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ABSTRACT

In this paper, we address the identification problem of � –inputs� –outputs MA models corrupted by a white noise with unknown
covariance matrix in the case where ��� � . Under certain addi-
tional conditions, we show that the generating function of the MA
model is identifiable up to a ����� constant orthogonal matrix by
using the autocovariance function of the observation.

1. INTRODUCTION

Let 	�

��� ����� � be a � -variate time-series given by


������ ��	����������! #"$� (1)

where ��	��%�&�('*)+-,/. � + �10 + is a � �2� finite impulse response
transfer function, � � is a � -dimensional (non-observable) white
noise sequence for which 3�	������%4� �5�76 , and "$� is an additive� -dimensional white noise (i.e. 3�	�"8	�9:�;"&4<	�=>�?�@��A if 9�B�C= ).
It is assumed that �>� � , i.e., the dimension of 
 is strictly greater
than the dimension of the input � and that the transfer function��	���� is irreducible, i.e. that

Rank 	���	����?�:��� for each �DB��A (2)

If the observations are noiseless (i.e. if "E�EA ), it is well es-
tablished that the transfer function ��	��%� can be consistently es-
timated from the second order statistics of 
%� up to a constant�#�D� orthogonal matrix (e.g. [13], [3]). A number of efficient
algorithms based on the so-called linear prediction approach were
recently derived in this aim (see e.g. [9]). Therefore, under con-
dition (2), the convolutive mixture problem considered here can
be reduced to a separation of an instantaneous mixture by using
the second order statistics of the observation. The purpose of this
paper is to study the behaviour of this approach in the noisy case:
in other words, if FG�(3�	�"$��"H4� � is non zero, is it still possible
to estimate consistently ��	���� up to a constant orthogonal �#�I�
matrix by using the second order statistics of 
%� ? The answer is
known to be positive if the covariance matrix F can be written asF(�KJ:LM6ON where J:L is an unknown scalar parameter. This cor-
responds to the case where the components of the additive noise"$� are decorrelated, and have the same variance. In effect, it
is possible to identify J L from the covariance matrix PRQ of the
vector S Q 	�9T�$�K	�
�4�VUOWXWXWXU 
�4� 0 Q �;4 if the parameter Y is chosen
greater than Z . To explain this, we denote by [ Q 	��\� the so-
called � 	�Y] _^`�<�8�:	�Za bYc d^e� Sylvester matrix associated to

��	���� given by

[/Qf	��\�:�
gh
i �

. WXWOW � ) A
. . .

. . .A � . WXWXW � )

j k
l (3)

Then, it is clear that S Q 	�9T�m��[ Q 	��\�on )5p Q 	�9:�` Rq Q 	�9T� wheren )5p Q 	�9T� and q Q 	�9T� are defined as S Q 	�9T� . The covariance ma-
trix PRQ is thus equal to

P Q �d[ Q 	��\�;[ Q 	��\� 4  #J L 6
As Ysr(Z and ��� � , [/Q8	��\� is tall, and [/Q8	��\�;[/Qt	��\� 4 is
a singular matrix. J L is thus the smallest eigenvalue of PRQ , and
can be consistently estimated from an empirical estimate of P Q .
Therefore, one can estimate consistently the second order statis-
tics of the noiseless signal, and use the above mentionned linear
prediction approach to estimate ��	���� up to an orthogonal ���2�
matrix.

However, the assumption that Fu�GJ L 6 may be restrictive in
certain contexts. Very often, the components of 
 � represent the
signals sampled behind a sensor array. If the noise " is a thermal
noise due to the acquisition devices of the sensors, its components
are likely to be decorrelated. If the sensors are not identical, the
variances of the components of "H� do not necessarily coincide.
The noise may even be spatially correlated if it is due to a super-
position of a large number of weak independent sources. Such a
situation arises e.g. in underwater acoustics. In this paper, we are
going to present certain results showing that, under certain condi-
tions, it is possible to identify ��	��%� up to an orthogonal �2�&� ma-
trix from the exact second order statistics of 
%� in the case where
no a priori information on F is available.

Let us denote by 	�vw�x� ����� � and by 	�vzy� � ���
� � the autocovari-
ance coefficients of the useful signal � ��	�������� � and of 
 � respec-
tively. As "$� is assumed to be white and ��	���� is FIR, it is
clear that v y. �av .  uF , v y� �av&� for ^|{~} 9@}z{�Z , andv y� ��v � �CA for } 9@}���Z . In particular, v y. does not bring any
information on v . . We thus reformulate our problem as follows :

Let ��	����t��'*)+-,/. � + �10 + be a � �I� irreducible
FIR filter, and let 	�vz��� be the autocovariance func-
tion associated to the ”spectral density” �<	����m����	�������4�	��10��M� .
How to identify ��	���� (up to a �R�w� orthogonal ma-
trix) from the knowledge of the truncated sequence	�v � � �?� � � ) ?



This problem was first introduced in [7] if ��� ^ . It is shown
that the unknown � �#^ transfer function ��	���� is not necessarily
identifiable if � � �

. In case of identifiability, an identification
procedure based on the stochastic realization theory is proposed.
However, it is based on a difficult non convex optimization prob-
lem, for which no satisfying solution has been proposed. Later,
still in the case �|� ^ , [2] showed that the SIMO FIR subspace
identification method introduced in [12] if Fb�dJ L 6 could be gen-
eralized if � r�� . The case �D�*^ was first considered in [5] in the
FIR case, and some results in the IIR case are to published ([6]).

We now precise the content of the paper. In section 2, we first
present the results provided by an approach aiming at identifying
the unknown coefficient v . . Subsection 2-1 outlines the approach,
subsection 2-2 reformulates some results of [5], and subsection 2-3
shows how they can be improved. Finally, we introduce in section
3 a new identifiability result based on the so-called Wiener-Hopf
factorization theory.

In this paper, we concentrate on identifiability results based on
the knowledge of the true autocovariance coefficients 	�v � � �?� � � ) .
However, concrete estimation algorithms can be derived immedi-
ately from the results of section 2. The practical use of the material
presented in section 3 is more involved, and is out of the scope of
this paper.

2. IDENTIFICATION OF v . .
2.1. Outline of the results.

The results of this section are based on the following observation.
As � �#� , it exists certain FIR ^8� � filters �/	����@� ' Q+-,/. � + � 0 +
(where Y is to be determined) for which

�/	�������	������*A for each � (4)

or equivalently for which �/	��%����	�������	���0T�?�;4\��A for each � . Let
us assume that a family of degree Y FIR filters 	�� � 	���� UXWXWXW-U ����	��%�?�
satisfying (4) is available, and let us set� 	����&��	�� � 	���� 4 U-WXWOWXU � � 	���� 4 � 4 �(' Q� ,/. � ��� 0 � . Put �V	��%�w�' )� , 0 ) v � � 0 � ��v .  *[t	���� , where [8	��%� is supposed to be
known. As �V	��%� ����	�������	��10�� �;4 , it is clear that

� 	�����v . �
	 � 	����;[t	���� (5)

Equating the coefficients of both sides, this equation allows to
compute the matrix �mv . where �(�~	 � 4 . UXWXWXW-U � 4 Q � 4 . If � is
full column rank, v . can be retrieved from (5), and ��	��%� can be
identified from the whole sequence 	�vw����� , .
� ) .

This approach is based on the FIR filters satisfying (5). There-
fore, it is useful to to present some of their properties. for this,
we have to recall some well known results related to rational sub-
spaces.

A review of rational subspaces Let us first recall that the set� N of all � � ^ rational transfer functions is a � -dimensional sub-
space over the field

� � of all scalar rational transfer functions. Let�
be a � -dimensional (�u� � ) subspace of

� N . It therefore ad-
mits bases � 	����&��	�� � 	��%� UXWXWXWXU ���/	��%�?� characterized by the fact
that Rank 	�� 	����?��� � for almost all � : the rational matrix valued
function � 	��%� is said to have a normal rank equal to � .

�
admits

polynomial bases. A polynomial basis 	�� � 	���� UXWXWOWXU � � 	����?� is said
to be minimal if ' � � , � deg 	�� � 	����?� is minimum (see [10] for more
details). All minimal bases share the same degrees 	�Z � � � , � � � , and
are characterized by the well known criterion (see [8], [10]) :

Proposition 1 The polynomial basis 	�� � 	���� UXWXWXWOU ����	����?� is mini-
mal if and only if the matrix polynomial � 	����:��	�� � 	���� U������OU ����	����?�
is irreducible and column reduced.

Usually, the minimal degrees 	�Z � � � , � � � are called the Kronecker
indices associated to

�
. The ”orthogonal” � of

�
is the 	 � 	>� � -

dimensional subspace of all ^t� � rational transfer functions �/	����
satisfying �/	������T	��%� � A for each ��� �

. � admits Kronecker
indices denoted 	�Z��� � � , � � N 0 � , which satisfy the important equal-
ity: ��

� , � Z
� � N 0 ��� , � Z �

� (6)

Finally, we recall that if � 	����5�a	�� � 	��%� U������XU ����	����?� is a mini-
mal polynomial basis of

�
, then the rank of the Sylvester matrix[/Qf	��8� is given by [11] :

Rank 	�[/Qt	��8�?� � � 	�Y  �^`��	 �
� � )! " � Q

	�Y] _^#	�Z �� � (7)

As ��	���� satisfies condition (2), the rational space generated
by its columns is � –dimensional. From now on, this subspace is
denoted by

�
and its 	 � 	\� � –dimensional dual space by � . By

the very definition of � , it is clear that a degree YK^z� � FIR filter
�/	���� satisfies (4) if and only if �/	���� is a degree Y polynomial of
� . If we denote by 	�Z��� � � , � � N 0 � the dual Kronecker indices of
� , it turns out that if Ya��Z��� , then �/	�������	����@�uA holds if and
only if �/	����<�GA for each � , while if Z��$ {CY �uZ��$ p � , then it
exists exactly % linearly independant degree Y FIR filters �/	���� for
which �/	�������	����m�*A . In particular, if Y r�Z �N 0 � �'&)(+* � Z �� ,
then it exists a polynomial basis of degree Y FIR filters in � .

2.2. The use of the block-Hankel matrix associated to the se-
quence 	�vw�x� �?� � � ) .

In this paragraph, we propose an approach which allows to com-
pute degree Z,	I^ FIR filters of � from 	�v � � �?� � � ) . In order the
approach to be effective, we assume in this subsection that ��	����
satisfies the following extra-assumptions :

- The columns of ��	���� share the same degree Z
- Rank( � ) �@���

Let . be the � Z � � Z block Hankel matrix given by

. �
gh
i v � ����� v )...v ) A

j k
l (8)

. can be factored as

. �
gh
i � � ����� � )...� ) A

j k
l
gh
i � 4. A

...
. . .�D4) 0�� ����� �D4.

j k
l �'/10 4

(9)
As � ) and � . are full rank column, it is clear that / and 0
have are also full column rank Z � . Therefore, the rank of .



is also equal to Z � . Let � be the � 	 block exchange matrix :�_��� )��1) � 6 N , where
�

denotes the Kronecker product, and	�� )��1) 	�� U	� � ��
 � p � 0
� )5p ��� � )� � � , � . It is easy to check that a row� Z –dimensional vector ��� 	�� . UXWXW-WXU � ) 0T� � (where each � + is� –dimensional) satisfies

� . ��A and .�� � 4 ��A (10)

if and only if ��[ ) 0T� 	��\�8� A . Therefore, Ker �?	�[ ) 0T� 	��\�?�f�
Ker � 	�. ��� Ker � 	�� . 4 � (Ker � stands for the left Kernel). Let �/	����:�'*) 0��+-,/. � + ��0 + be the degree Z 	G^ FIR filter associated to � .
Then, it is easily seen that ��[ ) 0T� 	��\�:��A if and only if �/	�������	��%�T�A for each � . Therefore, there is a one to one correspondance
between the space Ker � 	�. ��� Ker � 	�� .24�� and the set of all de-
gree less than or equal to Z 	*^ FIR filters of � . We have first
to check if this subset of � is not reduced to �eA�� . For this, we
have to compare Z 	 ^ with the dual Kronecker indices of

�
. As��	���� is irreducible (condition (2)) and column reduced (because

Rank( � ) ��� � ), ��	���� is a minimal polynomial basis
�

. The
Kronecker indices of

�
all coincide therefore with Z . Hence, by

relation (6),

�/Z � N 0 ��� , � Z �
�

If 	�Z 	u^`�D� Z��� , we get that �/Z �a	 � 	�� �M	�Z 	C^e� , i.e.�:	 � Z 	_^`�H� � 	�Z 	|^e� , or equivalently � � � �  >����	�Z 	|^e� .
Consequently, if � r � �D ����	�Z 	C^e� , it exists at least a non
zero degree Z 	 ^ FIR filter �/	���� satisfying �/	�������	������ A
for each � . This condition, which is assumed to hold from now
on in this paragraph, implies in particular that � � � � . It re-
mains to investigate under which conditions it exist degree Z 	#^
FIR filters � � 	���� UOW-WXWOU � � 	���� such that the matrix � associated to� 	����8��	�� 4 � 	���� UXWXWOWXU � 4� 	��%�?� 4 is full rank column. For this, we
first note that � full rank is equivalent to the condition

� 	������ . ��A for each ����� . ��A (11)

In order to guarantee the validity of this condition, the number of
rows � of

� 	���� have of course to be as large as possible. How-
ever, what is really important is the number of linearly indepen-
dent (over the field

�
) rows of

� 	���� : if say � � 	���� belongs to the
rational space generated by the first � 	_^ rows of

� 	���� , � is full
rank column if and only if the matrix ��� associated to

� �;	��%� �	���4� 	���� UXWXWXWOU ��4� 0�� 	����?�;4 is itself full column rank. The number %
of linearly independent degree Z 	�^ FIR filters of � is defined
by the fact that Z �$ {dZ 	|^!�_Z �$ p �
The maximum value of % is of course equal to � 	&� (the dimension
of � , and is reached if 	�Z 	*^e�fr]Z �N 0 � � &)( * � , � � N 0 � Z �� .
More precisely, we have the following result :

Theorem 1 Let us assume that 	�Z 	|^e�&rCZ �N 0 � (in particularZ r�^ ) and let
� 	������]	�� � 	���� 4 UXWXWXWXU ��N 0 � 	��%� 4 � 4 be � 	D� lin-

early independent degree Z 	!^ FIR filters satisfying � � 	�������	����:�A for each � . Then, the matrix �\��	 � 4 . UXWXW-WOU � 4 ) 0�� � 4 associated
to
� 	���� is full rank column, so that v . can be identified. from re-

lation (5).

Proof. In order to establish that � is full rank column, we consider
a vector � . such that

� 	������ . �GA for each � . As the � 	�� rows
of
� 	���� are linearly independent,

� 	���� is a basis of the rational
space � . Therefore, the condition

� 	������ . �*A for each � holds if

and only if the constant FIR filter �T	����H��� . belongs to the dual
space of � , i.e. to

�
. But, as Z r ^ , the space

�
does not con-

tain non zero constant vectors. This in turn implies that � . ��A .
In practice, if the conditions of the theorem are met, this result

is equivalent to the following property : let  ���	� . UXW-WOWXU  ) 0T� �
be an orthonormal basis of Ker �o	�. �!� Ker �o	�� . 4 � . Then, the ma-
trix "(��	� 4. UXWOWXWXU  4) 0T� � 4 is full rank column, so that v . can
be identified from the product "zv . . This can lead immediately to
a concrete estimation algorithm based on the empirical autocovari-
ance coefficients of the observation. We also note that the dimen-
sion of Ker � 	�. �#� Ker � 	���.24�� is generally much greater than the
dimension � 	 � of � . This is because the linear independence of
the rows of  does not imply the linear independence over the field�

of their associated ^&� � FIR filters. In other words, the rows of f	����w� ' ) 0T�+X, .  + � 0 + span � , but are not linearly independent
over

�
.

Finally, we remark that the condition Z 	C^�r7Z �N 0 � can
be restrictive. Consider for example the case �|� �

, � ��$ andZ �%$ . Among the 14 triples Z �� U Z �L U Z �& satisfying A�{Z �� { Z �L {�Z �& and ' &� , � Z �� � ^XA , only 2 satisfy the

above condition. If Z 	|^!�_Z �N 0 � , one can extract %t��	 � 	I� �
linearly independent degree Z 	b^ FIR filters of � . However, we
have no reasonnable condition guaranteeing that the corresponding
matrices � are full rank column.

2.3. The use of the derivative of �<	���� .
The main limitation of the approach presented subsection 2-2 fol-
lows from the fact that it just provides degree Z 	 ^ FIR filters of
� . Here, we propose an alternative approach in order to overcome
this drawback. It is based on the use of the derivative �'�;	���� w.r.t.� 0�� of �V	��%� . �<	����m����	�������	�� 0�� � 4 is also given by

�<	����m��v .  �
� , 0 ) � ) � �)(, . vw�1� 0

�
Therefore, � � 	����m��' 0��� , 0 ) 9�v&���10
� � 0����o !' )� , � 	$9 v&���10
� � 0����does not depend on v . , and is therefore known. On the other hand,

� � 	����m��* � � 	���� ��	��%��+-, 6 � AA � L 6 �/. , �D4<	��10��M�
	H� � 4 	�� 0�� � .

(12)
where � � 	���� stands for the derivative of ��	��%� w.r.t. ��0�� . In this
subsection, we assume the following condition on ��	���� :

Normal Rank 	�� � 	���� U ��	��%�?�:� � � (13)

i.e. the dimension of the rational space
� � generated by the columns

of 	��0�;	���� U ��	����?� is equal to
� � , or equivalently, Rank 	��1��	���� U ��	����?�:�� � for almost all � . This of course implies that � � � � .

Let us outline the proposed approach. As �'��	���� is known,
one can extract for each Y the set of all degree Y ^D� � FIR
filters �/	����5� ' Q+-, . � + � 0 + satisfying �/	����o� � 	���� � A for each� : in effect, �/	����o� � 	������ A holds if and only if the row vector
�5��	�� . UOWXW-WXU � Q � belongs to the left kernel of the Sylvester matrix
associated to � � 	���� . As condition (13) holds, we get from formula
(12) that �/	����o� � 	����m��A if and only if

�/	����M	�� � 	���� U ��	��%�?� ��A



This in particular implies that �/	�������	����H� A for each � . There-
fore, using the derivative of �<	���� allows to extract certain FIR de-
gree Y filters of � , whatever Y is. However, these elements do
not span in general the whole set � because they generate the dual
space � � of

� � which has dimension � 	 � ��� � 	\� . We now
check if one can build from these elements of � a matrix polyno-
mial

� 	���� for which � is full column rank.

Theorem 2 Assume that the rational space
� � does not contain

non zero constant vectors, i.e. that its smallest Kronecker indexZ �� is non zero. Then, if Y~r ' � � , � 	 deg 	�� � 	����: deg 	�� �� 	����?� ,
it exists � 	 � � degree Y linearly independent FIR filters

� 	��%� �	�� � 	����;4 U-WXWXWXU � N 0 L ��	����;4 �;4 for which the associated matrix � is
full rank column.

Proof. Denote by � � the � 	 � � dimensional dual space of
� � , and

by 	�Z �� � � , � � � and 	�Z �� � � � , � � N 0 L � its Kronecker and dual Kro-
necker indices. It is clear thatN 0 L ��

� , � Z �
� � � ��

� , � Z �
�

{ ��
� , � 	 deg 	�� � 	����  deg 	�� �� 	��%�?�

Therefore, Z �N 0 L � � {�' � � , � 	 deg 	�� � 	����  deg 	�� �� 	���� . If Y is
chosen as in the statement of the theorem, Y is greater than Z �N 0 L � � .It thus exists a polynomial basis� 	����t� 	�� � 	��%�;4 UXWXWOWXU � N 0 L �x	����;4 �;4 for which deg 	�� � 	����?�f{ Y
for each �m�u^ U � 	 � � . Let � be the corresponding matrix. If � is
not full column rank, it exists a non zero � –dimensional constant
vector � . for which

� 	������ . � A for each � . As
� 	���� is a ba-

sis of � � , this holds if and only if the constant polynomial vector�:	��%� �/� . belongs to the dual space of � � , i.e. to
� � . As Z �� r*^ ,� . must be reduced to 0, i.e. � is full rank column.

This result shows that if Y is chosen large enough, then a
basis of the left Kernel of [ Q 	�� � � allows to identify the matrixv . provided that Z �� r ^ . This condition implies in particular
that deg 	�� � 	����?�8r �

for each � . We note however that this new
approach needs less restrictive assumptions on ��	���� than the ex-
ploitation of the block Hankel matrix . . In particular, we do not
need that deg 	�� � 	����H�cZ for each � and the quite restrictive as-
sumption Z 	b^!r_Z �N 0 � .

3. A WIENER-HOPF FACTORIZATION BASED
APPROACH.

We finally present briefly an alternative approach. It needs the
following extra assumption :

Rank 	�� � 	���� U ��	����?�m� � � for each � U } ��}�r*^ (14)

Put q p 	����#� 	�� � 	���� U ��	����?� , � 	���� � � 6 � AA � L 6 ��� , and

q 0 	����&�
� � 4 	�� 0T� �
	H�0� 4 	�� 0�� � � . It is clear that condition (14) im-

plies that Rank 	�q 0 	����?�<� � � for } ��}x{G^ . Therefore, the factor-
ization (12) � � 	����5� q p 	���� � 	����oq 0 	���� is a so-called Wiener-
Hopf factorization ([4]) of � � 	���� , and its 3 factors q p 	���� , � 	���� ,
and q 0 	��%� are uniquely defined up to certain non trivial indeter-
minacies. More precisely, the following result holds (see [4] for
more details).

Theorem 3 Let � � 	����m�*q �p 	���� � � 	����oq �0 	���� be an another Wiener-
Hopf factorization of � � 	���� , i.e. q �p 	���� is analytic and has rank� � in } ��}1rC^ , q �0 	���� is analytic and has rank

� � in } ��}�{u^ , and� � 	���� is a diagonal matrix with diagonal entries 	�� +�� UXWXWOWXU � +��
	 � ,
where the indices � � { WOWXW {�� L � belong to 
 
 . Then,

� � 	����z�� 	��%� U q �p 	���� � q p 	������ 0��p 	���� , andq �0 	����2� � 0T��� p 	���� � 	����oq 0 	���� where � p 	���� belongs to the
multiplicative group 0 p of

� �\� � � block upper triangular matri-
ces � p 	����m� , � � � � � � � L 	����A � L � L . U (15)

satisfying : � � � � and � L � L are constant regular matrices, and� � � L 	����f� ' L� ,/. � �� � L ��0 � is a polynomial matrix in ��0T� of de-
gree at most 2.

This shows that the matrix q p 	����8� 	��0��	���� U ��	����?� is identifi-
able from ���;	���� up to certain non trivial indeterminacies. We now
show that taking into account the particular structure of q p 	����
(i.e. its first block is the derivative of its second block) allows to
raise the indeterminacies.

Theorem 4 Assume that the matrix 	�� � U � L � is full rank column.
Let q��p 	���� be a left Wiener-Hopf factor of ���;	���� . Then, the entries
of the matrix � p 	���� of 0 p defined by q �p 	��%� �*q p 	������ p 	���� are
defined up to a constant invertible ���f� matrix.

Proof. Put q �p 	����m��	�� � 	���� U � L 	����?� . Then,

� � � 	���� U ��	��������G� � � 	��%� U � L 	�������, �f0��� � � 	��f0T�� � � � � � L 	������f0T�L � LA � 0T�L � L .
(16)

Therefore,� � L 	������ 0��L � L 	�� � 	��%��� 0T�� � � � � � L 	��%��� 0T�L � L���� ��� � 	������ 0T�� � � (17)

Equating the coefficients of both sides of (17) leads immediately
to the matrix equation :ghhhhh
i

A � � � . � � � � � � � .� � � � . � � � � � � � � � L � � � ���� � � � ��� � � L ��� � � & � � � L� � � � L � � � � & � � � � � � � � &
...

...
...

...

j kkkkk
l
ghhh
i

� 0��� � � � � . �� � L� 0��� � � � � ���� � L�f0��� � � � � L �� � L	�� 0T�� � � � L � L
j kkk
l �

ghhhhh
i
� L � �� � L � L��� L � &� � L � �

...

j kkkkk
l

(18)
As � � 	�������� � 	������ � � � , it is easy to check that the first matrix of
the left hand side of (18) is equal togh

i A � � � � L � �� � � � � L�� � & � � L
...

...

j k
l
gh
i � � � � A

. . .A � � � �
j k
l

If 	�� � U � L � if full rank column, this last matrix is also full rank
column. Therefore, equation (18) allows to calculate matrices� 0T�� � � � � . �� � L U � 0T�� � � � � ���� � L U � 0��� � � � � L �� � L U � 0��� � � � L � L . This means that one can
recover the matrix ��	������ � � � from any left Wiener-Hopf factor of� � 	���� .

This identifiability result can be used in order to derive a con-
crete estimation algorithm of ��	��%� (up to a constant factor). This
algorithm of course requires, at least implicitely the calculation of
a left Wiener-Hopf factor of � � 	���� . This non obvious problem is
out of the scope of the present paper, and is under investigation.



4. CONCLUSION

In this paper, we have proposed two second order based statis-
tics approaches to blindly identify up to a constant matrix a noisy
MA model. The problem has been formulated as the identifica-
tion of the filter ��	���� from the truncated autocovariance sequence	�v � � �)(, . associated to the spectral density �<	����m����	������ 4 	�� 0T� � .
The first approach consists in identifying directly v . by calculat-
ing certain FIR filters ^t� � filters satisfying �/	��%����	����@�CA . The
extraction of these filters use either the block Hankel matrix associ-
ated to the sequence 	�vw��� ��� � , either the derivative � � 	��%� of �V	��%�
w.r.t. the variable � 0T� . The use of � � 	��%� require less restrictive
assumptions on ��	���� . Finally, we have introduced an alternative
approach based on the Wiener-Hopf factorization theory. In this
context, an identifiability result has been shown. The practical use
of the Wiener-Hopf factorization approach is under study.
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