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A Fixed-Lag Particle Smoother for Blind SISO Equalization of
Time-Varying Channels

Alberto Guimarães, Boujemaa Ait-El-Fquih and François Desbouvries

Abstract—We introduce a new sequential importance sampling
(SIS) algorithm which propagates in time a Monte Carlo approx-
imation of the posterior fixed-lag smoothing distribution of the
symbols under doubly-selective channels. We perform an exact
evaluation of the optimal importance distribution, at a reduced
computational cost when compared to other optimal solutions
proposed for the same state-space model. The method is applied
as a soft input–soft output (SISO) blind equalizer in a turbo
receiver framework and simulation results are obtained to show
its outstanding BER performance.

Index Terms—Fixed-lag smoothing, particle filter, mixture
Kalman filter, SISO equalization.

I. INTRODUCTION

BAYESIAN restoration in Conditionally Gaussian Linear
State-Space Models (CGLSSM) has received much atten-

tion recently [1], particularly in the context of blind equaliza-
tion problems. Among other solutions, Mixture Kalman Filter
(MKF) techniques embed Kalman Filter (KF) recursions in a
SIS framework [2]. A smoothing solution for the case of blind
SISO equalization with static channels has been proposed in
[3]. For time-variant channels, a particular fixed-lag smoothing
MKF was studied in [4] and [5]; however, although being
a near-optimal solution, the algorithm was not implemented
because of a computational cost exponential in the smoothing
lag and other parameters1. The aforementioned works then
overcome this constraint by introducing further Monte Carlo
sampling steps, but at the expense of algorithm performance.

By contrast, our method presents a novel solution for the
“optimal” approach, which under typical application scenarios
is remarkably less complex than the alternative proposed so
far. Although this approach is unavoidably constrained by
the exponential growth of complexity, it presents superior
performance than the suboptimal solutions.

We next apply our method to SISO blind equalization of
doubly-selective channels in a turbo equalization setup. Turbo
equalizers [6] have already been proposed for doubly-selective
channels with blind algorithms performing channel estimation
jointly with equalization [7][8]. Computational complexity is
a severe issue for such approach, however the remarkable
tracking performance of our optimal Bayesian estimator, even
in the presence of fast channel variations, enables us to
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implement a solution in which our SIS-based equalizer is used
only in the very first iterations of the turbo loop, and then
substituted in subsequent iterations by an equalizer with a
reduced computational load. This hybrid solution is validated
by simulation results. The rest of the letter is organized as
follows. In section II we first describe our model. Our fixed-lag
particle smoothing (FLPS) algorithm is developed in section
III. In section IV we show the computational load of our
method and we evaluate through simulations the Bit-Error
Rate performance of a turbo receiver including our algorithm.

II. STATE-SPACE MODEL

Let xT (resp. xH ) denote the transpose (resp. Hermitian
transpose) of vector x. We assume that the receiver input yn

is related to the transmitted complex symbols by

yn = xT
nhn + ωn (1)

where hn = [h0,n, . . . , hL−1,n]T represents the baseband
channel impulse response of finite length L, and xn =
[xn, xn−1, . . . , xn−L+1]T gathers the transmitted symbols
from time n − L + 1 up to time n. The sequence xn are
differentially modulated to resolve phase ambiguity, hence
{xn} is a Markov Chain (MC) and from (1) we get2

p(xn|x1:n−1,y1:n−1) = p(xn|xn−1), and we assume that
p(xn|xn−1) is known for all n. The noise variables {ωn} are
independent circularly symmetric complex Gaussian variables
with zero mean and known variance Λω

n , and are independent
of {xn}. For notational convenience we consider in this
letter the case where yn is scalar, but the extension of our
algorithm to Multiple Input Multiple Output (MIMO) systems
is analytically straightforward, although the computational
complexity increases exponentially with the number of input
streams. Finally hn propagates according to

hn+1 = Fnhn + vn , (2)

where {vn} are complex independent variables, independent
of {xn}, of {ωn} and of h0. It is also assumed that vn ∼
N (0,Λv

n), h0 ∼ N (0,Λh
0 ), and that Fn, Λv

n and Λh
0 are

known.

III. AN FLPS ALGORITHM

In this section we focus on the computation of the prob-
ability mass function (pmf) p(xn|y1:n+M ), where M > 0
is some fixed delay. We resort to an SIS approximation
(see e.g. [9][10] and references therein). So the a posteriori
joint pmf of symbols x1:n−1 at time n − 1 is approxi-
mated by p(x1:n−1|y1:n+M−1) ≈ ∑N

i=1 λi
n−1δ(x1:n−1 −

2Depending on the context, let ui:j denote either {ui, · · · , uj} or the
vector with components uk, i ≤ k ≤ j.
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xi
1:n−1), in which the samples xi

1:n−1 are generated from
an importance distribution q(x1:n−1|y1:n+M−1), and the
importance weight λi

n−1 associated to the i-th trajec-

tory xi
1:n−1 is given by λi

n−1 ∝ p(xi
1:n−1|y1:n+M−1)

q(xi
1:n−1|y1:n+M−1)

,∑N
i=1 λi

n−1 = 1. If we assume that q(x1:n|y1:n+M ) =
q(xn|x1:n−1,y1:n+M )q(x1:n−1|y1:n+M−1), then the weights
can be computed recursively as

λi
n ∝

p(xi
n|xi

1:n−1,y1:n+M )p(yn+M |xi
1:n−1,y1:n+M−1)

q(xi
n|xi

1:n−1,y1:n+M )
×

p(xi
1:n−1|y1:n+M−1)

q(xi
1:n−1|y1:n+M−1)︸ ︷︷ ︸

∝λi
n−1

,

(3)

where xi
1:n = [xi

1:n−1, x
i
n] and each particle xi

n is
drawn from the conditional importance distribution (CID)
q(xn|xi

1:n−1,y1:n+M ). Finally
∑N

i=1 λi
nδ(x1:n − xi

1:n) ap-
proximates p(x1:n|y1:n+M ), and therefore

∑N
i=1 λi

nδ(xn −
xi

n) approximates p(xn|y1:n+M ). Now, SIS algorithms are
well known to suffer from weights degeneracy. Classical
rescues consist in resampling from

∑N
i=1 λi

nδ(xn−xi
n) (either

systematically or according to some strategy) and in choosing
CID q(xn|xi

1:n−1,y1:n+M ) carefully. To that respect, one
good choice is to sample particles from the “optimal" CID
(see [10]), i.e. the distribution which minimizes the variance
of the importance weights, conditionally on the observations
and past samples. In our case, the optimal distribution reads

qopt(xn|xi
1:n−1,y1:n+M ) = p(xn|xi

1:n−1,y1:n+M ), (4)

and under that choice (3) becomes

λi
n ∝ p(yn+M |xi

1:n−1,y1:n+M−1)︸ ︷︷ ︸
λ̃i

n

λi
n−1. (5)

From now on, we thus focus on the computation of (4) and
of factor λ̃i

n in (5).

A. Computing the Optimal CID

Let us address (4). For each n and i, we should sample a
new particle xi

n according to

p(xn|xi
1:n−1,y1:n+M ) =
p(xn|xi

n−1)p(yn:n+M |xn,xi
1:n−1,y1:n−1)∑

xn
p(xn|xi

n−1)p(yn:n+M |xn,xi
1:n−1,y1:n−1)

; (6)

p(xn|xi
n−1) is known, so it remains to compute

p(yn:n+M |xn,xi
1:n−1,y1:n−1), which can be written

as

p(yn:n+M |xn,xi
1:n−1,y1:n−1) =∑

xn+1

..
∑

xn+M

p(yn:n+M |θi
xn:n+M

)
M∏

k=1

p(xn+k|xn+k−1)
(7)

with θi
xn:n+M

def
= (xi

1:n−1,xn:n+M ,y1:n−1)
def
=

(x̃1:n+M ,y1:n−1), i.e., we set x̃k = xi
k if k ≤ n − 1

and x̃k = xk if n ≤ k ≤ n + M . Let also
x̃n = [x̃n, x̃n−1, . . . , x̃n−L+1]T . One can show that

p(yn:n+M |θi
xn:n+M

) in (7) is the value at point yn:n+M of
a Gaussian density. Let us thus set p(yn:n+M |θi

xn:n+M
) =

N (yn:n+M ; μyi
M+1,Σ

yi
M+1), where N ( · ; μ,Σ) stands

for a circular complex Gaussian probability density
function with parameters (μ,Σ). In practice, parameters
μyi

M+1 and Σyi
M+1 can be computed recursively, and

it has proven advantageous (as far as computational
cost is concerned) to compute p(yn:n+M |θi

xn:n+M
)

recursively as well. This makes the difference between
the calculus routine developed here and those considered
in [4] and [5]. Let us set p(yn:n+k−1,hn+k|θi

xn:n+M
) =

N ((yn:n+k−1,hn+k); μi
k,Σi

k) with Σi
k =

[
Σyi

k Σyhi
k

Σhyi
k Σhi

k

]

and μi
k =

[
μyi

k

μhi
k

]
, and let us denote the

quadratic form in p(yn:n+k−1|θi
xn:n+M

) by QF(k) =
(yn:n+k−1 − μyi

k )H(Σyi
k )−1(yn:n+k−1 − μyi

k ). Let diag( )
denote a block-diagonal matrix and Ik−1 the (k−1)× (k−1)
identity matrix. Finally our algorithm (see the Appendix) is
as follows:

1) Recursive computation of μi
M and Σi

M .
• Compute parameters of p(hn|xi

1:n−1, y1:n−1) =
N (hn; ĥi

n|n−1,Λ
hi

n|n−1) by the KF;
• Compute

μi
1 =

[
x̃T

n

Fn

]
ĥi

n|n−1

Σi
1 =

[
x̃T

n

Fn

]
Λhi

n|n−1

[
x̃T

n

Fn

]H

+
[

Λω
n 0
0 Λv

n

]
;

(8)

• Recursion (k − 1) → k, for all k = 2, · · · , M .
Compute

μi
k = Ai

k−1μ
i
k−1

Σi
k = Ai

k−1Σ
i
k−1(A

i
k−1)

H+
diag(0k−1, Λw

n+k−1,Λ
v
n+k−1)

(9)

with

Ai
k−1 =

⎡
⎣ Ik−1 0

0 x̃T
n+k−1

0 Fn+k−1

⎤
⎦ .

2) Recursive computation of p(yn:n+M |θi
xn:n+M

) =
N (yn:n+M ; μyi

M+1,Σ
yi
M+1).

• Compute (Σyi
1 )−1 = ([1 0]Σi

1[1 0]T )−1 and
QF(1) = (yn − μyi

1 )T (Σyi
1 )−1(yn − μyi

1 );
• Recursion (k − 1) → k, for k = 2, · · · , M + 1.

Compute

(Σyi
k )−1 =

[
α β

βT γ

]
, (10)

detΣyi
k = γ−1 × detΣyi

k−1, (11)

QF(k) = QF(k−1) + Y2γ, (12)

where α = (Σyi
k−1)

−1 − (Σyi
k−1)

−1b[bT (Σyi
k−1)

−1b −
D]−1bT (Σyi

k−1)
−1; β = −αbD−1 and γ = [D −

bT (Σyi
k−1)

−1b]−1, with b = Σyhi
k−1xn+k−1 and D =

xT
n+k−1(Σ

hi
k−1)xn+k−1 + Λw

n+k−1; and Y = (yn+k −
xT

n+k−1μ
hi
k−1) − (yn:n+k−1 − μyi

k−1)
T (Σyi

k−1)
−1b.
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B. Updating the Importance Weights

We now address the computation of λ̃i
n in (5). One can see

easily that

λ̃i
n =

p(yn:n+M |xi
1:n−1,y1:n−1)

p(yn:n+M−1|xi
1:n−1,y1:n−1)

. (13)

The numerator of (13) is equal to the denominator of (6)
which has been computed before. The denominator of (13)
is the value of a Gaussian density N ( · ; μyi

M , Σyi
M ) at

point yn:n+M−1. Its determinant detΣyi
M and quadratic form

QF(M) have been computed at step (k = M ) of (11) and (12) .
So the computation of λ̃i

n follows directly from the evaluation
of the CID in (6).

IV. PERFORMANCE RESULTS

A. Computational Load

We first compare our FLPS algorithm with that of the
algorithm in [5] with optimal importance pmf (DSIS Op-
timal). The main difference relies in the computation of
(7) : in [5] one writes p(yn:n+M |x1:n+M ,y1:n−1) =∏M

k=0 p(yn+k|x1:n+M ,y1:n+k−1), so if X denotes symbol
alphabet size one needs to implement (M + 1)XM KF.
The number of floating operations (flops) required by our
method to evaluate (4) at time n, for a given trajectory i,
is approximately

N1 =
3
2
ML3 +

(
M2 − M

2
+ M

)
L2+

XMM

[
M + 3

2
L2

(
M

2
+ 1

)
L +

5
6
M2 + 2M +

53
12

]
.

On the other hand, the number of flops required by the method
of [5] is approximately

N2 = XM × (M + 1)
[
3
2
L3 + 3L2 +

7
2
L + 3

]
. (14)

In Fig. 1 N1 and N2 are plotted for M = 3, X = 2 or 4, and
L = 1 to 5. We see above that the computational complexity
of both proposals increases exponentially with M , but in all
scenarios N1 < N2 and the difference significantly increases
as L increases3.

B. BER Performance

The following simulation setup is considered to evaluate
the performance of our algorithm used as a SISO equalizer
embedded in a turbo equalization receiver. A set of 80 random
data bits is encoded using a 1/2-rate (1 + D2,1 + D + D2)
convolutional encoder. Next the coded bits {cn} are inter-
leaved, mapped to ±1 symbols (BPSK), and transmitted over
a channel with dynamics given by (2) with Fn = κ1/2I2,
Λv

n = 0.5(1 − κ)I2 and h0 ∼ N (0, 0.5I). Parameter κ is set
to 0.999 or 0.992 corresponding respectively to the slow and
fast-fading scenarios4, and Λω

n = N0/2. At the receiver the

3If hn is constant the algorithm presented in [3] requires less computations
than ours when M > 3 and M ≈ L. Nevertheless, the solution proposed
therein cannot be extended to scenarios involving time-variant channels.

4Defining the normalized fading rate fd from
∫ fd
0

S(f)df ≈
0.98

∫ ∞
0

S(f)df , where S(f) is the power spectrum density of the channel
coefficients, κ = 0.999 corresponds to a fading rate of fd ≈ 10−3, and
κ = 0.992 yields fd ≈ 10−2.
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Fig. 1. Comparison in terms of number of floating operations between our
proposal and the method of [4],[5].

BCJR algorithm is used as the SISO decoder. Our algorithm is
implemented with M = 3 and N = 30 samples. We resample
from p(xn|y1:n+M ) ≈ ∑N

i=1 λi
nδ(xn − xi

n) whenever the
effective sample size Neff ≈ (

∑N
i=1(λ

i
n)2)−1 < N/3.

We first illustrate the performance of the blind turbo receiver
where hi

0|−1 ∼ N (0, 0.5I) (i = 1, . . . , N ). Differential
encoding is employed to combat phase ambiguity and the soft
information outputted from the FLPS equalizer is computed
as in [8]: P (cn = Cj |y1:n+M ) =

∑N
i=1 λi

nδ(xi
n×xi

n−1−Xj),
where Xj is the BPSK mapping of bit Cj . The plots in Fig.
2 correspond to the first and fourth iterations, averaged over
1000 channel realizations under a slow fading scenario. We
observe a noticeable performance gain (2 dB for BER <
5 × 10−3) over the iterations of our FLPS-based receiver,
which shows its efficiency as a SISO processing block. Even
though a thorough investigation of robustness is out of the
scope of this note, in Fig. 2 we considered the effect of
channel order overestimation by setting Fn = 0.9991/2I3 and
Λv

n = 10−3 × diag(0.43, 0.43, 0.13). For the first iteration
this mismatched model causes a 2 dB performance loss at
BER < 10−2, but the degradation for the fourth iteration is
only 1 dB.

We next show the performance of our FLPS turbo re-
ceiver when the equalizer has some information about h0,
i.e. this algorithm is initialized with hi

0|−1 ∼ N (h0, 0.1I)
(i = 1, . . . , N ). In this case differential encoding is not used so
{xn} are independent. Consequently, p(xk|xk−1) = p(xk) in
eqs. (6) and (7) and P (cn = Cj |y1:n+M ) =

∑N
i=1 λi

nδ(xi
n −

Xj). We compare this proposal against the turbo equalizer
presented in [11], which performs an iterative channel estima-
tion from second-order statistics of each transmitted symbol,
fed back from the decoder in the previous iteration. This
turbo scheme with soft input channel estimator (SICE) is
implemented with a BCJR algorithm as the SISO equalizer,
initialized by a preamble with 40 pilot symbols.

The BER performances of the turbo receivers with the
SICE and FLPS based equalizers are displayed in Figs. 3 and
4. The figures also include the performance achieved by a
turbo scheme after the fourth iteration using a clairvoyant
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Fig. 2. BER performance of blind FLPS-based turbo receiver for fd = 10−3

(κ = 0.999).
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Fig. 3. BER performance of FLPS-based turbo receiver compared (in a
non-blind context) with the SICE-based and clairvoyant BCJR-based turbo
receivers for fd = 10−3 (κ = 0.999).

BCJR equalizer. In Fig. 3 there is only a 1.5–2 dB gap
between the FLPS receiver performance and the upper limit
shown by the receiver with the clairvoyant BCJR equalizer.
Our method clearly outperforms the SICE based receiver,
mainly when SNR increases. In Fig. 4 we observe that the
performance of the FLPS receiver is far superior under such
scenario after four iterations. Accordingly, the BER plot has
a noticeably decreasing slope, whereas the performance of
the SICE receiver does not improve significantly when the
observations samples become less noisy, even after some turbo
iterations.

Finally, we have run a turbo processing experiment (again
under partial knowledge of h0) where we use the FLPS SISO
equalizer for the initial iterations, and for the subsequent
iterations a BCJR-based equalizer is used based on the channel
estimate ĥn =

∑
i λi

nĥi
n|n−1 and on the soft information

produced by the FLPS algorithm in the previous iterations.
Results are shown in Figs. 5 and 6, respectively for the
slow and fast fading channels, under the same transmission
conditions. For the slow fading case we used the FLPS
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Fig. 4. BER performance of FLPS-based turbo receiver compared (in a
non-blind context) with the SICE-based and clairvoyant BCJR-based turbo
receivers for fd = 10−2 (κ = 0.992).
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Fig. 5. BER performance of turbo receiver with the hybrid scheme (FLPS and
BCJR) compared with the turbo receivers with the FLPS and SICE equalizers
for fd = 10−3 (κ = 0.999).

equalizer only in the first iteration, and in the fast fading case
until the second loop. Both figures show that the performance
degradation is indeed small. So this hybrid solution still
outperforms the SICE-based receiver, with a computational
time which is comparable to that proposal.

V. CONCLUSIONS

In this paper we propose a novel SIS-based Bayesian
restoration method for CGLSSM using a FLPS methodology.
We sample particles from the optimal importance function
exactly evaluated by using an algorithm with reduced com-
putational cost when compared to existing alternatives. Sim-
ulations show the performance of our technique as a SISO
blind equalizer embedded in a turbo equalization receiver.
Due to the optimality of the equalizer here developed, our
turbo receiver shows outstanding performance when compared
(in a non-blind context) to another turbo scheme designed
for doubly-selective channels, specially under a fast fading
scenario. Simulations also demonstrate the robustness of the
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Fig. 6. BER performance of turbo receiver with the hybrid scheme (FLPS and
BCJR) compared with the turbo receivers with the FLPS and SICE equalizers
for fd = 10−2 (κ = 0.992).

equalizer and the validity of a hybrid proposal, in which our
algorithm initializes a BCJR-based turbo equalizer.

APPENDIX - COMPUTING p(yn:n+M |θi
xn:n+M

) IN (7).

From (1)(2), conditionally on θi
xn:n+M

,
{(hn+k, yn+k−1)}M

k=0 is a (vector) MC. So

p(yn:n+M |θi
xn:n+M

) =∫
p(hn:n+M ,yn:n+M |θi

xn:n+M
)dhn:n+M =∫

p(hn|θi
xn:n+M

)p(hn+1, yn|hn, θi
xn:n+M

) · · · ×
p(hn+M , yn+M−1|hn+M−1,yn:n+M−2, θ

i
xn:n+M

)×
p(yn+M |hn+M ,yn:n+M−1, θ

i
xn:n+M

)dhn:n+M .

So p(yn:n+M |θi
xn:n+M

) can be computed recursively,
starting from p(hn|θi

xn:n+M
) and integrating w.r.t.

hn, · · · , hn+M . Other simplifications result from (1)
(2) : p(hn|θi

xn:n+M
) = p(hn|xi

1:n−1,y1:n−1); and
p(yn+k−1,hn+k|yn:n+k−2,hn+k−1, θ

i
xn:n+M

) factorizes
as p(yn+k−1|hn+k−1, x̃n+k−1)p(hn+k| hn+k−1). Let us
summarize the computation of p(yn:n+M |θi

xn:n+M
) in the

following recursion :

1) Initialization.
Compute p(hn|θi

xn:n+M
) = p(hn|xi

1:n−1,y1:n−1), and
next p(yn,hn+1|θi

xn:n+M
) from p(hn|θi

xn:n+M
) as

p(yn,hn+1|θi
xn:n+M

) =
∫

p(hn|θi
xn:n+M

)×
p(yn|hn, x̃n)p(hn+1|hn)︸ ︷︷ ︸

p(yn,hn+1|hn,θi
xn:n+M

)

dhn (A.1)

2) Recursion (k − 1) → k, for all k = 2, · · · , M . Com-
pute p(yn:n+k−1,hn+k|θi

xn:n+M
) from p(yn:n+k−2,

hn+k−1|θi
xn:n+M

) as

p(yn:n+k−1,hn+k|θi
xn:n+M

) =∫
p(yn:n+k−2,hn+k−1|θi

xn:n+M
)×

p(yn+k−1|hn+k−1, x̃n+k−1)p(hn+k|hn+k−1)︸ ︷︷ ︸
p(yn+k−1,hn+k|yn:n+k−2,hn+k−1,θi

xn:n+M
)

×

dhn+k−1;
(A.2)

3) Step M → (M +1). Compute p(yn:n+M |θi
xn:n+M

) from
p(yn:n+M−1,hn+M |θi

xn:n+M
) as

p(yn:n+M |θi
xn:n+M

) =∫
p(yn:n+M−1,hn+M |θi

xn:n+M
)×

p(yn+M |hn+M , x̃n+M )︸ ︷︷ ︸
p(yn+M |yn:n+M−1,hn+M ,θi

xn:n+M
)

dhn+M .
(A.3)

In practice, the Gaussian assumption in (1) (2) im-
plies that all densities in (A.1), (A.2) and (A.3) are
Gaussian as well. Let p(hn|xi

1:n−1,y1:n−1)∼ N (ĥi
n|n−1,

Λhi

n|n−1), p(yn:n+k−1,hn+k|θi
xn:n+M

) ∼ N (μi
k,Σi

k) and

p(yn:n+M |θi
xn:n+M

) ∼ N (μyi
M+1,Σ

yi
M+1). From (1) (2)

p(hn+k|hn+k−1)
(2)∼ N (Fn+k−1hn+k−1 , Λv

n+k−1) and

p(yn+k|hn+k, θi
xn:n+M

)
(1)∼ N (x̃T

n+khn+k, Λw
n+k). Parame-

ters ĥi
n|n−1 and Λhi

n|n−1 are computed via the KF, and finally

the computation of p(yn:n+M |θi
xn:n+M

) from p(hn| θi
xn:n+M

)
reduces to that of μyi

M+1 and Σyi
M+1 from ĥi

n|n−1 and Λhi

n|n−1,
whence (8) and (9). Equations (10)-(12) are easily verified.
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