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Abstract

Fixed-interval Bayesian smoothing in state-space systems has been addressed for a long time. How-

ever, as far as the measurement noise is concerned, only two cases have been addressed so far : the

regular case, i.e. with positive definite covariance matrix; and the perfect measurement case, i.e. with

zero measurement noise. In this paper we address the smoothing problem in the intermediate case where

the measurement noise covariance is positive semi definite with arbitrary rank. We exploit the singularity

of the model in order to transform the original state-space system into a pairwise Markov model with

reduced state dimension. Finally, the a posteriori Markovianity of the reduced state enables us to propose

a family of fixed-interval smoothing algorithms.

I. INTRODUCTION

Let us consider the state space system
xn+1 = Fnxn +Gnun

yn = Hnxn + Jnwn︸ ︷︷ ︸
vn

, (1)
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in which xn ∈ IRnx is the state, yn ∈ IRny the observation, un ∈ IRnu the process noise and vn ∈ IRnv

the measurement noise. Processes u = {un}n∈IN and w = {wn}n∈IN are zero-mean, independent1, jointly

independent and independent of x0. So xn is a Markov chain (MC) and (xn,yn) is a hidden Markov

chain with independent noise (HMC-IN). Fixed-interval smoothing consists in estimating xn from y0:N

for 0 ≤ n ≤ N . In the case where the covariance matrices Qn of Gnun and Rn of vn = Jnwn are

positive definite (> 0), many algorithms have been derived by using such different methods as calculus

of variations [1], maximum a posteriori [2] [3], orthogonal projections [4], the innovations approach [5],

the two-filter form [6] [7], complementary models [8] or the Bayesian approach [9] [10] (modern surveys

can also be found e.g. in [11, ch. 10] [8] or [12]).

The case where Rn is the null matrix (Rn = 0) has received less attention so far, even though it is

of interest in many applications, in particular if the measurement additive noise is colored. Let us briefly

summarize the existing contributions. At least two cases can lead to this situation.

• Unnoisy measurement case (wn = 0). The unnoisy measurement case was first addressed by Kalman

in his original paper [13], see also [14]. A continuous time BF smoother has also been derived in

[15].

• Autoregressive (AR) measurement noise. Let

wn = An−1wn−1 + ξn (2)

(with w0 = ξ0), in which ξn is zero-mean, and x0, {un}n≥0 and {ξn}n≥0 are independent. Let x∗
n be

the augmented state x∗
n = [xT

n ,w
T
n ]

T . Then system (1) can be rewritten as the unnoisy measurement

system : 
x∗
n+1 =

 Fn 0

0 An

x∗
n +

 Gnun

ξn+1


yn = [Hn Jn]× x∗

n

. (3)

The AR measurement noise case has been addressed in many papers, but up to our best knowledge,

three algorithms only have been derived : the Kalman filter (KF) [16] [17] [18] [19] [20] [21], the

Rauch-Tung-Streibel (RTS) algorithm [18] [20], and a fixed-lag smoothing (FLS) algorithm [21].

Remark 1: In some particular cases one can avoid increasing the dimension of the state. Let us

assume that Jn is the ny × ny identity matrix Iny
and that E(ξnξTn ) > 0. Then model (1) can be

1The independence assumptions in this paper come from our choice to adopt the Bayesian point of view and next derive our

smoothing algorithms by injecting the Gaussian assumption. Alternately, we could of course have assumed that the independent

processes are uncorrelated only, and derive our algorithms as recursive linear minimum mean square error restoration procedures.
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transformed into  xn = Fn−1xn−1 +Gn−1un−1

ỹn = H̃nxn−1 + ṽn

(4)

in which ỹn = yn − An−1yn−1, H̃n = HnFn−1 − An−1Hn−1, and ṽn = HnGn−1un−1 + ξn.

Since {ṽn}n≥0 is independent and E(ṽnṽ
T
n ) > 0, (4) is a regular state-space system, with the same

state xn (rather than an augmented one x∗
n), correlated process and measurement noises, and with

pseudo-measure ỹn. For model (4) the KF has been derived e.g. in [16] [19] [20] [18], the RTS

algorithm in [20] [18], an FLS algorithm in [22] [23], and a two-filter smoother (for the continuous

time case) in [24].

Remark 2: In the above models x0, {un}n≥0 and {ξn}n≥0 were assumed to be independent,

which implies that {un}n≥0 and {wn}n≥0 are independent too. Let us now only assume that x0

and {(un, ξn+1)}n≥0 are independent, but that the subvectors un and ξn+1 are correlated. These

assumptions, in turn, imply that un and wn+p are correlated for all p > 0, which can be of interest

in some cases like in aircraft radar guidance systems [25], in which the system and measurement

noises come from the same source, and so are correlated. Yet in (3) x∗
n remains an MC, and (4) is

still an HMC-IN, which implies that the algorithms for models (3) and (4) can still be used.

Let us finally consider the general singular case in which Rn is a positive semi-definite matrix (Rn ≥

0). Up to our best knowledge, only filtering has been addressed in this case [16]. Apart from the case

where Jn is not a full rank matrix, the singular measurements case also occurs when some of the

measurements are either unnoisy or colored :

• Partially unnoisy measurements case. Let yn = [y1n · · · y
ny
n ]T . If some components {ykn}k∈K are

unnoisy then Rn ≥ 0.

• Partially AR measurement noise. Let some of the components be colored. Without loss of generality

we thus assume that

Jnwn = [J1
nJ

2
n]

 w1
n

w2
n

 ,

 w1
n

w2
n

 =

 A1
n−1 0

0 0

 w1
n−1

w2
n−1

+

 ξ1n

ξ2n


︸ ︷︷ ︸

ξn

(5)

in which, again, x0, {un}n≥0 and {ξn}n≥0 are independent. Then the AR noise block component

can be concatenated to xn in order to form an augmented state x∗
n = [xT

n ,w
1
n]

T , and system (1) can
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be rewritten as : 
x∗
n+1 =

 Fn 0

0 A1
n

x∗
n +

 Gnun

ξ1n+1


yn = [Hn J1

n]× x∗
n + J2

nξ
2
n

(6)

which again is an HMC-IN with singular measurement noise.

Remark 3: Remarks 1 and 2 still hold, and in particular (6) remains an HMC-IN with singular

measurement noise if we only assume that x0 and {(un, ξn+1)}n≥0 are independent.

In this paper we study the fixed-interval smoothing problem in model (1), in the case where Rn is

an arbitrary (and possibly null) ≥ 0 matrix. We exploit the singularity of Rn in order to transform the

original state-space system into an (equivalent) stochastic dynamical system but with state dimension

reduced by the nullity of Rn. The transformed system happens to be a Pairwise Markov Chain (PMC)

model, and as such the hidden process (even though it is not Markovian) is Markovian conditionnally on

the observations. This key computational property finally enables us to develop fixed interval smoothing

algorithms in the transformed system - and therefore, equivalently, in the original singular system.

The paper is organised as follows. Section II is devoted to the transformation of the HMC-IN model (1)

into a reduced state PMC model. In section III we propose Bayesian fixed-interval smoothing algorithms

in a general (i.e., not necessarily linear and Gaussian) PMC model. Following the Bayesian point of view

for deriving minimum mean-square error (MMSE) algorithms for state-space systems (see e.g. [26]), in

section IV we inject the Gaussian assumption into the algorithms of section III, which eventually yields

our fixed interval smoothing algorithms for singular measurement noise state-space systems. In section

V we perform some simulations, and finally ection VI concludes the paper.

II. STATE-SPACE TRANSFORM

We address the fixed-interval smoothing problem in the singular measurements case, i.e. in system (1)

in the case where Rn ≥ 0. Some of the classical fixed-interval smoothing algorithms (see e.g. [27] for

a recent review), originally designed for regular state-space systems, still hold in the singular case, but

some others cannot be used any longer. In this paper we thus develop an alternative technique. Let r

= rank(Rn) ∈ {0, 1, ... , ny − 1}. Following [16], we transform the state space model (1) in order to

reduce by m = ny − r the order of state xn. In sections III and IV it will remain to design smoothing

algorithms for this reduced-order linear stochastic system.
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A. State-space transform

Since Rn has m zero eigenvalues, there exists a square non-singular matrix Mn satisfying

MnRnM
T
n =

 0m 0

0 Ir

 , (7)

in which 0m denotes the m×m null matrix. Let yn = Mnyn and vn = Mnvn; then from (1) we get yp
n

yr
n


︸ ︷︷ ︸

yn

=

Hp
n

H
r
n


︸ ︷︷ ︸

Hn=MnHn

xn +

0m×1

vr
n


︸ ︷︷ ︸

vn

, (8)

and we see that yn is divided into a perfect part (yp
n)m×1 (the unnoisy part) and a regular one (yr

n)r×1.

Since m linear functionals of the state xn are known once yn is known, there is no need to estimate

them, and this is why one can reduce by m the order of the state-space system, as we now see. Let us

assume that

nx ≥ m, (9)

and that in (8)

rank(Hp
n)m×nx

= m. (10)

Then one can choose a (nx −m)× nx matrix Un in such a way that the transform (Un)(nx−m)×nx

(H
p
n)m×nx


︸ ︷︷ ︸

Tn

xn =

 xn

yp
n

 (11)

is reversible, and finally Tn and Mn enable us to transform the original linear state-space model (1) into

the equivalent state-space system xn+1

yp
n+1


︸ ︷︷ ︸
Tn+1xn+1

= Tn+1FnT
−1
n

 xn

yp
n


︸ ︷︷ ︸
Tnxn

+Tn+1Gnun. (12)

On the other hand from (8) and the first equation of (1) we have

yr
n+1 = H

r
n+1xn+1 + vr

n+1

= H
r
n+1FnT

−1
n

 xn

yp
n

+H
r
n+1Gnun + vr

n+1. (13)
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Gathering (12) and (13), we eventually get the reduced-order linear dynamic stochastic system :xn+1

yn+1


︸ ︷︷ ︸
zn+1

=

Fx,x
n Fx,y

n

Fy,x
n Fy,y

n


︸ ︷︷ ︸

Fn

xn

yn

+
 Un+1 0

Hn+1 Ĩr

Gnun

vr
n+1


︸ ︷︷ ︸

wn

, (14)

with

Fn =

 Tn+1

H
r
n+1


︸ ︷︷ ︸
(nx+r)×nx

[FnT
−1
n , 0]︸ ︷︷ ︸

nx×(nx+r)

, (15)

Ĩr =

 0m×r

Ir

 . (16)

Note that if r = 0 then equations (13)-(16) are useless, and (14) reduces to (12). Now, (12) also coincides

with (14) with yn = yp
n = yn (since we can take Mn = Iny

), Fn = Tn+1FnT
−1
n , and wn = Tn+1Gnun.

As a consequence the algorithms of sections III and IV, designed for model (14), also hold (up to these

adjustments) in the case r = 0.

B. Markovianity of the reduced state model (14)

The noise of (14), {wn}n, is zero mean and independent since u and {vr
n}n are independent and

jointly independent. Moreover, from (15) and (11) we get

F0z0 =

 T1

H
r
1

F0x0.

Then w is independent of F0z0 (because w is independent of x0). For these reasons, the process {zn}n is

a Markov chain (MC), so model (14) defines a so-called PMC. PMC models have been first introduced in

the discrete state case and have been applied in the context of image segmentation [28]. KF for continuous

state PMC has also been addressed, see [29] [30], and parameter estimation via the EM algorithm is

available too [31]. The term ”pairwise” here emphasizes the fact that even though zn = (xn,yn) is an

MC, the marginal process x in model (14) is indeed not Markovian. However, in a PMC the conditional

distribution p(x|y) is Markovian; this property enables the developpement of efficient Bayesian restoration

algorithms, and in particular, in the context of this paper, of fixed interval smoothing algorithms.
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III. BAYESIAN FIXED-INTERVAL SMOOTHING ALGORITHMS IN PMC

For notational simplicity let us set xn = xn, yn = yn and zn = [xT
n ,y

T
n ]

T . Let us start by the general

case, i.e. the case of the non-linear and/or non Gaussian PMC model :

zn+1 = g(zn,wn). (17)

The aim of this section is to propose fixed-interval Bayesian smoothing algorithms for model (17), i.e.

we want to compute the smoothing probability density function (pdf) p(xn|y0:N ) for all n, 0 ≤ n ≤ N .

Recently most of the existing MMSE smoothing algorithms (as well as some new alternatives) for

classical state-space systems (and therefore for HMC with continuous state) have been gathered and

classified into a commun unifying framework [27]. That same classification has also been extended to

the context of non-symmetrical triplet Markov chains (TMC) [32]. Let us adapt this classification to the

context of model (17). All the algorithms described in propositions 2 to 4 combine one or two densities

out of the set αn
def
= p(xn|y0:n), βn

def
= p(yn+1:N |zn), γn

def
= p(xn|yn:N ) and ηn

def
= p(y0:n−1|zn). So

we begin with the following proposition :

Proposition 1: αn = p(xn|y0:n) and α̃n = p(xn|y0:n+1) can be computed recursively (in the forward

direction, i.e. for increasing values of n) as α̃n = p(yn+1|zn)×αn

p(yn+1|y0:n)=
∫
p(yn+1|zn)αndxn

αn+1 =
∫
p(xn+1|zn,yn+1)× α̃ndxn

; (18)

βn = p(yn+1:N |zn) and β̃n = p(yn+2:N |zn,yn+1) can be computed recursively (in the backward

direction, i.e. for decreasing values of n) as β̃n =
∫
p(xn+1|zn,yn+1)× βn+1 dxn+1

βn = p(yn+1|zn) β̃n
; (19)

ηn = p(y0:n−1|zn) and η̃n = p(y0:n−2|zn,yn−1) can be computed recursively (in the forward direction)

as  η̃n+1 =
∫
p(xn|zn+1,yn)× ηn dxn

ηn+1 = p(yn|zn+1)× η̃n+1

; (20)

and γn = p(xn|yn:N ) and γ̃n = p(xn|yn−1:N ) can be computed recursively (in the backward direction)

as  γ̃n+1 = p(yn|zn+1)×γn+1

p(yn|yn+1:N )=
∫
p(yn|zn+1)γn+1dxn+1

γn =
∫
p(xn|zn+1,yn)× γ̃n+1dxn+1

. (21)

We now turn to the computation of the smoothing density p(xn|y0:N ) itself. We have the following

propositions.
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Proposition 2: p(xn|y0:N ) can be computed in the backward direction by

p(xn|y0:N ) =

∫
p(xn+1|y0:N )p(xn|xn+1,y0:N )dxn+1, (22)

with

p(xn|xn+1,y0:N ) ∝ p(xn+1|zn,yn+1)× α̃n (23)

∝ p(xn|zn+1,yn)× ηn (24)

∝ p(xn|zn+1,yn)× αn

p(xn|yn)
(25)

∝ p(zn+1|zn)× ηn × p(xn|yn). (26)

Proposition 3: p(xn|y0:N ) can be computed in the forward direction by

p(xn+1|y0:N ) =

∫
p(xn|y0:N )p(xn+1|xn,y0:N )dxn, (27)

with

p(xn+1|xn,y0:N ) ∝ p(xn+1|zn,yn+1)× βn+1 (28)

∝ p(xn|zn+1,yn)× γ̃n+1 (29)

∝ p(xn+1|zn,yn+1)× γn+1

p(xn+1|yn+1)
(30)

∝ p(zn|zn+1)× βn+1 × p(xn+1|yn+1). (31)

Proposition 4: The smoothing pdf p(xn|y0:N ) can be computed as

p(xn|y0:N ) ∝ αn × βn (32)

∝ γn × ηn (33)

∝ αn × γn
p(xn|yn)

(34)

∝ ηn × βn × p(xn|yn). (35)

IV. MMSE FIXED-INTERVAL SMOOTHING ALGORITHMS.

Let us now come back to the linear PMC (14). The general algorithms of Propositions 2 to 4 reduce to

MMSE fixed-interval smoothing algorithms if we further inject the Gaussian assumption. So from now

on we also assume that z0 and wn are Gaussian for all n, which in turn holds if the original state-space

model (1) is Gaussian, i.e. if x0, un and vn are Gaussian for all n. Let us set

x0 ∼ N (x̂0,P0),wn ∼ N (0,

 Qn Sn

S
T
n Rn

). (36)
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In this case, all the pdfs in §III are Gaussian. Let us set

p(xn|yi:j) ∼ N (x̂n|i:j ,Pn|i:j), (37)

for all n, i, j with 0 ≤ n ≤ N and 0 ≤ i ≤ j ≤ N .

The general algorithms of Propositions 2 to 4 compute p(xn|y0:N ) from αn (or ηn) and/or γn (or βn).

In the Gaussian case, this amounts to computing the parameters of p(xn|y0:N ) from those of αn (or ηn)

and/or γn (or βn). More precisely, (18) to (35) reduce to equations which compute argmax
xn

p(xn|y0:N )

(i.e., x̂n|0:N ), and the associated covariance matrix, from argmax
xn

αn = x̂n|0:n (or argmax
xn

ηn) and/or

argmax
xn

γn = x̂n|n:N (or argmax
xn

βn), as well as the associated covariance matrice(s). In practice, these

equations can be derived by systematically applying some simple results for Gaussian variables; each one

of the twelve general algorithms in Propositions 2, 3 and 4 then reduces to a particular Kalman smoothing

algorithm; some of them are PMC extensions of such classical Kalman-like smoothing algorithms as, e.g.,

the RTS algorithm [3], the two-filter algorithm [6] [7], or the general two-filter algorithm [11, Theorem

10.4.1] (see [27] for details).

A. A worked example : the PMC RTS algorithm

This section is devoted to the implementation of p(xn|y0:N ) (equations (23)-(22) in case of a Gaussian

PMC model (i.e., we assume that (14) and (36) hold).

First, the algorithm requires the propagation of α̃n in the forward direction. In the Gaussian case, the

propagation of the Gaussian densities αn and α̃n via algorithm (18) reduces to the PMC KF algorithm [33,

eqs. (13.56) and (13.57)] which propagates their parameters (x̂n|0:n, Pn|0:n) and (x̂n|0:n+1 , Pn|0:n+1).

For convenience of the reader, the PMC KF recalled in the following proposition.

Proposition 5: PMC-KF algorithm. Let (14) and (36) hold. Then x̂n+1|0:n+1 and Pn+1|0:n+1 can be

computed from x̂n|0:n and Pn|0:n via:

ỹn+1|0:n = yn+1 −Fy,x
n x̂n|0:n −Fy,y

n yn, (38)

Py
n+1|0:n = Rn + Fy,x

n Pn|0:n(F
y,x
n )T , (39)

Kn|0:n+1 = Pn|0:n(F
y,x
n )T (Py

n+1|0:n)
−1, (40)

x̂n|0:n+1 = x̂n|0:n +Kn|0:n+1ỹn+1|0:n, (41)

Pn|0:n+1 = Pn|0:n −Kn|0:n+1P
y
n+1|0:nK

T
n|0:n+1, (42)

x̂n+1|0:n+1 = [Fx,x
n − SnR

−1
n Fy,x

n ]x̂n|0:n+1 + SnR
−1
n yn+1 + [Fx,y

n − SnR
−1
n Fy,y

n ]yn, (43)

Pn+1|0:n+1 = [Qn − SnR
−1
n S

T
n ] + [Fx,x

n − SnR
−1
n Fy,x

n ]Pn|0:n+1[F
x,x
n − SnR

−1
n Fy,x

n ]T (44)
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It remains to compute the parameters x̂n|0:N and Pn|0:N of p(xn|y0:N ). In the Gaussian case, (23)-(22)

reduce to the following equations (see §VII-B for a proof) :

Proposition 6: PMC-RTS algorithm. Let (14) and (36) hold. Let

Kn|0:N =Pn|0:n+1[F
x,x
n − Sn(Rn)

−1Fy,x
n ]TP−1

n+1|0:n+1. (45)

Then

x̂n|0:N=x̂n|0:n+1+Kn|0:N [x̂n+1|0:N−x̂n+1|0:n+1], (46)

Pn|0:N=Pn|0:n+1−Kn|0:N [Pn+1|0:n+1−Pn+1|0:N ]KT
n|0:N . (47)

In summary, (x̂n|0:N ,Pn|0:N ) can be propagated in the backward direction via (45)-(47) provided (x̂n|0:n+1,Pn|0:n+1)

and (x̂n+1|0:n+1,Pn+1|0:n+1) are known; these, in turn, can be computed recursively (in the forward

direction) by the PMC KF algorithm recalled in Proposition 5.

B. An alternate algorithme : the PMC Bryson and Frazier (BF) algorithm

Let us finally mention the BF algorithm [1], which cannot actually be derived from Bayesian consid-

erations, even though it is closely related to the RTS algorithm. The BF algorithm was introduced for

the first time (in the continuous time case) as a solution of a deterministic least mean square problem

by using the variational approach [1] (see also [11, chap. 10 & 6] and [19, pp. 223-25]). The discrete

time version of this algorithm then appeared in various publications like e.g. [34] [3] [18] [11]. The link

between the RTS and the BF algorithms has been established for the first time in [3]. As in the classical

HMC framework, the PMC RTS algorithm can also be implemented by an algorithm which extends to

PMC the BF algorithm (see §VII-C for a proof) :

Proposition 7: Let (14) and (36) hold. Let

ŷn+1|0:n = Fy,x
n x̂n|0:n + Fy,y

n yn

Py
n+1|0:n = Fy,x

n Pn|0:n(F
y,x
n )T +Rn

Kλ
n = Fx,x

n [I−Pn|0:n(F
y,x
n )T (Py

n+1|0:n)
−1Fx,x

n ].

Then (x̂n|0:N and Pn|0:N ) can be computed as

x̂n|0:N = x̂n|0:n+1 +Pn|0:n(K
λ
n)

Tλn+1, (48)

Pn|0:N = Pn|0:n+1 −Pn|0:n(K
λ
n)

TΛn+1K
λ
nPn|0:n, (49)
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in which the parameters

λn = P−1
n|0:n[x̂n|0:N − x̂n|0:n] (50)

Λn = P−1
n|0:n[Pn|0:n −Pn|0:N ]P−1

n|0:n, (51)

are computed recursively (with λN = 0 and ΛN = 0) as follows :

λn=(Kλ
n)

Tλn+1 + (Fy,x
n )T (Py

n+1|0:n)
−1[yn+1 − ŷn+1|0:n], (52)

Λn=(Kλ
n)

TΛn+1K
λ
n + (Fy,x

n )T (Py
n+1|0:n)

−1Fy,x
n . (53)

As we can see, the PMC BF algorithm is still a two pass one. In the forward pass, the filtering and

one-step smoothing parameters are computed by the PMC KF. One then propagates in the backward

pass the new variables λn and Λn via (52) and (53). The smoothing parameters of interest are finally

computed as a combination of the forward and the backward quantities, see (48)-(49).

V. NUMERICAL SIMULATIONS

Let us now perform some simulations. We consider the following model :

xn+1 = Fnxn + un (54)

yn =


−1.9 1 1.2

5 1 −90

3 1.7 1


︸ ︷︷ ︸

Hn

xn +


0.7071

0

0.7071


︸ ︷︷ ︸

Jn

wn (55)

with Fn = 0.98I3, and un and vn are independent, jointly independent and independent of x0. We

assume that un ∼ N (0,Qn), wn ∼ N (0, 1) and x0 ∼ N (03, 0.01 × I3). So the covariance Rn of the

measurement noise vn = Jn × wn is a rank 1 matrix :

Jnvn ∼ N (0,


0.5 0 0.5

0 0 0

0.5 0 0.5


︸ ︷︷ ︸

Rn

).

A FAIRE Following §II, we set M = xxx, and next Tn = xxx. So model (54) is transformed to · · ·

(écrire l’équivalent de (14)-(16), en précisant les matrices, la dimension de x, et comment on revient de

(x̂,y) à x̂. Je pense que ça peut intéresser les gens.)

We now compare the PMC-KF and the PMC-RTS algorithms in the reduced state-order model.
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A. Comparison between the PMC-KF and the PMC-RTS

A ETTOFFER - LIS MON MAIL

In this section we consider the case of Qn = 0.01 × Q̃n, and we focus on the performance of the

PMC-RTS compared with the PMC-KF, after the reduced state transformation. The figure 1 illustrates

the tracking of the first component of xn (i.e., x1n), and in the figure 2 we plot the MSE associated to

x1n. All the results are averaged over 100 realizations.

As we can see, the PMC-RTS smoothing algorithm performs the PMC-KF filtering one. This coincides

with the truth since the smoothing estimator takes in account all the measurements y0:N in each time n,

while the filtering estimator uses only the present and the past measurements y0:n. Finally, remark that

the results given by these 2 algorithms coincide in the final time n = N = 50; this can be explained by

the fact that the smoothing becomes the filtering at n = N .

0 10 20 30 40 50
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time n

S
ub

−
st

at
e 

x n1

 

 
True
PMC−RTS
PMC−KF

Fig. 1. Tracking of the first component of xn.

VI. CONCLUSION

In this paper we addressed the fixed-interval smoothing problem in state-space systems with singular

measurement noise, i.e. in the case where the covariance matrix of the measurement noise is either null or

≥ 0 with arbitrary rank. This case is of interest in a number of situations, including the case where some
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Fig. 2. The associated MSE of the tracking of the first component of xn.

of the sensors are affected by colored noise. We first transformed the original (singular) HMC model

into an equivalent PMC model with regular noise and state dimension reduced by the nullity of that

covariance matrix. Though the transformed system is no longer an HMC (in particular the hidden state is

no longer Markovian), it enables Bayesian restoration because the state remains Markovian conditionally

on the observations. We finally proposed a set of Bayesian fixed-interval smoothing algorithms, which

reduce in the Gaussian case to Kalman-like smoothing algorithms for singular systems.

VII. ANNEX

A. Some useful results for Gaussian variables.

The proof of of Proposition 6 is based on the following two classical results on Gaussian variables.

Proposition 8: Let p(x) ∼ N (x̂,Px) and p(y|x) ∼ N (Ax+ b,Py|x). Then

p(x,y) ∼ N (

 x̂

Ax̂+ b

 ,

 Px PxA
T

APx APxA
T +Py|x

).
Proposition 9: Let p(x,y) ∼ N (

 x̂

ŷ

 ,

 Px Px,y

Py,x Py

). Then

p(x|y) ∼ N (x̂+Px,yP
−1
y (y − ŷ),Px −Px,yP

−1
y Py,x).
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B. Proof of Proposition 6.

Let us address the calculation of (23)-(22). First, from (14) we have

p((xn+1,yn+1)︸ ︷︷ ︸
zn+1

|zn) ∼ N (

Fx,x
n Fx,y

n

Fy,x
n Fy,y

n

xn

yn

 ,

 Qn Sn

(Sn)
T Rn

), (56)

and by using proposition 9 we get

p(xn+1|zn,yn+1) = p(xn+1|xn,y0:n+1)

∼ N ([Fx,x
n − Sn(Rn)

−1Fy,x
n ]︸ ︷︷ ︸

An

xn + [Fx,y
n − Sn(Rn)

−1Fy,y
n ]︸ ︷︷ ︸

Bn

yn

+Sn(Rn)
−1yn+1, [Qn − Sn(Rn)

−1(Sn)
T ]︸ ︷︷ ︸

Cn

). (57)

(the first equality holds because (xn,yn) is an MC). On the other hand,

α̃n = p(xn|y0:n+1) ∼ N (x̂n|0:n+1,Pn|0:n+1). (58)

Applying Proposition 8 to (58) and (57) we get

p(xn,xn+1|y0:n+1)∼N (

 x̂n|0:n+1

Anx̂n|0:n+1 +Bnyn + Sn(Rn)
−1yn+1

,
Pn|0:n+1 Pn|0:n+1A

T
n

AnPn|0:n+1 AnPn|0:n+1A
T
n +Cn

).
(59)

Applying Proposition 9 in (59), and observing that conditionnally on (xn+1,y0:n+1), xn and yn+2:N are

independent, we get

p(xn|xn+1,y0:N ) ∼ (x̂n|0:n+1 +Pn|0:n+1A
T
nP

−1
n+1|0:n+1︸ ︷︷ ︸

Kn|0:N

(xn+1 − x̂n+1|0:n+1),

Pn|0:n+1 −Pn|0:n+1A
T
nP

−1
n+1|0:n+1AnPn|0:n+1). (60)

from which we get formula (45) for the Kalman smoothing gain Kn|0:N . Injecting (60) in (22) and using

Proposition 8 again we eventually get (46) and (47).

C. Proof of proposition 7.

Injecting (45) in (46) and (47) leads respectively to:

x̂n|0:N = x̂n|0:n+1 +Pn|0:n+1[F
x,x
n − Sn(Rn)

−1Fy,x
n︸ ︷︷ ︸

An

]Tλn+1, (61)

Pn|0:N = Pn|0:n+1 −Pn|0:n+1A
T
nΛn+1AnPn|0:n+1. (62)
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On the other hand, from (42) and (40) we get

Pn|0:n+1A
T
n = Pn|0:n(K

λ
n)

T . (63)

Injecting (63) in (61) and (62) leads respectively to (48) and (49).

It remains to show (52) and (53). Injection (48) in (50) and (49) in (51) leads respectively to:

λn = (Kλ
n)

Tλn+1 +P−1
n|0:n[x̂n|0:n+1 − x̂n|0:n] (64)

Λn = (Kλ
n)

TΛn+1K
λ
n +P−1

n|0:n[Pn|0:n −Pn|0:n+1]P
−1
n|0:n. (65)

Finally injecting (41) and (40) in (64) we get (52), and injecting (42) and (40) in (65) we get (53).
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