
1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61
Contents lists available at ScienceDirect
Signal Processing

Signal Processing] (]]]])]]]–]]]
0165-16

doi:10.1

� Cor

fax: þ3

E-m

Pleas
filter
journal homepage: www.elsevier.com/locate/sigpro
Direct, prediction- and smoothing-based Kalman and particle
filter algorithms
Franc-ois Desbouvries a,�, Yohan Petetin a, Boujemaa Ait-El-Fquih b

a Telecom Institute/Telecom SudParis/CITI Dpt. & CNRS UMR 5157, 91011 Evry, France
b IMS-Bordeaux/Équipe Signal et Image & CNRS UMR 5218, 33405 Talence, France
a r t i c l e i n f o

Article history:

Received 2 June 2010

Received in revised form

17 December 2010

Accepted 21 March 2011

Keywords:

Kalman filters

Sequential Monte Carlo

Particle filtering

Sequential importance sampling

Sampling importance resampling
84/$ - see front matter & 2011 Published by

016/j.sigpro.2011.03.013

responding author. Tel.: þ33 1 60 76 45 27;

3 1 60 76 44 33.

ail address: francois.desbouvries@it-sudparis.

e cite this article as: F. Desbouv
algorithms, Signal Process. (2011),
a b s t r a c t

We address the recursive computation of the filtering probability density function (pdf)

pnjn in a hidden Markov chain (HMC) model. We first observe that the classical path

pn�1jn�1-pnjn�1-pnjn is not the only possible one that enables to compute pnjn

recursively, and we explore the direct, prediction-based (P-based) and smoothing-

based (S-based) recursive loops for computing pnjn. We next propose a common

methodology for computing these equations in practice. Since each path can be

decomposed into an updating step and a propagation step, in the linear Gaussian case

these two steps are implemented by Gaussian transforms, and in the general case by

elementary simulation techniques. By proceeding this way we routinely obtain in

parallel, for each filtering path, one set of Kalman filter (KF) equations and one generic

sequential Monte Carlo (SMC) algorithm. Finally we classify in a common framework

four KF (two of which are original), which themselves can be associated to four generic

SMC algorithms (two of which are original). We finally compare our algorithms via

simulations. S-based filters behave better than P-based ones, and within each class of

filters better results are obtained when updating precedes propagation.

& 2011 Published by Elsevier B.V.
63

65

67

69

71

73

75

77

79
1. Introduction

Let xn 2 R
m and yn 2 R

p be respectively a hidden and
observed process. Let pðxnjy0:nÞ, say, denote the pdf (w.r.t.
Lebesgue measure) of xn given y0:n ¼ fyig

n
i ¼ 0, and

p(dx)¼p(x) dx the continuous measure with density
p(x). We assume that {xn,yn} is an HMC:

pðx0:n,y0:nÞ ¼ pðx0Þ
Yn

i ¼ 1

pðxijxi�1Þ
Yn

i ¼ 0

pðyijxiÞ: ð1Þ

Bayesian filtering consists in computing pðxnjy0:nÞ, or at
least some approximation of pðdxnjy0:nÞ.

Recursive solutions are of particular interest, and
indeed pðxnjy0:nÞ can be computed from pðxn�1jy0:n�1Þ by
81

83

Elsevier B.V.

eu (F. Desbouvries).

ries, et al., Direct, p
doi:10.1016/j.sigpro.2
the well known recursion (here N stands for numerator):

pðxnjy0:nÞ ¼

pðynjxnÞ

Z
pðxnjxn�1Þpðxn�1jy0:n�1Þ dxn�1

zffl}|ffl{pðxn jy0:n�1Þ

pðynjy0:n�1Þ ¼
R
N dxn

: ð2Þ

Many efforts have thus been devoted to the actual
computation of (2). In the linear Gaussian case, (2) can
be computed exactly by KF techniques [1]. In the general
case however, computing pðxnjy0:nÞ is either difficult or
impossible, so many approximate techniques have been
developed, see e.g. [2–5]. Among them, particle filtering
(PF) methods [5–7] are SMC methods which aim at
propagating a discrete approximation of pðdxnjy0:nÞ.

In this paper we do not try to further improve the
existing PF algorithms based on (2); by contrast, we focus
on (2) itself, or indeed explore alternate paths for computing
pðxnjy0:nÞ (or, in short, pnjn) recursively. Once these paths are
85

rediction- and smoothing-based Kalman and particle
011.03.013

www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2011.03.013
mailto:francois.desbouvries@it-sudparis.eu
dx.doi.org/10.1016/j.sigpro.2011.03.013
dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

/ Signal Processing] (]]]])]]]–]]]2
derived we develop either KF or generic SMC implementa-
tions by mechanically applying appropriate standard tools.

More precisely, (2) describes recursion pn�1jn�1-

pnjn�1-pnjn, so computing pnjn from p0j0 via (2) consists
in walking along one particular path, made of the succes-
sion of a propagation step P and an updating step U.
However, following this path is not the only possible way
to compute pnjn recursively. Let us consider only those
paths in which one time index is incremented at a time. A
first alternative is path pn�1jn�1-

U
pn�1jn-

P
pnjn. Both solu-

tions compute pnjn recursively and differ only by the
intermediate step which is either the one-step ahead
predictive distribution pnjn�1, or the one-step backward
smoothing distribution pn�1jn.

Now, in turn pnjn�1 and pn�1jn can be propagated via
the two different paths which are obtained when moving
one index and next the other. This observation naturally
yields six algorithms for computing pnjn recursively; the
two paths pn�1jn�1-pn�1jn-pnjn and pn�1jn�1-pnjn�1-

pnjn are ‘‘direct’’, i.e. pnjn is computed as the output of a
loop with input pn�1jn�1; two other paths are P-based, i.e.
pnjn is computed (indirectly) from the predictive distribu-
tion, but the recursion itself now acts on pnjn�1; and two
paths are S-based, see Fig. 1. Out of these six paths only
four are distinct, because the two paths at the boundary
direct/P-based and direct/S-based coincide; for instance,
the direct filter in which we first propagate and then
update, coincides (up to a shift) with the P-based filter in
which we first update and then propagate (see Fig. 2).

We next address the practical computation of these four
integral equations. We classically consider two cases: the
linear Gaussian case, for which propagating densities
amounts to propagating their parameters; and the general
case, in which we resort to Monte Carlo (MC) approxima-
tions. However, the novelty here relies in the systematic
parallelization of the derivations. Since each path
pijj-piþ1jjþ1 consists of a P step and an U step (or vice
versa, depending on which index is incremented first), we
actually need a tool for implementing these two basic
operations. In the linear Gaussian case, the two steps are
implemented by two elementary transformations among
105

107

109

111

113

115

117

119

121

123

Fig. 1. The direct, P-based and S-based paths.

Fig. 2. The (P, U) direct filter vs. the (U, P) P-based filter.

Please cite this article as: F. Desbouvries, et al., Direct, p
filter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
Gaussian variables. In the general case, the mappings among
densities are replaced by the propagation of sets of points
(approximately) sampled from these densities; the P and U

steps are then implemented by two elementary simulation
techniques. Finally each path provides simultaneously one
KF and one generic SMC algorithm. Two of the KF solutions
are well known but two others are original; and similarly the
SMC algorithms include two well known solutions (the
bootstrap algorithm and the fully adapted auxiliary particle
filter (APF)) and two original algorithms. This paper is
organized as follows. PF is briefly recalled in Section 2. In
Section 3 we set up a routine mechanism which will be used
for implementing (in the linear Gaussian and general cases)
the four distinct filtering paths in Fig. 1. In Section 4 we
derive the direct filtering algorithms, address their imple-
mentation and discuss the solutions. P- and S-based algo-
rithms are addressed respectively in Sections 5 and 6. We
summarize our results in section Section 7, provide simula-
tion results in Section 8, and finally conclude the paper.

2. The PF methodology

2.1. The generic PF algorithm

Let us briefly recall the principle of PF algorithms [4–7]
which are based on importance sampling (IS) techniques.
Assume that at time n�1 we have a random discrete

measure which approximates pðdx0:n�1jy0:n�1Þ : pðdx0:n�1

jy0:n�1ÞC
PN

i ¼ 1 wi
n�1dxi

0:n�1
ðdx0:n�1Þ, where dxð�Þ is the Dirac

mass at point x, the samples x0:n�1
i

are generated from an
importance distribution qðx0:n�1j y0:n�1Þ, and the importance

weight wn�1
i

associated to the i-th trajectory xi
0:n�1 is given

by wi
n�1ppðxi

0:n�1j y0:n�1Þ=qðxi
0:n�1jy0:n�1Þ,

PN
i ¼ 1 wi

n�1 ¼ 1.

At time n we would like to get some empirical measure

approximating pðdx0:njy0:nÞ. Let us start from

pðx0:njy0:nÞ ¼
pðxn,ynjxn�1Þ

pðynjy0:n�1Þ
pðx0:n�1jy0:n�1Þ: ð3Þ

We first see how to update the trajectories. If we assume
that the importance pdf factorizes as

qðx0:njy0:nÞ ¼ qðxnjx0:n�1,y0:nÞqðx0:n�1jy0:n�1Þ, ð4Þ

i.e. that qðx0:n�1jy0:n�1Þ is a marginal of qðx0:njy0:nÞ, then for

all 1r irN, xi
0:n ¼ ½x

i
0:n�1,xi

n�, in which xn
i

is sampled from

the conditional importance distribution (CID) qðxnj

xi
0:n�1,y0:nÞ. In other words, when stepping from time n�1

to time n, due to (4) we can keep the old trajectories

fxi
0:n�1g

N
i ¼ 1, and we just need to extend each of them by

sampling a new particle xn
i
.

As for the weights wn
i
, we see from (3) and (4) that

they can be computed recursively as

wi
np

pðxi
n,ynjx

i
n�1Þ

qðxi
njx

i
0:n�1,y0:nÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
li

n

�
pðxi

0:n�1jy0:n�1Þ

qðxi
0:n�1jy0:n�1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

pwi
n�1

: ð5Þ

Finally
PN

i ¼ 1 wi
ndxi

0:n
ðdx0:nÞ approximates pðdx0:njy0:nÞ, and

thus
PN

i ¼ 1 wi
ndxi

n
ðdxnÞ is an MC approximation of

pðdxnjy0:nÞ.
rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

/ Signal Processing] (]]]])]]]–]]] 3
2.2. Practical considerations

Now, PF algorithms are well known to suffer from
weights degeneracy. Two main rescues are available. First,
it has proved important in this generic algorithm to
resample from

PN
i ¼ 1 wi

ndxi
n
ðdxnÞ. The second important

point to take into account is to choose the CID carefully.
Two particular choices are of interest:
71

�

73

75

77

P
fi

Sampling from the a priori transition kernel of Markov
chain x (i.e. choosing qðxnjxi

0:n�1,y0:nÞ ¼ pðxnjxi
0:n�1Þ ¼

pðxnjxi
n�1Þ) is popular [8,9] because pðxnjxn�1Þ is avail-

able, and sampling from pðxnjxi
n�1Þ is often straightfor-

ward [4]. Moreover, computing li
n in (5) reduces to

evaluating pðynjx
i
nÞ, which is available from model (1).
�

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113
However, this choice of the prior density can lead to
poor performances, and it is often preferable [10,11] to
sample the particles from the optimal CID

qoptðxnjx
i
0:n�1,y0:nÞ ¼ pðxnjx

i
0:n�1,y0:nÞ ¼ pðxnjx

i
n�1,ynÞ,

ð6Þ

i.e. the distribution which minimizes the variance
of wn

i
, conditionally on the observations y0:n and past

samples x0:n�1
i

. For this choice of the CID,
li

n ¼ pðynjx
i
n�1Þ.

3. A practical toolbox

In the view of forthcoming Sections 4–6 we now
provide a simple toolbox for routinely deriving Kalman
like or SMC implementations of a given filtering algo-
rithm. Whatever i and k, each path pijk-piþ1jkþ1 in Fig. 1
is made of the succession of a P step pijk-piþ1jk and of an
U step piþ1jk-piþ1jkþ1 (or vice versa). The P step trans-
forms pðxijy0:kÞ, say, into pðxiþ1jy0:kÞ ¼

R
pðxiþ1j

xi,y0:kÞpðxijy0:kÞ dxi, i.e. if we drop dependence on y0:k,
transforms some pdf p(x1) into

pðx1Þ/
P

pðx2Þ ¼

Z
pðx2jx1Þpðx1Þ dx1, ð7Þ

and the U step transforms pðxiþ1jy0:kÞ, say, into
pðxiþ1jy0:kþ1Þ p pðykþ1jxiþ1,y0:kÞ pðxiþ1jy0:kÞ, i.e. if we
drop time indices, transforms some pdf p(x) into

pðxÞ/
U

pðxjyÞ ¼
pðyjxÞpðxÞR

pðyjxÞpðxÞ dx
: ð8Þ

The problem consists in implementing (7) and (8) in
practice. In a very classical way, we separate the linear
Gaussian case (see Section 3.1) and the general one (see
Section 3.2).
115

117

119
3.1. The linear Gaussian case

In this case it is possible to compute (7) and (8)
exactly:
121
1.
 Propagating. Let pðx1Þ �N ðx̂1,P1Þ and pðx2jx1Þ �

N ðAx1þb,P2j1Þ. Then pðx2Þ �N ðAx̂1þb, P2j1þAP1AT
Þ.
123
2.
 Updating. Let pðxÞ �N ðx̂,PxÞ and pðyjxÞ �N
lease cite this article as: F. Desbouvries, et al., Direct, p
lter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
ðAxþb,PyjxÞ. Then

pðxjyÞ �N ðx̂þPxAT
½PyjxþAPxAT

��1ðy�Ax̂�bÞ,

Px�PxAT
½PyjxþAPxAT

��1APxÞ:

3.2. The general case

In the general case, (7) and (8) often cannot be
computed exactly and one needs to resort to approxima-
tions. Let us focus here on MC techniques. At least two
points of view are available: either we try to transform a
set of points sampled from p(x1) (resp. from p(x)) into
points sampled (at least approximatively) from p(x2)
(resp. from pðxjyÞ), see Section 3.2.2; or we plug a discrete
weighted measure into the P and the U steps, see Section
3.2.3. As we shall see, both mechanisms involve the same
three elementary operations: sampling (S) new particles;
updating old weights (W); and resampling (R) from a
weighted measure, which indeed are the three building
blocks of any PF algorithm. Before we proceed let us first
briefly recall three well known simulation techniques that
will prove useful in Sections 3.2.2 and 3.2.3.

3.2.1. Three simulation techniques
1.
red
01
Hierarchical sampling. Let ~x1 � pðx1Þ and ~x2 � pðx2j ~x1Þ.
Then ð ~x1, ~x2Þ is a sample from p(x1,x2).
2.
 Sampling from a discrete mixture by the composition

method. Let us consider the mixture density

pðx2Þ ¼
PN

i ¼ 1 aipiðx2Þ, where pi is a pdf for all i, ai40

and
PN

i ¼ 1 ai ¼ 1. Let us sample an index j from the

discrete distribution
PN

i ¼ 1 aidiðdxÞ, and next let us

sample ~x2 � pjðx2Þ. Then ~x2 is a sample from pðx2Þ.

Remark 1. If x2 is seen as the marginal of variable (x1,x2),
in which x1 is a discrete latent variable with probability
measure

PN
i ¼ 1 aidiðdxÞ and pðx2jx1 ¼ iÞ ¼ piðx2Þ, then the

composition method reduces to a particular instance of
hierarchical sampling in which the first sample is
marginalized out.
3.
 Rubin’s SIR mechanism [12–14, 7, Section 9.2]: Let
{xi}i¼1

N
be N i.i.d. samples from p(x), and conditionally

on fxigNi ¼ 1, let f ~x i
gIi ¼ 1 be I i.i.d. samples fromPN

i ¼ 1ðlðx
iÞ=
PN

i ¼ 1 lðxiÞÞdxi ðdxÞ. Then f ~x i
gIi ¼ 1 become

i.i.d. samples from qðxÞp lðxÞpðxÞ if N-1.

3.2.2. The unweighted mechanism
1.
 Propagating. By hierarchical sampling, starting from N

i.i.d. samples fxi
1g

N
i ¼ 1 from pðx1Þ, we get N i.i.d. samples

fxi
2g

N
i ¼ 1 from p(x2) by sampling, for each i, x2

i
from

pðx2jxi
1Þ. This is nothing but the sampling step S of PF

algorithms.

2.
 Updating. Getting N samples from pðxjyÞ and N samples

from p(x) can be achieved (asymptotically) by Rubin’s
SIR mechanism: Starting from fxigNi ¼ 1 � pðxÞ, we get N
iction- and smoothing-based Kalman and particle
1.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

/ Signal Processing] (]]]])]]]–]]]4
points f ~x i
gNi ¼ 1 (approximately) independently sampled

from pðxjyÞ by associating to each sample xi a weight
proportional to pðyjxiÞ, and then sampling f ~x i

gNi ¼ 1 i.i.d.
from

PN
i ¼ 1ðpðyjx

iÞ=
PN

i ¼ 1 pðyjxiÞÞdxi ðdxÞ. We just
described nothing but the weighting step W, followed
by the (re)sampling step R of PF algorithms.

3.2.3. The weighted mechanism
73
1.

75

77

79

81

83

P
fi

Propagating. Let
PN

i ¼ 1 widxi
1
ðdx1Þ be some discrete

approximation of pðdx1Þ ¼ pðx1Þ dx1. Injecting into (7),
p(x2) is approximated by p̂ðx2Þ ¼

PN
i ¼ 1 wipðx2jxi

1Þ. To
get i.i.d. samples fxi

2g
N
i ¼ 1 from this mixture pdf we can

first sample N points ~xi
1 from

PN
i ¼ 1 widxi

1
ðdx1Þ, and

next sample xi
2 � pðx2j ~x

i
1Þ (see Section 3.2.1, point 2).

We just described the resampling step R (which from
this point of view is indeed nothing but the first step of
the composition method for sampling from a mixture),
followed by the sampling step S of PF algorithms.
2.

85

87

89

91

93

95

97

99

101

103

105

107

109
Updating. If pðdxÞ ¼ pðxÞ dx is replaced byPN
i ¼ 1 widxi ðdxÞ, then pðdxjyÞ ¼ pðxjyÞ dx becomesPN
i ¼ 1ðwipðyjxiÞ=

PN
i ¼ 1 wipðyjxiÞÞdxi ðdxÞ. The points xi

are unchanged but each weight wi is replaced by a
weight proportional to wipðyjxiÞ: this is the weighting
step W of PF algorithms.

3.2.4. Unweighted vs. weighted mechanisms

As we have just seen, both mechanisms involve the
same three elementary operations: S, W and R, in that
order, and indeed coincide up to a cyclic permutation,
which in fact simply means that the propagation of a
weighted discrete measure reduces to that of a set of N

particles, once these N points have first been simulated by
the resampling step R (see Fig. 3, in which p̂

u
ijj (resp. p̂

w
ijj)

denotes an unweighted (resp. weighted) approximation of
pijjðdxÞ). Finally the two points of view are equivalent, and
as a consequence in Sections 4–6 we shall derive SMC
implementations of exact filtering formulae by applying
any of these mechanisms (the unweighted one, say).

Remark 2. The weighted and unweighted mechanisms
we just described only serve as simple schematic tool-
boxes for deriving an SMC algorithm. In particular, as far
as resampling is concerned Algorithms 1-P, 2-P, 1-S and
Fig. 3. The weighted vs. unw

lease cite this article as: F. Desbouvries, et al., Direct, p
lter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
2-S below always involve a multinomial resampling step
at each time instant. This does not mean that we recom-
mend this resampling scheme, but simply that these
algorithms were obtained either from Rubin’s SIR
mechanism (see Section 3.2.2) or the composition method
(see Section 3.2.3). Now, as is well known, in Efron’s
bootstrap [15] some particles can be sampled several
times while some will not be resampled at all; this
drawback led to the development of more sophisticated
alternatives such as smooth [16] or weighted [17] boot-
strap resampling techniques. In the context of this paper,
once a generic PF algorithm is obtained, other versions
can be derived, which in particular call for resampling
only if some criterion is satisfied; alternatives such as
stratified of residual resampling schemes [18,19] are also
available. Even if a thorough study of the improvements
which can be brought to our algorithms by the existing
resampling scenarios is out of the scope of this paper, we
will nevertheless in Section 8.2 compare the naive and
smooth bootstrap (SB) techniques.

4. Direct filtering algorithms

We now derive the two direct filtering algorithms for
computing pnjn, as well as their Kalman and SMC versions.
We will see in particular that the bootstrap algorithm, and
a reorganized version of the SIR algorithm with optimal
CID are indeed the two generic MC implementations (in
the point of view of Section 3) of these two direct filtering
algorithms.

4.1. Exact direct filters

Let us start from (3) again. Due to the HMC assumption
(1) the fundamental transition pdf pðxn,ynj x0:n�1,y0:n�1Þ ¼

pðxn,ynjxn�1Þ can be factorized as

pðxn,ynjxn�1Þ ¼ pðynjxnÞpðxnjxn�1Þ, ð9Þ

pðxn,ynjxn�1Þ ¼ pðxnjxn�1,ynÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
qopt

F

pðynjxn�1Þ, ð10Þ

note that qF
opt

in (10) is indeed (for the direct filter-
ing problem, whence index F) the optimal CID (6) of
Section 2.2.
�

eig

re
01
Injecting (9) into (3) and marginalizing provides (2).
Since this direct path pn�1jn�1-

P
pnjn�1-

U
pnjn involves
111

113

115

117

119

121

123hted mechanisms.

diction- and smoothing-based Kalman and particle
1.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

P
fi

/ Signal Processing] (]]]])]]]–]]] 5
the one-step ahead prediction pdf pnjn�1 we will denote
it by 1-P.
65
�
67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

1 More precisely, the set of Eqs. (19)–(24) is original as a Kalman

filter algorithm, but some of these equations are known otherwise:

(21)–(22) are one-step fixed-lag smoothing recursions (see [20, Eqs.

(19)–(20)], where however the parameters are computed differently);

and (23)–(24) are final time instant fixed-interval smoothing recursions,

see [21, Chapter 10] or [22, Section III-C].
Injecting (10) into (3) provides

pðxnjy0:nÞ ¼
ð10Þ
Z

pðxnjxn�1,ynÞ
pðynjxn�1Þpðxn�1jy0:n�1Þ

pðynjy0:n�1Þ ¼
R
Ndxn�1

� �
|ffl{zffl}

pðxn�1 jy0:nÞ

dxn�1,

ð11Þ

which is the path pn�1jn�1-
U

pn�1jn-
P

pnjn. Since this
path involves the one-step backward smoothing den-
sity pn�1jn we will denote it by 1-S.

We now use the toolbox of Section 3 to implement in
practice formulas (2) and (11).

4.2. Implementing (2): 1-P algorithm

Let us first consider (2). The solution is well known in
the context of linear Gaussian state-space systems. More
precisely, let

xnþ1 ¼ FnxnþGnun,

yn ¼Hnxnþvn,

(
ð12Þ

in which x0 �N ðx0,P0Þ, {un} and {vn} are independent,
mutually independent and independent of x0,

un �N ð0,Q nÞ and vn �N ð0,RnÞ. Let also ~Q n ¼ GnQ nGT
n.

Then pðxijy0:nÞ �N ðx̂ ijn,PijnÞ for some x̂ ijn and Pijn. Trans-

forming pn�1jn�1 into pnjn�1 and pnjn via (2), reduces to

transforming ðx̂n�1jn�1,Pn�1jn�1Þ into ðx̂njn�1,Pnjn�1Þ and

ðx̂njn,PnjnÞ. This is done by the well known KF equations

((13), (14) implement the P step and (15)–(18) the U step)
[2,21]:

x̂njn�1 ¼ Fn�1x̂n�1jn�1, ð13Þ

Pnjn�1 ¼ Fn�1Pn�1jn�1FT
n�1þ

~Q n�1, ð14Þ

~yn ¼ yn�Hnx̂njn�1, ð15Þ

Ln ¼RnþHnPnjn�1HT
n , ð16Þ

x̂njn ¼ x̂njn�1þPnjn�1HT
nL�1

n
~yn, ð17Þ

Pnjn ¼ Pnjn�1�Pnjn�1HT
nL�1

n HnPnjn�1: ð18Þ

Let us turn to MC approximations of (2). We assume
that at n�1 we have N samples from pðxn�1jy0:n�1Þ. Using

Section 3.2.2, point 1, we get N samples ~x i
n from

pðxnjy0:n�1Þ by drawing ~xi
n from pðxnjxi

n�1Þ ¼

pðxnjxi
n�1,y0:n�1Þ. Next using Section 3.2.2, point 2, we

get N (approximate) samples from pðxnjy0:nÞppðynjxnÞ

pðxnjy0:n�1Þ by sampling from
PN

i ¼ 1ðpðynj ~x
i
nÞ=
PN

i ¼ 1

pðynj ~x
i
nÞÞd ~x i

n
ðdxnÞ. We just described the sampling step S,

followed by the updating step (W, R) of the Bootstrap
algorithm:

1-P algorithm (¼ Bootstrap algorithm, [8]). Let
p̂ðdxn�1jy0:n�1Þ ¼

PN
i ¼ 1ð1=NÞdxi

n�1
ðdxn�1Þ approximate

pðdxn�1jy0:n�1Þ.
lease cite this article as: F. Desbouvries, et al., Direct, p
lter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
S.
red
011
For 1r irN, sample ~x i
n from pðxnjxi

n�1Þ;P

W.
 For 1r irN, compute wi

nppðynj ~x
i
nÞ, iw

i
n ¼ 1P
R.
 For 1r irN, sample xi
n from N

i ¼ 1 wi
nd ~x i

n
ðdxnÞ;
Then p̂ðdxnjy0:nÞ ¼
PN

i ¼ 1ð1=NÞdxi
n
ðdxnÞ approximates

pðdxnjy0:nÞ.

4.3. Implementing (11): 1-S algorithm

We assume (12) again. Let us first define H1
n ¼HnFn�1,

R1
n ¼RnþHn

~Q n�1HT
n , ~K

1

njn ¼
~Q n�1HT

nðR
1
nÞ
�1, F1

n�1 ¼ ðI�

~K
1

njnHnÞFn�1, ~Q
1

n�1 ¼
~Q n�1�

~K
1

njnR1
nð
~K

1

njnÞ
T . Implementing

(11) leads to the following KF equations which, up to
our best knowledge, are original1 ((19)–(22) implement
the U step and (23), (24) the P step):

~yn ¼ yn�H1
nx̂n�1jn�1, ð19Þ

Ln ¼R1
nþH1

nPn�1jn�1ðH
1
nÞ

T , ð20Þ

x̂n�1jn ¼ x̂n�1jn�1þPn�1jn�1ðH
1
nÞ

T L�1
n
~yn, ð21Þ

Pn�1jn ¼ Pn�1jn�1�Pn�1jn�1ðH
1
nÞ

T L�1
n H1

nPn�1jn�1, ð22Þ

x̂njn ¼ F1
n�1x̂n�1jnþ

~K
1

njnyn ¼ Fn�1x̂n�1jnþ
~Q n�1HT

nL�1
n
~yn,

ð23Þ

Pnjn ¼ F1
n�1Pn�1jnðF

1
n�1Þ

T
þ ~Q

1

n�1: ð24Þ

Remark 3. Algorithms (13)–(18) and (19)–(24) do not
share the same internal variables. However, they both
have a common structure, and both filters are driven by
the so-called innovations process ~yn (see e.g. [2,21]), the
covariance of which is matrix Ln. As we shall see in the
sequel, these features also hold for the KF algorithms of
Sections 5 and 6.

Let us now address the general case. Assume again that
at n�1 we have N samples xn�1

i
from pðxn�1jy0:n�1Þ. From

the SIR mechanism described in Section 3.2.2, point 2, we

compute weights wn
i

proportional to pðynjx
i
n�1Þ;

PN
i ¼ 1

wi
ndxi

n�1
ðdxn�1Þ approximates pðdxn�1jy0:nÞ, and (re)sam-

pling from this distribution provides (approximate) sam-

ples f ~x i
n�1g

N
i ¼ 1 from pðxn�1jy0:nÞ. Using Section 3.2.2, point

1, we finally sample xn
i

from pðxnj ~x
i
n�1,ynÞ ¼

pðxnj ~x
i
n�1,y0:nÞ. We obtained the:

1-S algorithm (¼ Algorithm 8.1.1., [7, p. 253]). Let
p̂ðdxn�1jy0:n�1Þ ¼

PN
i ¼ 1ð1=NÞdxi

n�1
ðdxn�1Þ approximate

pðdxn�1jy0:n�1Þ.
iction- and smoothing-based Kalman and particle
.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

/ Signal Processing] (]]]])]]]–]]]6
W.
Pl
fi

For 1r irN, compute wi
nppðynjx

i
n�1Þ,

PN
i ¼ 1 wi

n ¼ 1;
R.

65
For 1r irN, sample ~x i
n�1 �

PN
i ¼ 1 wi

ndxi
n�1
ðdxn�1Þ;
S.
 For 1r irN, sample xi
n from pðxnj ~x

i
n�1,ynÞ.
67

69

71

73

75

77

79

81
Then p̂ðdxnjy0:nÞ ¼
PN

i ¼ 1ð1=NÞdxi
n
ðdxnÞCpðdxnjy0:nÞ.

4.4. Comments and remarks on the 1-P and 1-S SMC

algorithms

We just saw that 1-P and 1-S can be understood as
natural MC implementations (using the tools of Section
3.2.2) of paths pn�1jn�1-pnjn�1-pnjn and pn�1jn�1-

pn�1jn-pnjn, respectively. We now see that they can also
be interpreted as MC approximations of (2), which differ
only by the point where sampling is introduced (see
Section 4.4.1), or as two particular instances of APF (see
Section 4.4.2). In Section 4.4.3 we finally compare 1-S to
the SIR algorithm with optimal CID.
83

85

87

89

91
4.4.1. Sampling before or after the updating step

Eq. (2) transforms pðdxn�1jy0:n�1Þ into pðdxnjy0:nÞ. If
exact computing is not possible, MC approximations of
pðdxnjy0:nÞ can still be obtained by plugging a discrete
approximation of pðdxn�1jy0:n�1Þ into (2). However, the
resulting measure is continuous, so a sampling mechan-
ism is needed somewhere in (2) if we want to further
proceed at time nþ1 and finally get an SMC algorithm.
93

�

95

97

99

101

103

105

107

109

111

113

115

117
Sampling before updating. Let us position the sampling
step between the P and U steps. Let us start from

fxi
n�1,wi

n�1g
N
i ¼ 1, i.e. let p̂ðdxn�1jy0:n�1Þ ¼

PN
i ¼ 1 wi

n�1dxi
n�1

ðdxn�1Þ. Injecting into (2) we get an approximation

p̂
c
ðxnjy0:n�1Þ (c stands for continuous) of p̂ðxnjy0:n�1Þ:

p̂
c
ðxnjy0:n�1Þ ¼

XN

i ¼ 1

wi
n�1pðxnjx

i
n�1Þ: ð25Þ

If we sample at this point we need to get N samples
{xn

i
}i¼1

N
from the mixture pdf (25). Using Section 3.2.1,

point 2, for all i, 1r irN, we first sample ~x i
n�1 accord-

ing to
PN

i ¼ 1 wi
n�1dxi

n�1
ðdxn�1Þ, and next sample xn

i
from

pðxnj ~x
i
n�1Þ. Then p̂ðdxnjy0:n�1Þ ¼

PN
i ¼ 1ð1=NÞdxi

n
ðdxnÞ is a

discrete approximation of pðdxnjy0:n�1Þ, and from (2)

we get p̂ðdxnjy0:nÞ ¼
def PN

i ¼ 1 wi
ndxi

n
ðdxnÞ with

wi
nppðynjx

i
nÞ. Up to a cyclic permutation, this (R, S, W)

algorithm is the Bootstrap algorithm which we just
described. In particular, from this point of view the
famous resampling step R of the Bootstrap algorithm is
indeed nothing but the first step of the sampling

procedure according to the mixture
PN

i ¼ 1 wi
n�1

pðxnjxi
n�1Þ (see Section 3.2.1, point 2).
�
 119

121

123

2 In particular, in [25] the optimal (in terms of asymptotical

variance) APF filter for a given moment is derived, but this filter by

nature is function dependent.
Sampling after updating. Let us now sample after the
end of the P and U steps. Injecting (25) into (2) we get
the following continuous approximation of pnjn:

~pc
ðxnjy0:nÞ ¼

PN
i ¼ 1 wi

n�1pðynjxnÞpðxnjxi
n�1Þ=

R
Ndxn,

which, due to (10), can be rewritten as the (continuous)
ease cite this article as: F. Desbouvries, et al., Direct, p
lter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
mixture pdf

~pc
ðxnjy0:nÞ ¼

XN

i ¼ 1

wi
n�1pðynjx

i
n�1ÞPN

i ¼ 1 wi
n�1pðynjx

i
n�1Þ

pðxnjx
i
n�1,ynÞ:

ð26Þ

One should finally sample from (26); using again
Section 3.2.1, point 2, we see that one should buildPN

i ¼ 1 wi
ndxi

n�1
ðdxn�1Þ with wi

npwi
n�1pðynjx

i
n�1Þ, sample

~x i
n�1 from it, and finally sample xi

n from pðxnj ~x
i
n�1,ynÞ,

which again gives algorithm 1-S.

4.4.2. Connection with APF

Let us briefly recall the principle of APF ([23]; see also
[24–26] for recent developments2). Let us start from (26)
again. Pdf ~pc

ðxnjy0:nÞ is a finite mixture approximating
pðxnjy0:nÞ. If sampling from ~pc is difficult or impossible,
one can approximate ~pc by the mixture pdf

qðxnÞ ¼
XN

i ¼ 1

wi
n�1ti

n�1PN
i ¼ 1 wi

n�1ti
n�1

~qðxnjx
i
n�1Þ, ð27Þ

sample from q (the so-called first-stage weights
~wi

n�1pwi
n�1ti

n�1 and pdf ~q are degrees of freedom used
for designing this importance density), and use IS. Since
the target density ~pc in (26) and the importance density q

in (27) are both mixture densities, the (so-called second-
stage) weights computed by this IS method would be the
ratio of a sum of N terms over another sum of N terms.
This drawback is avoided by using data augmentation
(i.e. by sampling both from q and from the index of
the mixture in q, and taking the marginal, according
to the mechanism described in Remark 1, see [23] for
details.

Now, both 1-P and 1-S are particular APF: 1-P is
obtained if we take ti

n�1 ¼ 1 for all i, and ~qðxnjxi
n�1Þ ¼

pðxnjxi
n�1Þ; and 1-S corresponds of course to the case

where q¼ ~pc , i.e. in the so-called fully-adapted case, in
the terminology of [23].
4.4.3. SIR with optimal CID: original or reorganized?

Comparing with Section 2.2, we see that 1-S is a
reordering of the SIR algorithm with optimal CID (and
with systematic resampling), see [11]. However, these
two algorithms are not simply related by a shift in time.
More precisely, in [11] the successive steps are S-W-R

(or, equivalently, W-S-R: steps S and W commute since

li
n defined in (5) does not depend on the new particle xn

i
),

while 1-S consists of the successive steps W-R-S. So xi
n

is sampled from pðxnjxi
n�1,ynÞ in [11], while in 1-S xi

n �

pðxnj ~x
i
n�1,ynÞ in which ~x i

n�1 �
PN

i ¼ 1 wi
ndxi

n�1
ðdxn�1Þ. In

other words, each old particle xn�1
i

is taken uniformly
into account in [11], while only those with high weights
do contribute to the updated trajectory in 1-S. We now
rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

/ Signal Processing] (]]]])]]]–]]] 7
explain more deeply the differences between both
algorithms.
65

�

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

ass

P
fi

The original (S, W, R) algorithm of Section 2.1 is, by
nature, a batch IS algorithm which has been rendered
adaptive, but in which the trajectories, in the absence
of resampling, tend to depart (as time increases) from
the target pdf pðx0:njy0:nÞ. More precisely, at fixed time
n�1, we would like to compensate the missing target
pdf pðx0:n�1jy0:n�1Þ by a set of samples from
pðx0:n�1jy0:n�1Þ. Since it is easier to sample from q, we

indeed dispose of p̂ðdx0:n�1jy0:n�1Þ ¼
PN

i ¼ 1 wi
n�1dxi

0:n�1

ðdx0:n�1Þ, where the N trajectories xi
0:n�1 are sampled

from q and wi
n�1ppðxi

0:n�1 jy0:n�1Þ= qðxi
0:n�1jy0:n�1Þ. Let

us now address adaptivity. Due to (3) and condition (4),
this IS algorithm can be sequentialized easily: each
trajectory x0:n�1

i
is kept unaltered and is simply

extended by a new particle xn
i
; and the associated

weight can be updated recursively. However, a draw-
back of this simple computational scheme is that in the
absence of resampling, the trajectories do not fully take
into account the data. To see this, assume that resam-
pling has occurred at time k, but not between k and n

with n4k. From Section 3.2.2, point 2, xi
0:k are (approx-

imately3) sampled from pðx0:kjy0:kÞ, and trajectories
x0:n

i
, which should be sampled from

pðx0:njy0:nÞppðx0:kjy0:kÞ
Yn

j ¼ kþ1

pðxjjxj�1ÞpðyjjxjÞ, ð28Þ

pðx0:njy0:nÞppðx0:kjy0:kÞ
Yn

j ¼ kþ1

pðxjjxj�1,yjÞpðyjjxj�1Þ, ð29Þ

are indeed sampled either from

qðx0:njy0:nÞ ¼ pðx0:kjy0:kÞ
Yn

j ¼ kþ1

pðxjjxj�1Þ ¼ pðx0:njy0:kÞ ð30Þ

(if the bootstrap algorithm is used), or from

qðx0:njy0:nÞ ¼ pðx0:kjy0:kÞ
Yn

j ¼ kþ1

pðxjjxj�1,yjÞ ð31Þ

(if the SIR algorithm with optimal CID is used). So for

0r jrn, each particle xj
i
does not depend on the whole

data y0:n, but only on y0:k (if (30) is used) or on y0:maxðk,jÞ

(if (31) is used). So trajectories x0:n
i

sampled from (30)
or (31) are all the more likely to diverge from trajec-
tories sampled from (28)–(29) as n increases and
departs from k. This discrepancy is (somehow) cor-
rected by the weights, which take into account the new
data ykþ1:n.

�

115

117

119
By contrast, 1-S is not a SIS (or SIR) algorithm, in the
sense that it is not a sequential version of an algorithm
based on IS. Considered as a batch algorithm, at time

n�1 p̂ðdx0:n�1jy0:n�1Þ ¼
PN

i ¼ 1ð1=NÞdxi
0:n�1

ðdx0:n�1Þ, in

which the N trajectories are (exactly) sampled from
qðx0:n�1jy0:n�1Þ ¼ pðx0:n�1jy0:n�1Þ. Let us now address the
121

123

3 Though xi
0:k are sampled from pðx0:kj y0:kÞ only if N-1, we shall

ume it is true, in particular in (30)–(31).

lease cite this article as: F. Desbouvries, et al., Direct, p
lter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
sequential version. At time n we need to sample from

qðx0:njy0:nÞ ¼ pðx0:njy0:nÞ ¼ pðxnjxn�1,ynÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
pðxn jx0:n�1 ,y0:n Þ

ðSection 3:2:2, point 1Þ

�
pðynjxn�1Þ

pðynjy0:n�1Þ
pðx0:n�1jy0:n�1Þ

� �
|ffl{zffl}

pðx0:n�1 jy0:n Þ
ðSection3:2:2, point 2Þ

: ð32Þ

For this pdf the sufficient condition (4) is not satisfied
(because of factor pðynjxn�1Þ=pðynjy0:n�1Þ in the
bracket), so the trajectories cannot be updated so
easily. The presence of this factor means that we should
transform trajectories sampled from pðx0:n�1jy0:n�1Þ

into trajectories sampled from pðx0:n�1jy0:nÞ. To that
end we can use IS: from Rubin’s sampling scheme (see
Section 3.2.1, point 3), by updating the weights first we

step from pðdx0:n�1jy0:n�1ÞC
PN

i ¼ 1ð1=NÞdxi
0:n�1
ðdx0:n�1Þ

to pðdx0:n�1jy0:nÞC
PN

i ¼ 1ðpðynjx
i
n�1Þ=

PN
i ¼ 1 pðynjx

i
n�1ÞÞ

dxi
0:n�1
ðdx0:n�1Þ, and next by resampling we get (approx-

imate) trajectories from pðdx0:n�1jy0:nÞ. Comparing with
the SIR algorithm, instead of keeping all trajectories
unaltered and extending each of them by one new
particle, we weight all trajectories first and then
reselect them according to their weights. Once rese-
lected, the ith trajectory is extended by a new particle
xn

i
(using Section 3.2.2, point 1). Finally in the bootstrap

and SIR algorithms the batch estimates are fundamen-
tally based on IS, but due to condition (4) no Bayes step
is needed when updating the trajectories, and so no
secondary IS mechanism is introduced. In 1-S the batch
estimates are not based on IS, but updating trajectories
requires an U step followed by a P step (see (32)), so IS
is introduced locally, as a means to implement the
Bayes mechanism.

5. P-based filtering algorithms

We now address the filtering algorithms which com-
pute pnjn via a recursive loop involving pnjn�1. Let us begin
with

pðx0:nþ1jy0:nÞ ¼
pðxnþ1,ynjxnÞ

pðynjy0:n�1Þ
pðx0:njy0:n�1Þ: ð33Þ

The role played by the elementary transition pðxn,ynjxn�1Þ

in direct filtering algorithms is now played by
pðxnþ1,ynjxnÞ which, due to Bayes’s rule in model (1),
can be factorized as

pðxnþ1,ynjxnÞ ¼ pðxnþ1jxnÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
qopt

P

pðynjxnÞ, ð34Þ

pðxnþ1,ynjxnÞ ¼ pðynjxnÞpðxnþ1jxnÞ: ð35Þ

Note that qopt
P ¼ pðxnþ1jxnÞ is the optimal CID (in the sense

of Section 2.2) for the one-step ahead prediction problem
(whence index P). Injecting (34) into (33) and integrating
w.r.t. x0:n yields the 1-P path (2) (up to a shift); injecting
(35) into (33) and integrating w.r.t. x0:n yields

pðxnþ1jy0:nÞ ¼
ð35Þ
Z

pðynjxnÞ½pðxnþ1jxnÞpðxnjy0:n�1Þ�
zffl}|ffl{pðxn ,xnþ 1 jy0:n�1Þ

pðynjy0:n�1Þ ¼
R
Ndxndxnþ1

dxn, ð36Þ
rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

/ Signal Processing] (]]]])]]]–]]]8
finally we also have

pðxnþ1jy0:nÞ ¼

pðynjxnþ1,y0:n�1Þ

Z
pðxnþ1jxnÞpðxnjy0:n�1Þdxn

zffl}|ffl{pðxnþ 1jy0:n�1Þ

pðynjy0:n�1Þ ¼
R
Ndxnþ1

: ð37Þ

Eqs. (2) and (37) describe the two different ways of
moving from pnjn�1 to pnþ1jn which are obtained when
incrementing one index and next the other: (2) is the path
pnjn�1-pnjn-pnþ1jn (already studied in Section 4.2) and
(37) the path pnjn�1-pnþ1jn�1-pnþ1jn. Finally (36) is the
alternative path pnjn�1-pn,nþ1jn�1-pn,nþ1jn-pnþ1jn,
which indeed will prove useful in SMC implementations
(see below). Finally pnjn is computed from pnjn�1 via (2).

Let us now consider practical implementations of
formulas (37) or (36). We first assume the linear Gaussian
case. Assuming (12) again, (36) and (37) yield a common
solution which is well known in the context of linear
Gaussian state-space systems [2, Eqs. (4.9), (4.10), (4.12),
(5.6) and (5.11)], [21, Theorem 9.5.1] ((38)–(39) imple-
ment the P step and (40)–(43) the U step of the prediction
loop, and the filtering path is implemented by (16)–(18)):

x̂nþ1jn�1 ¼ Fnx̂njn�1, ð38Þ

Pnþ1jn�1 ¼ FnPnjn�1FT
nþ

~Q n, ð39Þ

~yn ¼ yn�Hnx̂njn�1, ð40Þ

Ln ¼HnPnjn�1HT
nþRn, ð41Þ

x̂nþ1jn ¼ x̂nþ1jn�1þFnPnjn�1HT
nL�1

n
~yn, ð42Þ

Pnþ1jn ¼ Pnþ1jn�1�FnPnjn�1HT
nL�1

n HnPnjn�1FT
n : ð43Þ

We now consider the general case. Implementing (37)
would require the knowledge of pðynjxnþ1,y0:n�1Þ, which
is not directly available. Implementing (36) is indeed
simpler; using Section 3.2.2 again, we get the following
algorithm4 (denoted by 2-P since (36) involves pnþ1jn�1Þ:

2-P Algorithm. Let pðdxnjy0:n�1Þ C
PN

i ¼ 1ð1=NÞdxi
n
ðdxnÞ.
4 We do no

unnecessary M

Please cite
filter algor
103
Prediction.
 S. For 1r irN, sample ~x i
nþ1 � pðxnþ1jx

i
nÞ;
W. For 1r irN, compute wi
nppðynjx

i
nÞ,
PN

i ¼ 1 wi
n ¼ 1;
105

R. For 1r irN, sample xi

nþ1 �
PN

i ¼ 1 wi
nd ~x i

nþ 1
ðdxnþ1Þ;
107
Then pðdxnþ1jy0:nÞC
PN

i ¼ 1ð1=NÞdxi
nþ 1
ðdxnþ1Þ.
Filtering.
 pðdxnjy0:nÞC
PN

i ¼ 1 wi
ndxi

n
ðdxnÞ.
109

111

113

115

117

119
6. S-based filtering algorithms

Let us finally see how pnjn can be computed recursively
via the propagation of a one-step backward smoothing
distribution. We start from

pðx0:njy0:nþ1Þ ¼
pðxn,ynþ1jx0:n�1,y0:nÞ

pðynþ1jy0:nÞ
pðx0:n�1jy0:nÞ: ð44Þ

From the HMC model (1) one can check easily that
121

123
t resample in the filtering step in order not to introduce

C variation.

this article as: F. Desbouvries, et al., Direct, p
ithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
ðxn,ynþ1Þ is a Markov chain. So factor pðxn,ynþ1jx0:n�1,
y0:nÞ in (44) reduces to pðxn,ynþ1jxn�1,ynÞ, which itself can
be factorized as

pðxn,ynþ1jxn�1,ynÞ ¼ pðynþ1jxn�1,xn,ynÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pðynþ 1jxnÞ

pðxnjxn�1,ynÞ,

ð45Þ

pðxn,ynþ1jxn�1,ynÞ ¼ pðxnjxn�1,yn,ynþ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qopt

S

pðynþ1jxn�1,ynÞ,

ð46Þ

in which qS
opt

is now the optimal CID (in the sense of
Section 2.2) for the one-step backward smoothing pro-
blem (whence index S). Injecting (45) into (44), and taking
the marginal, we get (11) again (up to a shift); on the
other hand, injecting (46) into (44), and taking the
marginal, we get

pðxnjy0:nþ1Þ ¼
ð46Þ
Z

pðxnjxn�1,yn,ynþ1Þ

�
pðynþ1jxn�1,ynÞpðxn�1jy0:nÞ

pðynþ1jy0:nÞ ¼
R
N dxn�1

� �
|ffl{zffl}

pðxn�1 jy0:nþ 1Þ

dxn�1: ð47Þ

Eq. (11) describes the path pn�1jn-pnjn-pnjnþ1, already
studied in Section 4.3, while (47) describes the path
pn�1jn-pn�1jnþ1-pnjnþ1; (47) is the smoothing counter-
part of the prediction equation (37) (the path pn�1jn-

pn�1jnþ1-pnjnþ1 can be considered as the mirror path of
pnjn�1-pnþ1jn�1-pnþ1jn, in which the time indices of the
observed and hidden processes are inverted).

Let us now implement (47). We first address the linear

Gaussian case. Let H2
nþ1 ¼H1

nþ1F1
n�1, R2

nþ1 ¼ R1
nþ1þ

H1
nþ1

~Q
1

n�1ðH
1
nþ1Þ

T , ~K
2

njnþ1 ¼
~Q

1

n�1ðH
1
nþ1Þ

T
ðR2

nþ1Þ
�1, F2

n�1 ¼

ðI� ~K
2

njnþ1H1
nþ1ÞF

1
n�1 and ~Q

2

n�1 ¼
~Q

1

n�1�
~K

2

njnþ1R2
nþ1

ð ~K
2

njnþ1Þ
T , in which H1

nþ1, Fn�1
1

and ~Q
1

n�1 are defined in

Section 4.3. We get the following S-based KF, which up to
our best knowledge is original ((48)–(51) implement the
U step and (52)–(53) the P step of the smoothing loop, and
the filtering path is implemented by (23)–(24)):

~ynþ1 ¼ ynþ1�H2
nþ1x̂n�1jn�H1

nþ1
~K

1

njnyn, ð48Þ

Lnþ1 ¼R2
nþ1þH2

nþ1Pn�1jnðH
2
nþ1Þ

T , ð49Þ

x̂n�1jnþ1 ¼ x̂n�1jnþPn�1jnðH
2
nþ1Þ

T L�1
nþ1

~ynþ1, ð50Þ

Pn�1jnþ1 ¼ Pn�1jn�Pn�1jnðH
2
nþ1Þ

T L�1
nþ1H2

nþ1Pn�1jn, ð51Þ

x̂njnþ1 ¼ F2
n�1x̂n�1jnþ1þ

~K
2

njnþ1ynþ1þðI� ~K
2

njnþ1H1
nþ1Þ

~K
1

njnyn,

ð52Þ

Pnjnþ1 ¼ F2
n�1Pn�1jnþ1ðF

2
n�1Þ

T
þ ~Q

2

n�1: ð53Þ

On the other hand, by using Section 3.2.2 we get the
following generic SMC implementation of (47), which will
be denoted by 2-S, since (47) involves the two-step
backward smoothing pdf pn�1jnþ1:

2-S algorithm. Let pðdxn�1jy0:nÞC
PN

i ¼ 1ð1=NÞ

dxi
n�1
ðdxn�1Þ.
rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

/ Signal Processing] (]]]])]]]–]]] 9
Table 1
Direct, P- and

Nature

P-based

Direct

S-based

Please ci
filter algo
63
Smoothing.
 W. For 1r irN, compute wi
nþ1ppðynþ1jx

i
n�1 ,ynÞ,PN

i ¼ 1 wi
nþ1 ¼ 1;
65
R. For 1r irN, sample ~x i
n�1 fromPN

i ¼ 1 wi
nþ1dxi

n�1
ðdxn�1Þ;
67
S. For 1r irN, sample xi
n � pðxnj ~x

i
n�1 ,yn ,ynþ1Þ;
then pðdxnjy0:nþ1ÞC
PN

i ¼ 1ð1=NÞdxi
n
ðdxnÞ.
69
Filtering.
 For 1r irN, sample x i
n � pðxnjxi

n�1 ,ynÞ; then

pðdxnjy0:nÞC
PN

i ¼ 1ð1=NÞd
x

i
n
ðdxnÞ.
71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111
7. Classification of the KF and SMC algorithms

Before we proceed to simulations let us first summar-
ize the results of Sections 4–6. We derived six integral
formulas for computing pnjn: two of them directly com-
pute pnjn from pn�1jn�1, two compute pnjn via the predic-
tion loop (pnjn�1-pnþ1jn), and two via the smoothing loop
(pn�1jn-pnjnþ1). Each of these six formulas transforms pjjk

into pjþ1jkþ1 by first updating one index and then the
other, and the filtering pdf of interest pnjn is computed
either directly (i.e. within the recursive loop) or indirectly.

In the linear Gaussian case these equations can be
computed exactly, which yields six KF algorithms, four of
which are distinct. Two of these algorithms are well-known
and two are original. Any of these KF is a two-in-one
algorithm, in the sense that it computes the parameters
xnjn and Pnjn of the filtering pdf pnjn, but also those of
another Gaussian pdf (pnjn�1 or pnþ1jn�1 for the P-based
filters, pn�1jn or pn�1jnþ1 for the S-based ones). In the general
case, the formulas can be implemented by SMC approxima-
tions, which yields two direct, two P-based and two S-based
PF algorithms. Among each pair of algorithms, the optimal
solution (optimal in terms of the conditional variance of the
weights) is obtained when updating precedes propagation.
Among the six solutions some coincide, and two are well
known: the Bootstrap algorithm is both a direct and P-based
PF algorithm, and is optimal for the prediction loop, but not
for the filtering one; the reorganized SIR algorithm with
optimal CID (or fully adapted APF) is both a direct and S-
based PF algorithm, and is optimal for the filtering loop, but
not for the smoothing one. Finally the two remaining P- and
S-based algorithms mirror each other. A summary of these
algorithms is given in Table 1.

8. Simulations

We are now going to compare the performances of the
four SMC algorithms 1-P, 2-P, 1-S, 2-S, and of the SIR
S-based KF and PF algorithms.

Eq. Loop qopt

(36)–(37)
pnjn�1-pnþ1jn�1-pnþ1jnpnjn

k

(2) pnjn�1-pnjn-pnþ1jn qopt
P ¼ pðxnþ1jxnÞ

(2) pn�1jn�1-pnjn�1-pnjn

(11) pn�1jn�1-pn�1jn-pnjn qopt
F ¼ pðxnjxn�1 ,yn

(11) pn�1jn-pnjn-pnjnþ1

(47)
pn�1jn-pn�1jnþ1-pnjnþ1pnjn

k qopt
S ¼ pðxnjxn�1 ,y

te this article as: F. Desbouvries, et al., Direct, p
rithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
algorithm with optimal CID pðxnjxn�1,ynÞ (see Section 2.2
and also the discussion in Section 4.4.3), from now on
simply denoted by SIR. In practice using a given SMC
algorithm requires that one can sample from the asso-
ciated optimal CID, and compute the associated likelihood
at any point; the optimal CID and associated likelihood
are the first and second factors of (10), (34) or (46) (in
particular the optimal CID for the direct, P- and S-based
algorithms is recalled in Table 1). There is no difficulty
with P-based algorithms, because pðxnþ1jxnÞ and pðynjxnÞ

are available. But as is well known, in many cases
pðxnjxn�1,ynÞ and pðynjxn�1Þ are neither directly available
nor can be computed exactly; and we would expect (at
first sight) that computing pðxnjxn�1,yn,ynþ1Þ and pðynþ1j

xn�1,ynÞ is even more difficult. Let us observe however
that computing ðpðxnjxn�1,yn,ynþ1Þ, pðynþ1jxn�1,ynÞÞ from
ðpðxnjxn�1,ynÞ, pðynjxn�1ÞÞ is of the same difficulty as
computing ðpðxnjxn�1,ynÞ, pðynjxn�1ÞÞ from ðpðxnjxn�1Þ,
pðynjxnÞÞ, because

pðxnjxn�1,ynÞppðynjxnÞpðxnjxn�1Þ, ð54Þ

pðynjxn�1Þ ¼

Z
pðynjxnÞpðxnjxn�1Þdxn, ð55Þ

pðxnjxn�1,yn,ynþ1Þppðynþ1jxnÞpðxnjxn�1,ynÞ, ð56Þ

pðynþ1jxn�1,ynÞ ¼

Z
pðynþ1jxnÞpðxnjxn�1,ynÞdxn: ð57Þ

So (54) and (55) (resp. (56) and (57)) are particular
instances of (8) and (7), which consist in computing
ðpðx1jx2Þ,pðx2ÞÞ from ðpðx1Þ,pðx2jx1ÞÞ, i.e. in computing one

of the two Bayes factorization of a joint pdf, given the other

one. As a consequence, up to some necessary adaptations
(see Section 8.3 below) the 2-S SMC algorithm can be used
in situations where ðpðxnjxn�1,ynÞ, pðynjxn�1ÞÞ can be
computed exactly (as in non-linear state-space models
with linear measurement equation and additive Gaussian
noise), provided we use for computing (56)–(57) one of
the approximation techniques [11,29,27] which have
already been developed for computing pðxnjxn�1,ynÞ and
pðynjxn�1Þ from pðxnjxn�1Þ and pðynjxnÞ.

8.1. Simulations, linear model

We first consider the following state-space model:

xnþ1 ¼ 0:2xnþun,

yn ¼ 5xnþvn,

(
ð58Þ
113

115

117

119

121

123

KF SMC

(38)–(47), (16)–(18). 2-P (original)

(13)–(18) 1-P (¼ Bootstrap)

Þ (19)–(24) (original) 1-S (¼reorg. SIR þ qF

opt
)

n ,ynþ1Þ
(48)–(53), (23)–(24) (original) 2-S (original)

rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

/ Signal Processing] (]]]])]]]–]]]10
in which un and vn are i.i.d., mutually independent and
independent of x0, with x0 �N ð0:5,0:5Þ, un �N ð0,Q Þ and
vn �N ð0,RÞ. Of course, in this model exact KF is available
and serves as a benchmark solution. For all five SMC
algorithms the optimal CID and associated incremental
weight can be computed exactly. More precisely, by using

Section 3.1 and (54)–(57) we get pðxnþ1jxnÞ �N ð0:2xn,Q Þ,

pðynjxnÞ �N ð5xn,RÞ; pðxnjxn�1,ynÞ �N ðm,PÞ and pðynj

xn�1Þ �N ðxn�1,SÞ with m¼ ð0:2R=ðRþ25Q ÞÞxn�1þ

ð5Q=ðRþ25Q ÞÞyn, P¼ RQ=ðRþ25Q Þ, and S¼ Rþ25Q; and

finally pðxnjxn�1,yn,ynþ1Þ �N ððS=ðSþPÞÞmþ ðP=ðSþPÞÞ

ynþ1, SP=ðSþPÞÞ and pðynþ1jxn�1,ynÞ � N ðm,SþP2Þ.

Let J be defined as J ¼ 1
50

P50
n ¼ 1½

1
1000

P1000
j ¼ 1 ðx̂

j
njn�

xj
nÞ

2
�1=2 (J is averaged over 1000 realizations, and 50 time

indices). Let N¼100 and R¼2. Table 2 displays J for
different values of Q. As we can see S-based algorithms
always outperform P-based ones, and for a class of algo-
rithms (P- or S-based) better results occur when updating
precedes propagation. 1-S slightly outperforms the SIR algo-
rithm, but J differs only by the third digit. For Q¼0.1 all
algorithms behave almost identically, but the P-based ones
degrade quickly as Q increases: in that case the strong
variations of xn are better tracked when yn (for SIR or 1-S)
or even yn and ynþ1 (for 2-S) are taken into account. In Fig. 4
we set Q¼0.1 and we see how J evolves with N. The
ordering of the algorithms is maintained, but when N

becomes higher the performances of the SIR algorithm and
of the two S-based ones become very close to that of the KF.

8.2. Simulations, non-linear model

Let us now consider the model [9]:

xnþ1 ¼ fnðxnÞþun,

yn ¼ gðxnÞþvn,

(
ð59Þ
Table 2
Empirical standard deviation J , linear model.

Q 2-P 1-P SIR

0.1 0.2183713 0.2155558 0.2147512

1 0.3489346 0.2844732 0.2754586

3 0.6020060 0.3092687 0.2820246

5 0.8511697 0.3287174 0.2829190

10 1.3505633 0.3723547 0.2843347

50 100 200
0.21

0.212

0.214

0.216

0.218

0.22

0.222

0.224

Particle

S
ta

nd
ar

d
D

ev
ia

to
n

J

Fig. 4. Empirical standard de

Please cite this article as: F. Desbouvries, et al., Direct, p
filter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
with fnðxnÞ ¼ 0:5xnþ25xn=ð1þx2
nÞþ8cosð1:2ðnþ1ÞÞ,

gðxnÞ ¼ x2
n=20, and in which un and vn are i.i.d., mutually

independent and independent of x0, with x0 �N ð0:5,0:5Þ.
Let also un �N ð0,Q Þ and vn �N ð0,RÞ. In this model
pðxnjxn�1Þ and pðynjxnÞ are available, so implementing the
P-based algorithms is straightforward. However,
pðxnjxn�1,ynÞ and pðynjxn�1Þ cannot be computed exactly.
Let us first briefly recall three well known techniques for
approximating pðxnjxn�1,ynÞ and pðynjxn�1Þ.
8.2.1. Approximating pðxnjxn�1,ynÞ and pðynjxn�1Þ
�

s N

via

re
01
Linearizing the observation equation [28,11,29]. In (59)
pðxnjxn�1Þ �N ðfn�1ðxn�1Þ,Q Þ, pðynjxnÞ �N ðgðxnÞ,RÞ. Since
pðxnjxn�1Þ and pðynjxnÞ are Gaussian, from Section 3.1,
point 2, pdf pðxnjxi

n�1,ynÞppðynjxnÞpðxnjxi
n�1Þ could be

computed easily if moreover EðynjxnÞ ¼ axnþb for some
a and b. This second condition does not hold here, so
the method consists in linearizing the observation
equation in a neighbourhood of fn�1(xn�1

i
). We get

ynCgðfn�1ðx
i
n�1ÞÞþg0ðfn�1ðx

i
n�1ÞÞðxn�fn�1ðx

i
n�1ÞÞþvn,

ð60Þ

ynC�
fn�1ðx

i
n�1Þ

2

20|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
b

þ
fn�1ðx

i
n�1Þ

10|fflfflfflfflfflffl{zfflfflfflfflfflffl}
a

xnþvn: ð61Þ
�
 Exact matching moment (EMM) [29]. The method con-
sists in approximating the true pdf pðxn,ynjxn�1Þ by a
Gaussian pdf p̂EMMðxn,ynjxn�1Þ. The parameters of p̂EMM

can be computed exactly: E½xnjxi
n�1� and var½xnjxi

n�1� are
available, E½ynjxi

n�1� and var ½ynjxi
n�1� can be computed

from yn ¼ ðfn�1ðxn�1Þþun�1Þ
2=20þvn and Covar½xn,ynj
99

101

103

105

107

109

111

113

115

117

119

121

123

1-S 2-S KF

0.2134734 0.2129922 0.2126259

0.2739999 0.2731135 0.2726688

0.2809878 0.2809739 0.2794307

0.2819416 0.2815135 0.2801607

0.2833163 0.2830501 0.2817664

300 400 500
umber N

1S
2S
SIR
1−P
2−P
KF

tion, linear model.

diction- and smoothing-based Kalman and particle
1.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

Ta
Em

R

0

1

2

3

5

1

2

Ta
Em

N

5

1

2

3

5

P
fi

/ Signal Processing] (]]]])]]]–]]] 11
xi
n�1� from E½xnynjxi

n�1�. Finally

p̂EMMðxn,ynjx
i
n�1Þ

�N
fn�1ðx

i
n�1Þ

fn�1ðx
i
n�1
Þ
2

20 þ
Q
20

2
4

3
5,

Q
fn�1ðx

i
n�1
ÞQ

10

fn�1ðx
i
n�1
ÞQ

10

fn�1ðx
i
n�1
Þ
2Q

100 þ
Q2

200 þR

2
64

3
75

0
B@

1
CA,

ð62Þ

from which one can compute an approximation
p̂EMMðxnjxi

n�1,ynÞ of pðxnjxi
n�1,ynÞ and p̂EMMðynjxi

n�1Þ of
pðynjxi

n�1Þ.

73
�
75

77

79

81

83

85

87

89

91

93

95

97

99

101
Unscented particle filter (UPF) [27]. The method still
consists in approximating the true pdf
pðxn,ynjxn�1Þ ¼ pðxnjxn�1ÞpðynjxnÞ by a Gaussian pdf
p̂UPF ðxn,ynjxn�1Þ, the parameters of which are now
approximated via an unscented transform (UT) (see
e.g. [30]). In (59) E ðxnjxi

n�1Þ and var ðxnjxi
n�1Þ are

available, so we only need to evaluate the first two
moments of pðynjxn�1Þ. We eventually get a Gaussian
approximation p̂UPF ðxn,ynjxi

n�1Þ (which differs from
p̂EMMðxn,ynjxi

n�1Þ in (62)) of pðxn,ynjxi
n�1Þ, from which

approximations p̂UPF ðxnjxi
n�1,ynÞ of pðxnjxi

n�1,ynÞ and
p̂UPF ðynjxi

n�1Þ of pðynjxi
n�1Þ are eventually computed.

Remark 4. Note that the EMM or UPF methods which we
just recalled yield an approximation p̂EMMðynjxi

n�1Þ or
p̂UPF ðynjxi

n�1Þ of pðynjxi
n�1Þ, needed to calculate the weights

in the 1-S algorithm. However, these approximations
sometimes lead to poor performances, especially when
Q is high. In such cases, we alternatively use IS for
estimating pðynjxi

n�1Þ. More precisely, we compute
p̂ISðynjxi

n�1Þ as p̂ðynjxi
n�1Þðx

i
nÞ ¼ pðynjx

i
nÞpðx

i
njx

i
n�1Þ= p̂ðxi

nj

xi
n�1,ynÞ where xi

n � p̂ðxnjxi
n�1,ynÞ.

8.2.2. Simulations

We now turn to simulations. Let Q¼1, N¼50, and in
UPF a¼ 1 and b¼ 0. For 1-S we use either p̂EMMðynjxi

n�1Þ or
103

105

107

109

111

ble 3
pirical standard deviation J , non-linear model.

2-P 1-P SIR(EMM) SIR(UPF) 1-S(EMM) 1-S(UPF)

.5 4.6937 3.7397 3.3746 3.4745 2.7655 2.7460

4.3601 3.6139 3.3611 3.4082 2.8616 2.8823

4.1670 3.5613 3.4065 3.4571 2.9705 2.9683

3.9561 3.5611 3.4232 3.4599 3.0079 3.0028

4.1270 3.6724 3.6820 3.6766 3.3171 3.2730

0 4.3013 4.1054 4.0950 4.0524 3.8455 3.8002

0 4.8327 4.7053 4.7030 4.7249 4.4992 4.5309

ble 4
pirical standard deviation J , non-linear model.

2-P 2-P-SB 1-P 1-P-SB

0 7.0848 6.4659 5.5501 5.1970

00 5.8079 5.3658 4.9031 4.8522

00 5.2276 4.8377 4.5898 4.5987

00 4.9139 4.6783 4.4642 4.4951

00 4.6379 4.5467 4.4397 4.4267

lease cite this article as: F. Desbouvries, et al., Direct, p
lter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
p̂UPF ðynjxi
n�1Þ. Table 3 displays J for different values of R.

The ordering of the algorithms is maintained, and the
difference between SIR and 1-S becomes significant
(simulations using the linearization method have already
been performed in [28], and are efficient only if NZ500).
Note that in (59) fn has strong variations, so the influence
of yn is essential. This explains the difference between P-
based algorithms and the SIR and 1-S ones, at least when
R is small. On the other hand if the observations get very
noisy (R¼10) the performance of 2-P remains unaltered,
while by contrast the SIR and 1-S algorithms degrade. Also
note that J 2P and J 1P (and also J SIR to a lesser extent)
decrease when R increases while remaining small (up to
R¼3 for 2-P and 1-P, and R¼2 for SIR). This is not
surprising because in 2-P and 1-P particles xn

i
are guided

blindly by the prior and then weighted by the past
likelihood pðyn�1jx

i
n�1Þ (for 2-P) or the present one

pðynjxi
nÞ (for 1-P); this likelihood is tight if R is small, so

few different particles are kept after the resampling step,
all the more than the number of particles is small (N¼50
in this simulation). Now in SIR we do take into account
the observation yn when we sample from pðxnjxi

n�1,ynÞ, but
we nevertheless get poor results if the likelihood between
xn�1

i
and yn

i
(which depends on R) is weak. Interestingly

enough, we do not observe this phenomenon with 1-S,
because particles xn�1

i
are first resampled according to a

weight proportional to pðynjxi
n�1Þ, which guarantees that

xn will be sampled from pðxnjxi
n�1,ynÞ where xn�1

i
and yn

already have a high likelihood; this simulation illustrates
the importance of resampling before sampling, especially
when the model is very informative.

Next in Table 4 we set Q¼10, R¼1, in UPF a¼ 0:94 and
b¼ 0, and we use p̂ISðynjxi

n�1Þ (see Section 8.2.1, Remark
4). We see how J evolves with the number of particles N.
As above, 1-S outperforms the P-based and SIR algorithms.
This simulation also includes columns 2-P-SB and 1-P-SB,
where an SB resampling technique is used (see Section
3.2, Remark 2). Following [31], SB resampling was done
from the Gaussian mixture

PN
i ¼ 1 wi

nN ðxi
n,BnÞ with

Bn¼Vbn, bn ¼ 4=Nðnxþ2Þ1=ðnxþ4Þ, V ¼
PN

i ¼ 1 wi
nðx

i
n�
PN

j ¼ 1

wj
nxj

nÞ ðx
i
n�
PN

j ¼ 1 wj
nxj

nÞ
T and nx is the dimension of the

state vector xk (here nx¼1). For these model and para-
meters smooth and naive bootstrap resampling provide
similar results for 1-P, but SB improves the results of the
2-P algorithm. We actually observed in other simulations
that the ordering of the algorithms is maintained if using
SB resampling. Even though SB ensures that all resampled
particles will be different, it does not necessarily outper-
form multinomial bootstrap resampling, see [32,31]; and
indeed it seems that the effect of the chosen resampling
113

115

117

119

121

123

SIR(EMM) SIR(UPF) 1-S(EMM) 1-S(UPF)

5.1884 5.0528 4.9003 4.9302

4.7207 4.7397 4.5679 4.5796

4.4926 4.5260 4.4780 4.4698

4.4522 4.4477 4.4310 4.4396

4.4218 4.4122 4.4138 4.4077

rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

Table 5
Empirical standard deviation J , first semi-linear model.

Q 2-P 1-P SIR 1-S 2-S(UPF)

0.1 1.8806834 1.5315351 1.5157711 1.2715162 1.1597958

0.3 2.2708272 1.8352925 1.7089960 1.4593566 1.3207988

0.5 2.3162285 1.8401509 1.7103603 1.4729264 1.4229020

0.75 2.3338881 1.8495259 1.7552383 1.4987803 1.5487517

1 2.4440703 1.8517968 1.8399069 1.5774676 1.6391233

10 2.8704646 2.4588790 2.3428298 2.2977296 2.4482171

50 3.8532685 2.8746632 2.7053773 2.6711875 2.6882771

/ Signal Processing] (]]]])]]]–]]]12
scheme (classical or SB) depends on the model, on its
parameters (Q and R), and also on the number of particles.
It would certainly be of interest to analyse precisely when
SB is likely to outperform the classical bootstrap, however
such an extensive study is out of the scope of this paper.

8.3. Simulations, semi-linear models

In the previous section we compared the P-based, SIR
and 1-S algorithms, but not the 2-S one, because in model
(59) pðxnjxn�1,yn,ynþ1Þ and pðynþ1jxn�1,ynÞ are rather dif-
ficult to implement. The 2-S algorithm can nevertheless
be used in some situations, as we now see. Let us first
consider the non-linear model with linear measurements
equation

xnþ1 ¼ fnðxnÞþun,

yn ¼ 0:5xnþvn,

(
ð63Þ

in which un and vn are i.i.d., mutually independent and
independent of x0, with x0 �N ð0,1Þ, un �N ð0,Q Þ and
vn �N ð0,RÞ (the first equation of (63) coincides with that
of (59)). In this model pðxnþ1jxnÞ and pðynjxnÞ are available
as above. Moreover E ðynjxnÞ is linear in xn, so pðxnjxn�1,ynÞ

and pðynjxn�1Þ can also be computed easily:
pðxnjxn�1,ynÞ �N ð~f n�1ðxn�1,ynÞ, ~Q Þ, pðynþ1jxnÞ �N ð ~g ðxnÞ, ~RÞ,
with ~f n�1ðxn�1,ynÞ ¼ ð4R=ð4RþQ ÞÞfn�1ðxn�1Þþð2Q= ð4Rþ

Q ÞÞyn, ~Q ¼ 4RQ=ð4RþQ Þ, ~gðxnÞ ¼ 0:5fnðxnÞ and ~R ¼ Rþ

0:25Q .
Next, even though pðxnjxn�1,ynÞ and pðynþ1jxnÞ are

Gaussian, E ðynþ1jxnÞ ¼ Eðynþ1jxn,xn�1,xnÞ ¼ ~g ðxnÞ is no
longer linear in xn, so pðxnjxn�1,yn,ynþ1Þp pðxnjxn�1,ynÞ

pðynþ1jxnÞ is not Gaussian. However, the problem of
computing pðxnjxn�1,yn,ynþ1Þ from ðpðxnjxn�1,ynÞ,
pðynþ1jxnÞÞ is the same as that of computing pðxnjxn�1,ynÞ

from ðpðxnjxn�1Þ,pðynjxnÞÞ, so the techniques recalled in
Section 8.2.1 can be adapted to (63) (in particular
pðynþ1jx

i
n�1,ynÞ can be computed by adapting the EMM

or UPF techniques, or the IS technique of Remark 4;
Tables 5 and 6 are obtained by the IS approximation).
From a numerical point of view, note however that there
are differences between using 1-S in the non-linear model
(59), or 2-S in the semi-linear one (63).

First, in (59) we apply linearization, UT or EMM to
g(xn)¼xn

2
. Since this function is smooth, the UT or EMM

approximations give good results, and consequently 1-S

does not suffer from the approximations required by its
practical implementation. On the other hand, in order to
implement 2-S in (63) we need to apply UT or EMM to
~g ðxnÞ ¼ 0:5fnðxnÞ, but now function fn in (59) is not smooth,
so 2-S will provide good results only if the approxima-
tions are valid. Also observe that the exact moments of
pðxnjxn�1,yn,ynþ1Þ cannot be computed in model (63)
(because ~g ðxnÞ is not a polynomial in xn any longer); the
linearization and EMM methods will then be replaced by
a one- or second-order Taylor series expansion of ~gðxnÞ.

Let us turn to simulations. Let R¼2 and N¼50. For 2-S

we used either a second order Taylor series expansion or
UPF with parameters a¼ 0:73 and b¼ a2�1, which actu-
ally gave better results. Table 5 displays J as a function of
Q. As we can see, the ordering 2-P o 1-P o SIR o 1-S is
Please cite this article as: F. Desbouvries, et al., Direct, p
filter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
maintained. As expected, 2-S outperforms 1-S if Q is small,
but 1-S actually performs better if Q increases. Again the
reason why is that in the non-linear model fn has strong
variations; all orders actually matter, so all approxima-
tions of fn at some point becomes very poor outside of a
small neighbourhood of that point, and such situations do
happen if Q gets larger.

In Fig. 5 we set Q¼10 and we compare the algorithms
as a function of N. As we see 1-S behaves better than SIR,
which behaves better than 1-P, which behaves better than
2-P.

Finally let us consider the semi-linear model (63), but
in which the evolution equation is replaced by
xnþ1 ¼ arctanxnþun. We set a¼ 0:88, b¼ a2�1, N¼100
and R¼2. Table 6 displays J in terms of Q. By contrast
with the previous semi-linear model, the arctan function
is now very smooth. As a result all algorithms give
satisfactory results, especially if Q is low. Also observe
that the ordering of the algorithms is maintained, and in
particular that for this model 2-S always outperforms 1-S,
even for large values of Q. The reason why is that for the
arctan function limited order approximations are valid in
a large domain, so the necessity of approximating
pðxnjxn�1,yn,ynþ1Þ is no longer a handicap of 2-S w.r.t. 1-S.
8.4. Simulations, range bearing tracking model

We finally compare our algorithms in the range bear-
ing tracking problem (see e.g. [33]). We track the Carte-
sian coordinates and velocity of a target with linear
dynamics from range bearing measurements. So let
xn ¼ ½pxðnÞ, _pxðnÞ,pyðnÞ, _pyðnÞ�

T . The model is described as

xnþ1 ¼ Fxnþun,

yn ¼ tan�1 pyðnÞ

pxðnÞ

� �
,
ffi
pxðnÞ

2
þpyðnÞ

2
q� �T

þvn,

8><
>: ð64Þ

where uk �N ð0,Q Þ and vk �N ð0,RÞ are i.i.d., mutually
independent and independent of x0, and

F¼

1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

0
BBB@

1
CCCA, Q ¼ s2

Q

T3
s

3
T2

s

2 0 0

T2
s

2 Ts 0 0

0 0 T3
s

3
T2

s
2

0 0 T2
s

2 Ts

0
BBBBBB@

1
CCCCCCA,
rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

Table 6
Empirical standard deviation J , alternate semi-linear model (N¼100,

R¼2).

Q 2-P 1-P SIR 1-S 2-S(UPF)

1 1.1264610 1.1222430 1.1232098 1.1185242 1.1170665

5 1.8533435 1.8397771 1.8385670 1.8262934 1.8252950

20 2.1870510 2.1645330 2.1558708 2.1451642 2.1449666

50 2.4919791 2.4292195 2.4116993 2.3984171 2.3981047

Table 7
Empirical standard deviation J ðpxÞ, range-bearing tracking model.

N 2-P 1-P SIR 1-S(UPF)

100 5.1673 4.4171 4.4218 4.2916

200 4.4404 3.9461 3.9160 3.7829

500 3.9941 3.5751 3.5137 3.4983

50 100 200 300 400 500
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Particles Number N

S
ta

nd
ar

d
D

ev
ia

tio
n

J

1−S
SIR
1−P
2−P

Fig. 5. Empirical standard deviation, non-linear model.

/ Signal Processing] (]]]])]]]–]]] 13
R¼
s2

b 0

0 s2
r

 !
,

where Ts¼1 s is the sampling period, sQ ¼ 0:1 is the
process noise, sb ¼ 5p=180 (51) (resp. sr ¼ 5 m) is the
bearing (resp. range) measurements standard deviation.

For SIR and 1-S the exact CID pðxnjxn�1,ynÞ cannot be
computed exactly; as in Section 8.2 we use UPF with
a¼ 0:94 and b¼ 0 and p̂UPF ðynjx

i
n�1Þ. True state x0 is

located at xinit ¼ ½5,5,�3,�3�T and the first particles xi
0

are sampled from pðx0Þ �N ðxinit ,PinitÞ with Pinit ¼ diagð½10,
1,10,1�Þ. We use the same criterion J as above but for
each component of the state vector. Table 7 presents
results for the px component (similar results are obtained
for the three other ones py, _px and _py). The ordering of the
algorithms is maintained, even if for this model J 1�P and
J SIR are close. This is because the model is almost
deterministic (sQ ¼ 0:1). Velocity is a critical parameter
here, because one single measurement does not bear
Please cite this article as: F. Desbouvries, et al., Direct, p
filter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
information on the velocity of the target. In 1-P particles
are sampled blindly, so after the S step it may happen that
only very few particles bear a good estimate of the
velocity parameters. This in turn will induce a bad
estimation of the position parameters after the next
prediction step. This phenomenon is observed in Fig. 6
where there is a gap between the true state and the state
estimated by 1-P. This does not happen with 1-S because
particles xn�1

i
are first guided toward the new observa-

tion, and then xn
i

is sampled by taking into account the
new particle ~x i

n�1 and observation xn.
9. Conclusion

We addressed the recursive computation of the poster-
ior pdf pnjn of a hidden variable xn given all observations
y0:n. We observed that the classical recursion (pn�1jn�1-

pnjn�1-pnjn) is not the only one that can be used for
computing pnjn online, and we explored alternate direct,
P- and S-based filters, which yields four distinct solutions.
Since any of these paths can be decomposed into a
propagation step and an updating one (or vice versa),
we routinely derived practical algorithms by applying, for
each step, either appropriate Gaussian formulas or ad hoc
simulation techniques. This enabled us to enhance the
fundamental role played in SMC algorithms by the sam-
pling, weighting and resampling operations (always in
that order, up to a cyclic permutation). Even though the
tools that we use are not new, we do believe that the
systematic and parallel derivation, for each filtering path,
of both a KF and an associated generic SMC algorithm, is
both original and economical. Up to our best knowledge,
among the four KF (resp. SMC) algorithms that we get two
are well known and two are original. Finally simulations
showed that the reorganized SIR algorithm with optimal
CID, i.e. the direct filter for which updating precedes
propagation, behaves better than the original one; S-
based algorithms outperform P-based ones, and in each
class of algorithms better results are obtained (under fair
conditions, i.e. when the necessary approximations are
indeed valid) when updating precedes propagation.
rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61
63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

Q2
Q1

0 50 100 150 200 250 300
−160

−140

−120

−100

−80

−60

−40

−20

0

px

p y

True
1−P
SIR
1−S

Fig. 6. Range-bearing tracking scenario—estimation of py(n) vs. px(n) for N¼100.

/ Signal Processing] (]]]])]]]–]]]14
Acknowledgement

The authors would like to thank the French MOD DGA/
MRIS for financial support of the PhD of Y. Petetin.

References

[1] Y.C. Ho, R.C.K. Lee, A Bayesian approach to problems in stochastic
estimation and control, IEEE Transactions on Automatic Control 9
(October) (1964) 333–339.

[2] B.D.O. Anderson, J.B. Moore, Optimal Filtering, Prentice-Hall, Engle-
wood Cliffs, NJ, 1979.

[3] H. Tanizaki, Nonlinear Filters, Estimation and Applications, second
ed., Springer, Berlin, 1996.

[4] J.S. Liu, R. Chen, Sequential Monte Carlo methods for dynamic
systems, Journal of the American Statistical Association 93 (443)
(1998) 1032–1044.

[5] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking,
IEEE Transactions on Signal Processing 50 (2) (2002) 174–188.

[6] P.M. Djuric, J.H. Kotecha, A. Jianqui Zhang, A. Yufei Huang,
T. Ghirmai, M.F. Bugallo, J. Miguez, Particle filtering, IEEE Signal
Processing Magazine 20 (5) (2003) 19–38.

[7] O. Cappé, É. Moulines, T. Rydén, Inference in Hidden Markov
Models, Springer, 2005.

[8] N.J. Gordon, D.J. Salmond, A.F.M. Smith, Novel approach to non-
linear/non-Gaussian Bayesian state estimation, IEE Proceedings-F
140 (1993) 107–113.

[9] G. Kitagawa, Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models, Journal of Computational and Gra-
phical Statistics 5 (1) (1996) 1–25.

[10] V. Zaritskii, V. Svetnik, L. Shimelevich, Monte Carlo technique in
problems of optimal data processing, Automation and remote
control (1975) 95–103.

[11] A. Doucet, S.J. Godsill, C. Andrieu, On sequential Monte Carlo
sampling methods for Bayesian filtering, Statistics and Computing
10 (2000) 197–208.

[12] D.B. Rubin, Using the SIR algorithm to simulate posterior distribu-
tions, in: M.H. Bernardo, K.M. Degroot, D.V. Lindley, A.F.M. Smith
(Eds.), Bayesian Statistics III, Oxford University Press, Oxford, 1988.

[13] A.E. Gelfand, A.F.M. Smith, Sampling based approaches to calculat-
ing marginal densities, Journal of the American Statistical Associa-
tion 85 (410) (1990) 398–409.

[14] A.F.M. Smith, A.E. Gelfand, Bayesian statistics without tears: a
sampling-resampling perspective, The American Statistician 46
(2) (1992) 84–87.

[15] B. Efron, Bootstrap methods: another look at the jacknife, Annals of
Statistics 7 (1) (1979) 1–26.

[16] B. Efron, R.J. Tibshirani, An introduction to the bootstrap, Mono-
graphs on Statistics and Applied Probability, vol. 57, Chapman &
Hall, New York, 1993.
Please cite this article as: F. Desbouvries, et al., Direct, p
filter algorithms, Signal Process. (2011), doi:10.1016/j.sigpro.2
[17] P. Barbe, P. Bertail, The weighted bootstrap, Lecture Notes in
Statistics, vol. 98, Springer Verlag, New York, 1995.

[18] R. Douc, O. Cappé, É. Moulines, Comparison of resampling schemes
for particle filtering, in: Proceedings of the 4th International

Symposium on Image and Signal Processing and Analysis (ISPA),
2005.

[19] J.D. Hol, T.B. Schön, F. Gustafsson, On resampling algorithms for
particle filtering, in: Proceedings of the IEEE Nonlinear Statistical
Signal Processing Workshop (NSSPW’06), Cambridge, UK, Septem-

ber 13–15, 2006.
[20] R.E. Helmick, W.D. Blair, S.A. Hoffman, One-step fixed-lag smooth-

ers for Markovian switching systems, IEEE Transactions on Auto-
matic Control 41 (7) (1996) 1051–1056.

[21] T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation, Prentice-Hall,
2000.

[22] B. Ait-el-Fquih, F. Desbouvries, On Bayesian fixed-interval smooth-
ing algorithms, IEEE Transactions on Automatic Control 53 (10)
(2008) 2437–2442.

[23] M.K. Pitt, N. Shephard, Filtering via simulation: auxiliary particle
filter, Journal of the American Statistical Association 94 (446)

(1999) 550–599.
[24] P. Fearnhead, Computational methods for complex stochastic

systems: a review of some alternatives to MCMC, Statistics and
Computing 18 (2) (2008) 151–171.

[25] R. Douc, É. Moulines, J. Olsson, Optimality of the auxiliary particle
filter, Probability and Mathematical Statistics 29 (1) (2009) 1–28.

[26] N. Whiteley, A.M. Johansen, Recent developments in auxiliary
particle filtering, in: Barber, Cemgil, Chiappa (Eds.), Inference and
Learning in Dynamic Models, Cambridge University Press, 2010 to

appearto appear.
[27] R. van der Merwe, A. Doucet, N. de Freitas, E. Wan, The unscented

particle filter, in: Advances in Neural Information Processing
Systems, 2000.

[28] A. Doucet, N.J. Gordon, V. Krishnamurthy, Particle Filters for state
estimation of jump Markov linear systems, Technical Report, Cam-
bridge University Engineering Department, 1999.

[29] S. Saha, P.K. Manda, Y. Boers, H. Driessen, A. Bagchi, Gaussian
proposal density using moment matching in SMC methods, Statis-

tics and Computing 19 (2) (2009).
[30] S. Julier, J. Uhlmann, Unscented filtering and nonlinear estimation,

Proceedings of the IEEE 92 (3) (2004) 401–422.
[31] P. Stavropoulos, D.M. Titterington, Improved particle filters and

smoothing. In: A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential
Monte-Carlo Methods in Practice, Springer Verlag, 2001
(Chapter 14).

[32] B.W. Silverman, G.A. Young, The bootstrap: to smooth or not to
smooth?, Biometrika 74 (3) (1987) 469–479

[33] B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter:
Particle Filters for Tracking Applications, Artech House, Boston

London, 2004.
rediction- and smoothing-based Kalman and particle
011.03.013

dx.doi.org/10.1016/j.sigpro.2011.03.013

	Direct, prediction- and smoothing-based Kalman and particle filter algorithms
	Introduction
	The PF methodology
	The generic PF algorithm
	Practical considerations

	A practical toolbox
	The linear Gaussian case
	The general case
	Three simulation techniques
	The unweighted mechanism
	The weighted mechanism
	Unweighted vs. weighted mechanisms

	Direct filtering algorithms
	Exact direct filters
	Implementing (2): 1-P algorithm
	Implementing (11): 1-S algorithm
	Comments and remarks on the 1-P and 1-S SMC algorithms
	Sampling before or after the updating step
	Connection with APF
	SIR with optimal CID: original or reorganized?

	P-based filtering algorithms
	S-based filtering algorithms
	Classification of the KF and SMC algorithms
	Simulations
	Simulations, linear model
	Simulations, non-linear model
	Approximating p(xnvertxnminus1&maccomma;yn) and p(ynvertxnminus1)
	Simulations

	Simulations, semi-linear models
	Simulations, range bearing tracking model

	Conclusion
	Acknowledgement
	References

