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Abstract—Among Sequential Monte Carlo (SMC) methods, Algorithm 1 The classical SIR algorithm
Sampling Importance Resampling (SIR) algorithms are based . i i N .
on Importance Sampling (IS) and on some (resampling-based) ][Z)ata. q(?jt'wt*l)’ yeo (w1, @iz
rejuvenation algorithm which aims at fighting against weight orl<i<XN do
degeneracy. However this mechanism tends to be insufficient S.z ~ Q(It\ﬂfi_l)_; _
when applied to informative or high-dimensional models. In this fe(@]zi_1)9¢ (Y2 | ) SN @i =1
paper we revisit the rejuvenation mechanism and propose a class CHETRY ' =171 ’
of parameterized SIR-based solutions which enable to adjust the Qggsfg" N _
tradeoff between computational cost and statistical performaces. ;" =301, wie(T));
if R. then

for 1 <i< N do

I'~Pr(L=10)=w,1<I<N;

i i
W. w; o< wi_4

I. INTRODUCTION AND BACKGROUND

end for
Bayesian filtering consists in estimating some variable  set{yi zi}Y = T
x¢ from noisy measurementgy.; = {yo, - ,y:}. We as- else
sume that{(z¢,y:)}+>0 is a Hidden Markov Chain, i.e. Set{wi, 2}, = {@i, &}V ,.
that the joint density of(xo.:,y0.:) reads p(zo.t,yo.t) = end if

p(xo) [They fs(zs|ws—1) [They 95 (ys|zs). The problem can be
traced back to Kalman [1] in the context of linear and
Gaussian state space models. Approximate solutions for

linear and/or non Gaussian state space models include }

extended Kalman filter [2]-{4], the unscgnteq Kalman filte R.) step introduces local extra variance [13, section 4.2.1],
[g]—[81](,)0r ShMi methodst(al_sotgalled %?‘”'C"f filters (P.F'D’E. which in turn affects the variance @' at subsequent
[9], [10], which propagate in time a discrete approxima 'ORerations. It has thus been proposed to control this extra

-~ . N i .

P(@elyo:e) = 3521 wid,; of the posterior pdp(x:|yo.). variance term via alternative resampling schenees. ([16]—
[18]). Yet despite many proposed refinements this generic

A. The classical SR algorithm SIR mechanism remains inefficient in informative models

Let ©, = [ o(z:)p(x:|yo.)dz; be a moment of interest featuring very sharp likelihood functions (i.e., wher{y:|x;)
of p(a¢|yos). One iteration of an SMC algorithm can bes very small for most values of;), and in particular in high-
decomposed in three steps. Starting at time- 1 from dimensional state-space models [19], [20].

{wi_y,zi 1}, the first two steps consistf sampling G)
N particles #i from importance densitieg; and weighting
(W) them so as to take into account the discrepancy betweBnThe independent SIR algorithm

the target and importance densities; thénis estimated as ) .
GtSIS’N _ vazlﬁfisﬂ(i"i) (superscript SIS will be justified Recently it has thus been proposed to revisit the SIR

below). Finally a third (optional) step consisi re-sampling @/gorithm [21]-[23] and more precisely to come back to the
(R) the weighted particles, i.e. in re-drawing each partick&juvenation mechanisni(). The counterpart of this,) step
with a probability equal to its weight and assigning to thi§ that it duplicates particles with high weights, WhZLChUJ*S
resampled particles the same weight This yields the class " SUPPOIt degeneracy. Moreover givem; ,,z;_;};=, the
of SIR algorithms [7], [9]-[11] described by Algorithm 1. samples{xz;} produced by Algorithm 1 are marginally dis-

Let us comment this algorithm. If resampling is totallyfibuted from some compound pgf’ which takes into account
absent, each time iteration reduces to the first two steps, fhe effects of the three elementarg)( (W) and R.) steps,
is based on IS only. However such a sequential 1S (SIByt are obviously dependent [21] (a single particle can be re
algorithm is well known to fail in practice since after a fens@mpled more than once); by contrast, giver}_;, z{_;}%,
iterations most weights get close to zero. The third stepawh the independent SIR Algorithn{21], [23] producesN i.i.d.
can be performedt each iterationt or depending on some draws fromg,¥ by resampling fromN sets of N particles.
criterion such as the number of effective particlg]-[15]) Thus, it ensures the diversity of the final support compared
discards particles with low weights (such particles areljik t0 & classical approach where the final particles are resaimpl

from the same set of (possibly?) particles.
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Algorithm 2 Indep. SIR algorithm iesampling step on)y

71,1 i‘271 ~N,1
: i i N =i & \N t t ‘
Data: q(@¢|ri—1), ye, {wi_1, 21 sy, {wr 23}y _ _
for 1 <j <N do : — : SN
17 i 1.4 i ~ B )
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end for — — ~
for 1 <i< N do _ T z A
R.Il~Pr(L=1)=a" 1<I<N; ¢1 ¢2 ¢N
Tt Ty T

Rejuvenation of the support for iterationt+ 1
if (i <N) then _ o N _
for 1<j <N do Fig. 1: The classical, independent and semi-independent resampling
i it mechanisms. Each scheme dralNssupportsz;’ and redraws one
t samplez; out of each support. The difference lies in the wiy is
built from z:~"*: £/ is a copy of#.~"7 in the classical case; is
a new particle in the independent case; and can be either copied of

7 .
~ a(zlel_y);
-1 oy
il g R@ T el Dge(uelE )
Wy = Wiy i F1,5) 7 )
(I(xt |'th71)

end for : : . i
?172“’: ~ @fl’:, Z;\f:l u?i“’j _ 1 redrawn in the intermediate, semi-independent case.
end if
end for i be a copy (to save cost) or a new sample (to enhance diversity)
Set{wf,z;}, = {§, & ;. The algorithm is as follows. Fix the numbgr(with 0 < k <
N) of samples which will be redrawn at each iteration. At step
i, uniformly draw a subset’!'* = (m®!,... m®»*) of size
C. Scope of the paper koutof(1,---,N) (m"! are the indices of the particles which

Algorithm 2 has displayed good results in severe situatioddll be redrawn). Nextzy” ~ g(aq|z{_,) if j € m>"*, and
[21] and can be combined with a post-resampling, secord’ = #; "7 if j ¢ m*!*. Finally observe that the classical
stage reweigthing scheme due to its auxiliary particlerfile  (resp. independent) SIR algorithm corresponds to thequdati
interpretation [22], [23]. However its rejuvenation meotsmn  casek = 0 (resp.k = N). The resampling step associated with
involves the sampling ofV2 particles {:fti’j}fszl (plus N this schemds summarized in Algorithm 3.
resampling steps), by contrast with the classical SIR &lyor
which only samplesV intermediate particlegi;}}Y, (and Algorithm 3 Semi-ind. SIR algorithmrésampling step on)y
is also foII_owed by N r_es_amplmg steps). One can \_/vonder_Data: q(zelze—1), g, {wi_y @i N {@d 7Y
whether this extra cost is indeed necessary, so the aim®f thifor 1 < j < N do
paper is to design an algorithm which is both efficient (imter N
of computational cost) and effective (in terms of stat@tic end for
results). The rest of this paper is organized as follows. Ourfor 1 < ; < N do

algorithm is described in section Il. Simulations are diged R. li~Pr(L=0)=o", 1 <1< N;
in section Ill, and the paper ends with a conclusion. Partial rejuvenation of the support for iteration i + 1
if (i < N) then
[I. SEMI-INDEPENDENT RESAMPLING T g it
A. An intermediate resampling scheme for 1<j<kdo " X
The classical and independent SIR resampling mechanisms m,j ~ P:T(M - n'”,e LNA{m ™) = N—j+1'
can be reconciled in a common framework. In both schemes, B~ g(el) ‘
one progressively build®/ weighted setst; ™, ---, ) (the Tt fe@ T e g (yelz )
N supports) and redraws one sampleout of each of them k oot q(@ T ) ’
(see figure 1). The difference lies in the way' is built from eNrZ)(jIlfpr il N il
Z7"":in the classical SIR mechanism," is a copy ofz: " W, oWy Y Wy =1
(so the resampling step amounts to redrawigamples from end if

the common suppoit'*, see Algorithm 1); in the independent €nd for L ait

SIR mechanism, a whole new suppdtt’ is drawn at each  Set{wi,zi}L, = {5, &} }il;.

iterations. In other words, from a computational point of view

both schemes resampl¥ particles from some intermediate

set {z;”}1V;_,, but building that set required preliminary

independent sampling steps in the classical case, while itWe now evaluate the performance of this procedure by

requiresN? independent sampling steps in the independemomparing the variances of the estimates computed after

case. the resampling step because they affect the variances of
In this paper we propose a resampling scheme which creaifes estimates at subsequent iterations [17]. So@g’ff =

an intermediate seftz;” }1Y;_, with more diversity than in the + SN o(x;"), where the generic notatiary represents the

classical case, but at a reduced sampling cost as comparegddimts produced either by Algorithm 1, 2 or 3 (so we consider

the independent case. Starting frafn '/, 7/ can now either O™ ©I75%:N and ©;%NF where SR stands for semi-

B. Performances vs. computational cost



resampling). We have the following proposition (the pro®f iA. Variance of SR procedures

given in the Appendix).

Proposition 1. Given the previous set of particlesion of &, We setV

{xh, 1}V, forall k, 0 < k < N, we have:

BOFM) = 5O ) =E@O™Y),  (1a)
Var((:)i_SIR’N) < Var(@)tSR’N’k) < var((:)tSIR’N), (1b)
Var((:)tSR’N’k) < Var((:)tSR’N’k_l). (1c)

. . . . l—
So as the number of intermediate redrawings increases fronf'® same performance &S,

We first analyze the behaviour of our algorithms as a func-
=100, 0, = 0.1 and oy = 155; all MC

runs use the same measurements. Fig. 2 displays the RMSE of
RNk QNSSR.NE QI=SIR.N daduced from our resampling
schemes an@fIS’N. Of course, the performances of estimates
based on the SR procedure improve wheimcreases. It is
also interesting to note ha@fSRW"" (resp. ©N5F-Ny has
SIBN when k> N/2 (resp.

0 to N, the conditional variance of the semi-independert = 4N/5) (these results have also been observed in other
resampling estimatd®’™V* decreases from the upper boundnodels) With Matlab, the averaged computational times of

of inequality (1b) (ifk = 0, ©;™""" reduces toCE)fSIR’N) to
its lower bound (ift = N, ;""" reduces ta®, "),
However remember from section II-A thaf + (N — 1) x k

samples are needed for buildit}™"V*; so parametet: of

the SR scheme enables to fix a compromise between variance

reduction and computational budget.

C. A parallelized version

Furthermore Algorithm 3 can be transformed into a paral-
lelized version, the non-sequential SR (NSSR) algorithm. A

iterations, instead of duplicating thé' — & surviving particles

from the previous supportffl* (see Fig. 1), we propose to

duplicate thelV — & surviving particles directly from the initial

set a}tl of particles. TheN — 1 new supports can thus be
produced in parallel, contrary to Algorithm 3 which by natur
is sequentialkeven if the intermediate sampling steps can be

a single iteration of the SIR, SR with = N/2 and I-SIR
algorithms are).0244s, 0.0267s and 0.0283s, respectively.

—s¢— Bootstrap Sequential Importance Resampling (SIR)
PF with NSSR
PF with SR

oL L PF with i.id. resampling

RMSE

9 . . . . . . I . .
0 10 20 30 40 50 60 70 80 90
k (number of renewed particles in semi-independent resampling)

100

parallelized Of course, this procedure alters the diversity of

the final set of particles, as is illustrated by the following

proposition.

Fig. 2: RMSE as a function of;, tracking model.

Proposition 2; Let ©N95%F pe the estimate built from the B- RMSE in the informative case at equal cost
non-sequential semi-independent resampling procediren T We now compare our estimates with existing improvements

given the previous set of particlds{, .}V, forall k, 0 <
k < N, we have:

E(éi\TSSR,N,k) _ E(éi—SIR,N) _ E(étSIR,N), (2a)
Var((:),{_SIR’N) < Var((:)FSSR’N’k) < Var(@tSIR’N), (2b)
var(BNSSRNkY o Var(@?ISSR,N,k—l), (2¢)
var(O5FFY < var(@NSSRANRY (2d)

So we see thatar(O) 5%V still decreases witlk, but is

always larger thaWar(C:)tSR’N’k). As with Proposition 1, the
variance inequalities still rely on Jensen’s inequalityd dhe
proof is omitted.

Il. SIMULATIONS

We consider a tracking problem based on range-beari
measurements. The hidden state-vector contains the qrosi

and velocity of the target in cartesian coordinates,
[Cz,t7 Ca,ts Cy,t C.ygf]T- We setf, (x¢|zi—1) = N(xt;TFCEtA; Q),

gt(yelme) = Ny [\/ci’t + ¢ ; arctan ZZ—:} ;R), with
' 11
R = diag(c2,05), F =L, ® (1) } ,Q=10x1® {f ﬂ
2
where ® is the Kronecker product. We sef(x:|z;—1) =
fi(x¢|xs—1) and we compare the RMSEs averaged oM#0
MC runs.

of the PF in informative models. In particular, the PF with
MCMC resample move is a popular solution to introduce
sample variety after resampling [24]. Roughly speaking, th
N particles which follow the R.) step of Algorithm 1 are
moved via an MCMC algorithm withk iterations (here an
independent Metropolis-Hasting algorithm). We also corapa
our estimates with those based on the classical SIR and |-
SIR algorithms but with a given budget of total sampling
(sampling + resampling) operations. We thus 8&t= 100
particles andkc = N/2 for the computation ot:)tSR’N’k and
the estimate based on the resample move WPF,5® = 72

for that of &1 SN and NSIR — N 4 (N_LE _ 9575
particles for that 0¥ . The global sampling cost for
all these algorithms i$2N + N(k — 1)). We also compute
O TN E with & = 4N/5; its computation does not have the

ﬁgme computational cost but can be totally parallelizeg Th

results are displayed in Fig. 3.

When the observations are very informative, the classical
solution tends to degenerdtee have obtained the same results
with alternative resampling schemes such as the residual
or stratified resampling)while our solutions are robust and
particularly present better performances than the resampl
move algorithm which also usek extra samples. As the
variance of the measurement noise increases, the different
estimates tend to behave similarly; the classical SIR &lyor



performs slightly better because it no longer suffers fréwa tof k& so the difference between different values fofstems
degeneracy phenomenon and the number of final samples useth the covariance terms. Nexovy(o(xi'), p(z?)) =

is far superior to the other solutionddditional simulations Ej[p(z)e(zi2)]— E[p(x!!)|E[p(z!*)], and again, the second

have also shown the superiority of our SR scheme (RMS&m of the r.h.s. is independent bf Finally for i; < io,
of 2.671) compared to a classical SIR witN + k(N — 1)

i1 — 2\ | 102,
intermediate particles an¥ final particles (RMSE 08.375) Exlo(zi)e(e; *)] = ElElp (@ )¢ (i)t I
~1 IR ~1 "
when o, = 0.03 andoy = 5. Finally, we have observed = E[E[p(a")| 7, |Elp(ai?) |7 ]]
that the I-SIR and SR procedures improve the diversity of = B[OSS (#1051 (712
complete trajectories compared to the SIR algorithm andticou _ B[E[OS (58518 (7 n
potentially be used for building relevant smoothing estora = E(E] (& >|mn+1( 2l
i ‘ where m;2+1(1:k) represents all the indices redrawn from
O P P with 114, rmping, N1~ = 72 fnal particls iterationsd; + 1 to i, (the third equality holds becausg is
I i resampled from support;”* (see Fig. 1), sd3(p(x})|7;") =
sl _ 1~ Bootstrap STR with & + %52 inal particls 08N (74) where©;™S Y Was defined in section I-A).
L The outer expectation in this last expression corresponds
361 1 to a uniformly weighted sum over all possible values of
o 54l \ m?,(1:k), i.e. over (A%)=~" terms where A%, is the
z o Pt number of arrangements &f amongN. Given m“H(l:k),
32} a =g LM the general term of this sum reads
y S o
N e SIS [ ~i1,:\ SIS 2N
3t By s ;(P‘ 1 [9 ( / )@ ( )|m11+1(1 k)]
‘pa-Ee” wE _ig,l: N\m1 (1:k)
vl e E[E[67"S ()67 (&) |7, S miz g (1)
- _ - PR where it LN\ +1(““) are the particles shared by sup-
00  (00.g) Olgn) Ol (0245 05.) (03 ; i SIS/ ~i1
Standard deviations (0,,09) of the measured range and bearing pOftS.r L andx 2 Under thIS COﬂdItIOﬂIng@ ( 7 ) and
O518(z2+) are mdependent so the general term is
Fig. 3: Tracking modelo, € [0.01,0.3] and oy € [15555> G05)-

i1,1:N\m, 1:k
BIEOFS a7 )

IV. CONCLUSION NAmIZ L (1)
QSIS [ s,y & VAT (L
In this paper we revisited the resampling step of PF x E[07 (27|, ! Jlm;; +1(1 k)]
algorit_hms, anc_j pro_posed a resampling scheme Whe_re e_ach [EQ[@SIS( oy gl N\m;2, (1: k)“ml (1)
new final particle is resampled from a support which is . . !
partially rejuvenated wittk new particles. This yields a class = h(m u+1(1'k)) h(m n+1(1'k —1),m z‘1+1(/‘5))

of parameterized solutions which encompasses the classisgcause given the trajectories from the previous time steps
multinomial resampling techniqué: (= 0) and the indepen- particles from different supports are all marginally drafnom
dent resampling onek(= N), enabling to tune the balancethe same densities. Finally

between variance and computational cost. Simulations etiow _ _

that choosingk = N/2 leads to similar performances to Ex(¢(z;!)p(z?)) = Ak P— Z h(mi? ;1 (1:k)). (3)

the fully independent resampling procedure. Moreover, in mi2,, (1:k)
very informative models our algorithm is not affected by

the degeneration phenomenon, contrary to the classical %{IF\lt remains to compare (3) with the same expression with

algorithm. — 1. We observe that (3) can be rewritten as
; ; 1
APPENDIX Brlo(ai)e(@)) =~ >
PROOF OFPROPOSITION1 (Av") Lik—1
l1+1( )
Let us consider a PF with resampling at time (1a) 1 _ in
holds because the SIR, I-SIR and SR procedures all produce N — 1 41 Z h(m u+1(1'k = 1),mi (k).
resampled particles which, give{wg:t_l}f’:l, are sampled mi2 (k)

from the same distributiog{"; and (1b) is straightforward \ynere the second Iine coincides with the conditionnal

from (1c) and the fact that SR reduces to SIR (resp. I- S'@(pectanon E[h(m?, (1: k))|m +1(1 k—1)]. Given
when k = 0 (resp k = N). Let us address (1c). Since " &

BINE _ LN sm) given {zi .}V mi, (k- 1), the set #"V\Via(®) s included
- N i=1 0:t—1Ji=1

in 1N\ k=D, consequently, the Rao-Blackwell

N
N?vary, (©5%F) ZV&I‘ xf))+22(:ovk(<p(xi1),ga(x?)); decomposition E(E2(X‘Y)) < E(E*(X[Y; Z))) ensures that
o Ry (1 = 1),m2 (K) < h(m (15k — 1)

here indexk in a (co)variance emphasizes the fact that for all m§2+1( ), and so thaE[h(m? , | (1:k))|m | (1:k—1)]
depends onk. The first term of the rh.s. is independent h(m;?,,(1:k — 1)), whence (1c)
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