

n

][
xn

yn

]
+

[
Gx

n

Gy

n

]
yn−1+wn, (22)

in which[
Fx,x

n Fx,y

n

Fy,x

n Fy,y

n

]
= Tn+1Fx∗,x∗

n T−1
n +

[
0nx×nx

0
0 Fy,y

n+1

]
,(23)[

Gx

n

Gy

n

]
= Tn+1Fx∗,y

n −

[
Fx,y

n

Fy,y

n −Fy,y
n+1

]
Fy,y

n , (24)

wn = Tn+1wx∗

n . (25)

3.2.2. Restoration algorithm

Let us finally address the restoration ofxn from {y0:n} in
system (22) (the subsequent restoration ofxn is immediate
if nr ≥ ny, since in this casexn is a subvector ofxn; it can
also be considered ifnr < ny, but this point is omitted here
due to lack of space). From (25) and (10), we get

E(wnwT
m) = Tn+1Qx∗,x∗

n TT
n+1δn,m (26)

=

[
Qx,x

n Qx,y

n

Qy,x

n Qy,y

n

]
δn,m = Qn δn,m .

Let p(x0) ∼ N (x̂0,P0) andp(wn) ∼ N (0,Qn). Then
p(xn|y0:n) andp(xn+1|y0:n) are also Gaussian. Let

p(xn|y0:n) ∼ N (x̂n|n,Pn|n), (27)

p(xn+1|y0:n) ∼ N (x̂n+1|n,Pn+1|n). (28)



Thenx̂n+1|n+1 andPn+1|n+1 can be calculated from̂xn+1|n
andPn+1|n via the following equations2 (the proof is omit-
ted for want of space) :

x̂n+1|n = Fx,x

n x̂n|n + Fx,y

n yn + Gx

nyn−1, (29)

Pn+1|n = Fx,x

n Pn|n(Fx,x

n )T +Qx,x

n , (30)

ŷn+1|n = Fy,x

n x̂n|n + Fy,y

n yn + Gy

nyn−1, (31)

Kn+1|n+1 = Fx,x

n Pn|n(Fy,x

n )T +Qx,y

n , (32)

Ln+1|n+1 = Fy,x

n Pn|n(Fy,x

n )T +Qy,y

n , (33)

x̂n+1|n+1 = x̂n+1|n+Kn+1|n+1L
−1

n+1|n+1(yn+1−ŷn+1|n)(34)

Pn+1|n+1 = Pn+1|n −Kn+1|n+1L
−1

n+1|n+1K
T

n+1|n+1.(35)

4. APPLICATIONS

4.1. Speech Enhancement and Coding

As we have seen in section 2.2, the linear TMC model en-
compasses some classical models. It happens that the algo-
rithm of section 3.2 also includes some classical algorithms
as particular cases.

Let us for instance consider the case of a classical model
with autoregressive measurement noise (we consider this
example because of its wide applicability, in particular in
speech enhancement and coding, see e.g. [8]). If the linear

TMC reduces to (4), thenGx

n andGy

n vanish, so in (29) to
(35) the dependency onyn−1 vanishes, and these equations
reduce to equations of [8]. More precisely, equations (30),
(32) and (34) reduce respectively to [8, eq. 51 p. 1736], [8,
eq. 57 p. 1737] and [8, eq. 56 p. 1736]; while (29) (resp.
(35)) reduces to an equation which can be obtained as part
of [8, eq. 54 p. 1736] (resp. [8, eq. 52 p. 1736]).

4.2. A numerical example

Let us finally provide a numerical example of a general
LGTMC with perfect measurement. Let us set

Fn =

 .12 .10 .11
.11 .10 .12
.10 .11 .12

 , Qn =

 .125 .015 0
.015 .125 0
0 0 0

 ,

and letp(x∗0) ∼ N ([0.5, 0.5]T , 2.5 I2). The first figure
shows the true and filtered states, and the second one the
theoretical and empirical mean square errors; both figures
are averaged over 100 realizations.

2inverses in (34) and (35) should be replaced by a generalized inverse
if Ln+1|n+1 is not invertible.
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5. CONCLUSION

The linear TMC model encompasses and generalizes some
important extensions (colored process and/or measurement
noise) of the standard state-space model. A restoration al-
gorithm for general LGTMC with unnoisy measurements
has been proposed; this algorithm is itself a generalization
of some classical Kalman-like algorithms.
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