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Independent Resampling Sequential Monte Carlo
Algorithms
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Abstract—Sequential Monte Carlo algorithms, or Particle
Filters, are Bayesian filtering algorithms which propagate in
time a discrete and random approximation of the a poste-
riori distribution of interest. Such algorithms are based on
Importance Sampling with a bootstrap resampling step which
aims at struggling against weight degeneracy. However, in some
situations (informative measurements, high dimensional model),
the resampling step can prove inefficient. In this paper, we revisit
the fundamental resampling mechanism which leads us back to
Rubin’s static resampling mechanism. We propose an alternative
rejuvenation scheme in which the resampled particles share the
same marginal distribution as in the classical setup, but are now
independent. This set of independent particles provides a new
alternative to compute a moment of the target distribution and
the resulting estimate is analyzed through a CLT. We next adapt
our results to the dynamic case and propose a particle filtering
algorithm based on independent resampling. This algorithm can
be seen as a particular auxiliary particle filter algorithm with
a relevant choice of the first-stage weights and instrumental
distributions. Finally we validate our results via simulations
which carefully take into account the computational budget.

Index Terms—Sequential Monte Carlo algorithms; Particle
Filters; Importance Sampling; Auxiliary Particle Filter; Resam-
pling.

I. I NTRODUCTION

L ET {xk ∈ R
m}k≥0 (resp.{yk ∈ R

n}k≥0) be a hidden
(resp. observed) process. Letx0:k = {xl, 0 ≤ l ≤ k}

and xi:j = {xl, i ≤ l ≤ j} (lower indices are used for time
and upper ones for Monte Carlo (MC) trials). Let p(x) (resp.
p(x|y)), say, denote the probability density function (pdf) of
random variable (r.v.)x (resp. ofx given y); note that we
do not distinguish r.v. from their realizations.We assume that
{(xk, yk)}k≥0 is a Hidden Markov chain(HMC), i.e. that

p(x0:k, y0:k) = p(x0)
k∏

i=1

fi(xi|xi−1)
k∏

i=0

gi(yi|xi). (1)

Roughly speaking, pdffk(xk|xk−1) describes the dynamical
evolution of the Markovian hidden process{xk}k≥0 between
time k − 1 and timek while the likelihood gk(yk|xk) de-
scribes the relation at timek between an observationyk and
the associated hidden statexk. We address the problem of
computing a moment of some functionϕ(.) w.r.t. the filtering
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pdf p(xk|y0:k), i.e. the pdf of the hidden state given the past
observations:

Θk =

∫
ϕ(xk)p(xk|y0:k)dxk. (2)

As is well known,Θk can be exactly computed only in very
specific models, and one needs to resort to approximations in
the general case. In this paper, we focus on a popular class
of approximations called sequential Monte Carlo (SMC) algo-
rithms or Particle Filters (PF), see e.g. [1]–[3]. PF propagate
over time a set ofN MC weighted samples{wi

k, x
i
k}Ni=1 which

defines a discrete approximation
∑N

i=1 w
i
kδxi

k
of p(xk|y0:k)

and enables to compute an estimateΘ̂k of Θk:

Θ̂k =

N∑

i=1

wi
kϕ(x

i
k). (3)

More precisely, the computation of the set{wi
k, x

i
k}Ni=1 is

based on the sequential application of the Importance Sam-
pling (IS) mechanism [4] [5]. This mechanism consists in
sampling particles according to an importance distribution and
weighting these samples in order to correct the discrepancy
between the target and importance distributions. However the
direct sequential application of the IS mechanism in model (1)
fails in practice since after a few time steps most weights get
closeto zero, with only a few particles havingnon-negligible
weights. Consequently IS alone becomes more and more
ineffective since a lot of computational effort is devoted to
sampling particles which will hardly contribute to the estimate
Θ̂k in (3).

As is well known, a traditional rescue against weight
degeneracy consists inresamplingthe particles (- either at
each time step or depending on some criterion such as the
number ofeffectiveparticles [6] [7] [8] [9]), i.e. of re-drawing
each particle with a probability equal to its weight andnext
assigning to the resampled particles the same weight.This
yields the class of Sampling Importance Resampling (SIR)
algorithms [10] [1] [11] [12]. Resampling has proved to be
beneficial in the long runsince it recreates diversity for
subsequent time steps, but also results in dependency among
the resampled points and support shrinkage.

The local effect of the resampling step can be measured by
comparing the additional variance of the estimate of interest
deduced from the resampled particles with the variance of
the estimate before resampling and has consequences on the
asymptotic statiscal properties of the estimateΘ̂k [11]; thus,
reducing the additional variance introduced by the resampling
while keeping the advantage of this operation is critical
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and it has been proposed to reduce that additional variance
by replacing the multinomial resampling step by alternative
schemes such as residual, systematic or stratified resampling
schemes [13] [11] [12]. However even when using such
schemesparticle filters based on the resampling mechanism
can give poor results in some Markovian models (1), such as
informative models where the likelihoodgk(yk|xk) is sharpor
high dimensional models [14].

Our aim in this paper is not to propose a new resampling
scheme, but ratherto revisit this complete key rejuvenation
scheme (sampling, weighting and resampling) in order to
design new PF algorithms which would keep the benefits of
the resampling mechanism, while avoiding the local impov-
erishment of the resulting MC approximation of the filtering
distribution.

To that end we begin with revisiting the SIR mechanism
at one single time stepk → k + 1. This leads us back to
an analysis of Rubin’s static SIR mechanism [15,§2] [16]
[10] [17, §9.2], in which, roughly speaking, one obtains sam-
ples xj approximately drawn from a target distributionp by
drawing intermediate samples{x̃i}Ni=1 from an instrumental
distribution q, and next selectingxj among{x̃i}Ni=1 with a
probability proportional top(x̃

i)
q(x̃i) . We first observe thatfor fixed

N , the samples{xj} produced by this SIR mechanism are
dependent and marginally distributed from some compound
pdf q̃N = φ(p, q,N) which takes into account the effects
of both pdfsp and q. Here the dependency is detrimental,
because samples that would be i.i.d from̃qN would produce,
whichever the number of sampled and resampled particles, a
moment estimate with reduced variance; this result is further
illustrated by a central limit theorem (CLT) which is compared
to the existing CLTs for the static IS estimate (based on the
pre-resampling samples{x̃i}Ni=1), on the one hand, and for the
SIR estimate (based on the post-resampling ones{xj}MN

j=1), on
the other hand.

We next propose a procedure to obtain i.i.d. samples from
q̃N , which leads to the computation of two point estimates
of Θ =

∫
ϕ(x)p(x)dx. The first one is based on unweighted

i.i.d. samples and is an improved version of the classical (i.e.,
dependent) SIR estimate; the second one is based on post-
resampling-weighted i.i.d. samples and can be seen asa new
IS estimate, based on the compound pdfq̃N . Finally we adapt
these results to the sequential computation ofΘk in model
(1). We thus propose two new PF algorithms. One of them
has an interesting interpretation in terms of Auxiliary Particle
Filter (APF); more precisely, that algorithm naturally produces
a relevant importance mixture distribution from which it is
easy to sample. We finally illustrate our results via simulations,
and carefully compare our algorithms with existing ones in
terms of Root Mean Square Error (RMSE) and computational
cost. The rest of this paper is organized as follows. Section
II is devoted to the static case. In section III we address
the sequential case, and derive new PF based on the results
of section II. In section IV we perform simulations and
discuss implementation issues, and we end the paper with a
conclusion.

II. IS WITH RESAMPLING VIEWED AS A COMPOUNDIS
SCHEME

As recalled in the introduction, resampling from time to
time is a standard rescue when applying IS in a sequential
setting. In this section we thus focus on one such time step
k → k + 1. This amounts to revisiting Rubin’s static SIR
mechanism (see section (II-A)), which consists in resampling
points {xi}MN

i=1 from the weighted distribution
∑N

i=1 w
iδx̃i

where x̃i
i.i.d.∼ q and the pre-resampling weightswi ∝ p(x̃i)

q(x̃i)

with
∑N

i=1 w
i = 1. As is well known, whenN → ∞ the

resampled points{xi}MN

i=1 become asymptotically i.i.d. from
the target distributionp. For finiteN however, these samples
are dependent and drawn from some pdfq̃N which differs
from p and can indeed be seen as a compound IS density
q̃N = φ(p, q,N) produced by the succession of the sampling
(S), weighting (W) and resampling (R) steps. We prove the
benefits of drawing independent samples fromq̃N (see section
II-B), and next propose to reweight these independent samples
with post-resampling weightsw′i ∝ p(xi)

q̃N (xi)
(see section II-C).

In all this section we assume the scalar case for simplicity.
We end the section with a summary (see section II-D).

A. The dependent SIR mechanism

Let us begin with a brief review of Rubin’s classical SIR
sampling mechanismdescribed in Algorithm 1and of the
properties of the sampled and resampled particles.

1) Properties of the sampled particles{x̃i}Ni=1: In the
context of this paper we first recall the principle of IS. Let
p(x) be a probability density function and assume that we
want to compute

Θ =

∫
ϕ(x)p(x)dx = Ep(ϕ(x)). (4)

In the Bayesian frameworkp(x) is generally only known up to
a constant, i.e.p(x) ∝ pu(x) (subscriptu is for unnormalized)
and it is not possible to obtain samples directly drawn from
p(x). A solution is to introduce an importance distribution
q(x) which satisfiesq(x) > 0 when p(x) > 0 and to rewrite
Θ as the ratio of two expectations w.r.t.q,

Θ =

∫
ϕ(x)pu(x)

q(x) q(x)dx∫ pu(x)
q(x) q(x)dx

=
Eq(ϕ(x)

p(x)
q(x) )

Eq(
p(x)
q(x) )

. (5)

Next, each expectation is approximated byan MC method
based onN i.i.d. samples(x̃1, · · · , x̃N ) drawn fromq(.); the
IS estimate ofΘ is given by

Θ̂IS,N =

N∑

i=1

wiϕ(x̃i) = Ep̂(ϕ(x)) (6)

where

p̂(x) =

N∑

i=1

wiδx̃i(x) (7)

andwi (the i-th normalized importance weight) reads

wi =

pu(x̃
i)

q(x̃i)∑N
j=1

pu(x̃j)
q(x̃j)

=

p(x̃i)
q(x̃i)∑N

j=1
p(x̃j)
q(x̃j)

. (8)
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As is well known [5], under mild assumptions

Θ̂IS,N a.s.→ Θ, (9)

and a CLT is available too [5] (
D→ denotes convergence in

distribution):

√
N(Θ̂IS

N −Θ)
D→ N

(
0,Eq

(
p2(x)

q2(x)
(ϕ(x))−Θ)2

))
. (10)

2) Properties of the resampled particles{xi}MN

i=1 : From (9)
and (10), p̂ can be seen as a discrete approximation of the
target densityp, and one expects that for largeN , (re)sampling
from p̂ would produce samples approximately drawn from
p. This is the rationale of Rubin’s SIR mechanism [15,§2],
[16], [10], [17, §9.2]. More precisely, let us as above drawN
i.i.d. samples̃xi from q, and nextMN i.i.d samplesxi from
p̂ in (7). It is indeed well-known (see [10] [15]) that when
N → ∞, each r.v.xi produced by this mechanism converges
in distribution top, so Rubin’s technique can be seen as a two-
step sampling mechanism which transforms samples drawn
from q into samples (approximately) drawn fromp.

This convergence result can be completed by a CLT which
involves the estimate ofΘ based on the unweighted set
{( 1

MN
, xi)}MN

i=1 :

Θ̂SIR,MN =
1

MN

MN∑

i=1

ϕ(xi). (11)

Let N → ∞, let MN be a non-decreasing sequence with

MN → ∞, and let lim
N→∞

N

MN
= α > 0 (possibly∞); then

under mild conditions (see e.g. [17,§9])
√
MN (Θ̂SIR,MN −Θ)

D→ N (0, varp(ϕ(x))+

α−1Eq

(
p2(x)

q2(x)
(ϕ(x)−Θ)2

)
). (12)

If α → ∞ then the asymptotic variance tends tovarp(ϕ(x)),
which shows that the SIR estimate asymptotically has the same
behavior as a crude Monte Carlo estimate directly deduced
from MN samples drawn according to the target distribution
p(.), provided the numberN of intermediate samples is large
as compared toMN .

However, for computational reasons, the numbers of sam-
plesN andMN should not be too large in practice. Conse-
quently we now focus on the samples produced by the SIR
procedure from a non asymptotical point of view and we have
the following result.

Proposition 1. Let us consider the samples{xi}MN

i=1 produced
by the SIR mechanism described above. Then these samples
are identically distributed according to a pdf̃qN , with

q̃N (x) = NhN (x)q(x), (13)

hN (x) =

∫ ∫ p(x)
q(x)

p(x)
q(x) +

∑N−1
l=1

p(xl)
q(xl)

N−1∏

l=1

q(xl)dxl.(14)

Proof. The proof is given in the Appendix.

So for fixed sample sizeN , the SIR mechanism produces
dependent samples{xi}MN

i=1 distributed according tõqN (these

samples are independent given the intermediate set{x̃i}Ni=1,
but become dependent when this conditioning is removed). In
practice, this dependency results in support shrinkage since,
by construction, an intermediate samplex̃i can be resampled
several times, and{xi}MN

i=1 is a subset of{x̃i}Ni=1. For instance
let MN = N . If we assume thatwj = 1 for some j and
wi = 0 for i 6= j, then xi = x̃j for all i. By contrast, if
wi = 1/N for all i, then the average number of different
samples{xi}Ni=1 is approximately2N/3 [18]. Nevertheless
the resampling step remains useful in a dynamic setup (see
section III): even though locally it leads to an impoverishment
of the diversity, this step is critical for recreating diversity at
the next time step.

B. The independent SIR mechanism

Observe that the two factors in (13) reflect the effects of
the sampling and resampling step: pdfq is used in theS
step, whilehN (x), which can be interpreted as the condi-
tional expectation of a normalized importance weight when
its associated particle isx, results from the (W,R) steps.So
particles drawn from̃qN are likely to be in regions where both
q(.) and the ratiop(.)/q(.) are large. Now our objective is
to propose an alternative mechanism which, in the sequential
case, will produce the same positive effect as the classical
SIR mechanism (i.e. fighting against weight degeneracy by
eliminating the samples with weak importance weights), while
ensuring the diversity of the final support. Such a support
diversity is ensured if we draw samplesindependentlyfrom the
continuous pdf̃qN (.). We first study the potential benefits of
this sampling mechanism (see section II-B1) and next discuss
its implementation (see section II-B2).

1) Statistical properties:Let us now assume that we have at
our disposal a set ofMN i.i.d. samples{xi}MN

i=1 drawn from
q̃N (.) defined in (13) (14). Before addressing the practical
computation of such a set (see section II-B2), let us study its
properties by considering the crude estimate ofΘ based on
theseMN i.i.d samples:

Θ̂I−SIR,MN =
1

MN

MN∑

i=1

ϕ(xi) (15)

(I in notation I-SIR stands for independent). Our aim is to
compareΘ̂I−SIR,MN to Θ̂SIR,MN , and more generallŷΘIS,N ,
Θ̂SIR,MN and Θ̂I−SIR,MN . We first have the following result.

Proposition 2. Let us consider the three estimateŝΘIS,N ,
Θ̂SIR,MN and Θ̂I−SIR,MN defined in(6), (11) and (15) re-
spectively. Then

E(Θ̂IS,N ) = E(Θ̂SIR,MN ) = E(Θ̂I−SIR,MN ), (16)

var(Θ̂SIR,MN )=var(Θ̂I−SIR,MN )+
MN − 1

MN
var(Θ̂IS,N ). (17)

Proof. The proof is given in the Appendix.

Equation (17) ensures that an estimate based on inde-
pendent samples obtained from̃qN would outperform the
classical SIR estimate (at this step, we have not discussed on
how to obtain such samples); the gain of Θ̂I−SIR,MN w.r.t.
Θ̂SIR,MN depends onvar(Θ̂IS,N ). On the other hand it is
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well known (see e.g. [17, p. 213]) thatvar(Θ̂SIR,MN ) =
var(Θ̂IS,N )+E(var(Θ̂SIR,MN |{x̃i}Ni=1)); so bothΘ̂I−SIR,MN

and Θ̂IS,N are preferable tôΘSIR,MN .
Now, comparing the variance of̂ΘIS,N to that of

Θ̂I−SIR,MN is more difficult, because we have to compare
1

MN
varq̃N (ϕ(x)) to var(

∑N
i=1 w

i(x̃1, · · · , x̃N )ϕ(x̃i)) where

x̃i
i.i.d∼ q(.). However, we have the following CLT.

Theorem 1. Let us consider the independent SIR estimate
defined in(15). Let us assume thatN → ∞, MN is a non-

decreasing sequence withMN → ∞ and lim
N→∞

N

MN
= α > 0

(possibly∞). We also assume thatE
(∑N

i=1 w
i(ϕ(xi))2

)
is

finite. ThenΘ̂I−SIR,MN satisfies
√
MN (Θ̂I−SIR,MN −Θ)

D→ N (0, varp(ϕ(x))) . (18)

Proof. The proof is given in the Appendix

Let us comment this result. First Theorem 1 again enables to
compareΘ̂I−SIR,MN to Θ̂SIR,MN . Comparing (12) and (18)
confirms (17), since the asymptotic variance ofΘ̂I−SIR,MN

is always lower than that of̂ΘSIR,MN . Also note that in the
independent case the asymptotic variance ofΘ̂I−SIR,MN no
longer depends onα > 0.

Next Theorem 1 also gives some elements for comparing
Θ̂I−SIR,MN to Θ̂IS,N . Let for simplicityMN = N . Then the
comparison of both estimates relies on that of the asymptotic
variances in (10) and (18):

σ2,IS
∞ (q) = Eq

(
p2(x)

q2(x)
(ϕ(x)−Θ)2

)
, (19)

σ2,I−SIR
∞ = varp(ϕ(x)). (20)

For a given target pdfp(.) and functionϕ(.), note that even-
thoughΘ̂I−SIR,MN was obtained from samples drawn from the
importance pdfq(.), σ2,I−SIR

∞ no longer depends onq(.), by
contrast withσ2,IS

∞ (q). Now, σ2,IS
∞ (q) is well known [19,§2.9]

[5, Theorem 3] to be minimum forq⋆(x) ∝ p(x)|ϕ(x)−Θ|; for
that q⋆, σ2,IS

∞ (q⋆) = (
∫
|ϕ(x)−Θ|p(x)dx)2 ≤ varp(ϕ(x)), so

Θ̂IS,N (q⋆) outperformsΘ̂I−SIR,N for large values ofN . How-
ever note that for other importance distributions,σ2,I−SIR

∞ (q)
may become lower thanσ2,IS

∞ (q), by contrast with traditional
resampling techniques where resampling always introduces
extra variance.Also note that the variances in (19) and (20)
depend on functionϕ(.); on the other hand, for largeN ,
Θ̂I−SIR,N has the same behavior as a crude estimate built
from samples drawn fromp(.) and so is adapted for a large
class of functionsϕ(.).

2) Sampling procedure:It remains to describe a procedure
to obtain i.i.d. samples from̃qN . Algorithm 2 ensures that the
final samples{x1, · · · , xMN } are drawn independently from
q̃N .

Compared to the classical SIR procedure based onN
intermediate samples from which are deduced theMN final
samples, the independent SIR algorithm described in Algo-
rithm 2 relies on a sampling step ofN ×MN intermediate
samplesx̃i,j and MN independent resampling steps. Con-
sequently, for a given budget of sampling and resampling

Algorithm 1 The SIR algorithm
Input: an importance distributionq, N andMN

Result: {xi}MN

i=1
i.d.∼ q̃N

for 1 ≤ i ≤ N do
S. x̃i ∼ q(.);
W. wi ∝ pu(x̃

i)/q(x̃i),
∑N

i=1 w
i = 1;

end for
for 1 ≤ i ≤MN do

R. xi ∼∑N
j=1 w

jδx̃j

end for

Algorithm 2 The independent SIR algorithm
Input: an importance distributionq, N andMN

Output: {xi}MN

i=1
i.i.d.∼ q̃N

for 1 ≤ i ≤MN do
for 1 ≤ j ≤ N do

S. x̃i,j ∼ q(.);
W. wi,j ∝ pu(x̃

i,j)/q(x̃i,j),
∑N

j=1 w
i,j = 1;

end for
R. xi ∼∑N

j=1 w
i,jδx̃i,j

end for

steps, the independent procedure should be compared with
a classical SIR one in which we sampleN × MN points
and resampleMN of them. In this last case, we obtainMN

dependent samples drawn from̃qN×MN . First, using (12) with
α = limN→∞

N×MN

MN
= ∞, we see that both estimates

Θ̂I−SIR,MN andΘ̂SIR,MN with N×MN intermediate samples
have the same asymptotic behavior. However the independent
procedure can be easily parallelized because the resampling
steps are by nature independent contrary to the SIR procedure
where theN ×MN intermediate samples are directly resam-
pled.Comparing both estimates in the case where the number
of particles is the same before and after the resampling step
of the SIR dependent algorithm is more difficult. Indeed, in
this caseα = 1 in (12) and the rates in (12) and in (18) are
not necessarily the same. So the comparison also depends on
Eq

(
(p

2(x)
q2(x) (ϕ(x)−Θ)2)

)
.

C. Reweighting the independent samples?

We finally discuss the final weights which are attributed
to the resampled particles. In the SIR procedure, each final
sample is weighted by1/MN . From an IS point of view,
this weighting traduces the fact that the final samples become
drawn from the target distributionp(.) and independent when
N → ∞ [15]. Moreover the convergence results ofΘ̂SIR,MN

to Θ (see e.g. [20] [17]) confirm that these weights are valid
from an asymptotical point of view. In the independent SIR
procedure, the only difference is that the final samples are
independent, even from a non-asymptotical point of view.

Now, if N is finite, one can wonder if weights1/MN

are optimal. In Algorithm 2, samples{xi}MN

i=1 are i.i.d. from
q̃N . Consequently, for a givenN , q̃N can be seen as a
post-resampling compound importance distributionq̃N =
φ(p, q,N), and a final samplexi should be weighted by a
post-resampling weight proportional topu(xi)/q̃N (xi). This
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yields a new estimatêΘI−SIR−w of (4) (superscriptw stands
for weighted)

Θ̂I−SIR−w,MN =

MN∑

i=1

pu(x
i)

q̃N (xi)∑MN

j=1
pu(xj)
q̃N (xj)

ϕ(xi), (21)

which coincides with the IS estimate (6) with importance
distribution q̃N (.). It is difficult to compareΘ̂I−SIR,MN and
Θ̂I−SIR−w,MN because the expression of the weights in this
last case depends onN . However, it is interesting to note
that contrary toΘ̂I−SIR,MN , MN impacts the bias of the
estimateΘ̂I−SIR−w,MN . For example, if we setN = 1 (so
q̃N = q) and M1 is arbitrary thenΘ̂I−SIR−w,M1 coincides
with the IS estimate withM1 i.i.d. samples drawn fromq
while the unweighted estimatêΘI−SIR,M1 is a crude estimate
of
∫
ϕ(x)q(x)dx and is not adaptedto the estimation of

Θ. More generally, using the delta method to approximate
E(Θ̂I−SIR,MN ) andE(Θ̂I−SIR−w,MN ) [21] we observe that

E(Θ̂I−SIR,MN )=E(Θ̂IS,N )≈Θ− 1

N
Eq

(
p2(x)

q2(x)
(ϕ(x)−Θ)

)
,

(22)

E(Θ̂I−SIR−w,MN )≈Θ− 1

MN
Eq̃N

(
p2(x)

(q̃N (x))2
(ϕ(x)−Θ)

)
.

(23)

So for a fixed number of sampled pointsN , we see that in
the unweighted case the bias ofΘ̂I−SIR,MN is independent of
MN . By contrast, whicheverN the bias ofE(Θ̂I−SIR−w,MN )
tends to0 asMN → ∞.

Finally, it remains to computepu(xi)/q̃N (xi) in practice.
In general,q̃N in (13) is not available in closed form because
it relies on the integralhN (x) in (14). However, theN ×MN

intermediate samples which have been used in Algorithm 2
can be recycled to approximate the conditional expectation
hN (x). For a givenx and using the intermediate samplesx̃i,j

of Algorithm 2, a crude Monte Carlo estimate ofhN (x) reads

ĥN (x) =
1

MN

MN∑

i=1

pu(x)
q(x)

pu(x)
q(x) +

∑N−1
j=1

pu(x̃i,j)
q(x̃i,j)

. (24)

Importance weightspu(x)
q̃N (x)

in (21) can be approximated by
pu(x)

NĥN (x)q(x)
. Note that the computation of these approximated

weights does not require extra cost sincepu(x̃i,j)/q(x̃i,j) has
already been computed in Algorithm 2 to obtain i.i.d. samples.

D. Summary

In summary, we now have at our disposal four estimates
to computeΘ in (4) from an importance distributionq(.).
Θ̂IS,N and Θ̂SIR,MN are deduced from the IS and Rubin’s
SIR mechanisms, respectively.Θ̂SIR,MN relies on unweighted
dependent samples from̃qN . Using unweighted independent
samples fromq̃N produces the estimatêΘI−SIR,MN which
outperformsΘ̂SIR,MN and possiblyΘ̂IS,N ; it also becomes
asymptotically independent of the choice of the initial impor-
tance distributionq(.) according to Theorem 1. This estimate
does not suffer from the support impoverishment caused by
the resampling step. On the other hand it requires a larger

computational cost which, however, can be exploited in order
to associate to the i.i.d. samples post-resampling importance
weights based on thẽqN (x). We thus obtain a weighted
estimateΘ̂I−SIR−w,MN which can be seen as the estimate
deduced from the IS mechanism based on the compound
IS distribution q̃N (x). We will compare these estimates via
simulations taking into account their computational costsin
Section IV-A.

III. I NDEPENDENT RESAMPLING BASEDPF

We now adapt these results to the Bayesian filtering prob-
lem. In section III-A we briefly recall the principle of classical
SIR algorithms which are based on dependent resampling. Our
SIR algorithm with independent resampling and unweighted
samples is proposed in section III-B. However, computing the
post-resampling weights is more challenging here than in the
static case because the pdfq̃N of the static case becomes a sum
of N terms which should be computed for each final sample.
So in section III-C we revisit the algorithm of section III-B
in terms of APF. We first observe that the independent SIR
algorithm can be seen as the first step of an APF algorithm
since it implicitly draws samples from a mixture pdf. Making
full use of the APF methodology enables us to weight our
final samples.

A. Classical SIR algorithms (based on dependent resampling)

We now assume that we are given someHMC model
(1) and we briefly recall howΘk in (2) can be computed
recursively via PF. PF relies on the sequential application
of the normalized IS mechanism described in Section II-A
for the target distributionp(x0:k|y0:k) which is known up to
a constant according to (1). Letq(x0:k) be an importance
distribution (q(x0:k) can depend ony0:k but this dependency
is not written here to avoid notational burden). Starting from
N weighted trajectoriesxi0:k−1 sampled fromq(x0:k−1), we
first extend each trajectoryxi0:k−1 with a particlex̃ik sampled
from q(xk|xi0:k−1) and next update the old weightswi

k−1 via

wi
k ∝ wi

k−1

fk(x̃
i
k|xik−1)gk(yk|x̃ik)
q(x̃ik|xi0:k−1)

,

N∑

i=1

wi
k = 1. (25)

Unfortunately, it is well-known that this direct sequential
application of IS leads to weight degeneracy: after a few
iterations only few weightswi

k have a non null value [22]. A
traditional rescue consists in resampling, either systematically
or according to some criterion such as the Effective Sample
Size [6] [7] which is approximated by1/

∑N
i=1(w

i
k)

2. The
corresponding algorithm is given in Algorithm 3 and we shall
assume that the sizeN of the MC approximation remains
constant throughout the iterations. Finally Algorithm 3 enables
to compute two estimates ofΘk:

Θ̂SIS,N
k =

N∑

i=1

wi
kϕ(x̃

i
k), (26)

Θ̂SIR,N
k =

1

N

N∑

i=1

ϕ(xik). (27)
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As is well known, the pre-resampling estimatorΘ̂SIS,N
k is

preferable to the post-resampling oneΘ̂SIR,N
k and should be

used in practice; but̂ΘSIR,N
k is recalled here because it will

be compared below to the independent resampling estimator
(32).

Algorithm 3 The classical SIR algorithm (based on dependent
resampling)

Input: q(xk|x0:k−1), yk, {wi
k−1, x

i
0:k−1}Ni=1

Output: {wi
k, x

i
0:k}Ni=1

for 1 ≤ i ≤ N do
S. x̃ik ∼ q(xk|xi0:k−1);

W. wi
k ∝ wi

k−1

fk(x̃
i
k|x

i
k−1

) gk(yk|x̃
i
k)

q(x̃i
k
|xi

0:k−1
)

,
∑N

i=1 w
i
k = 1;

end for
if Resamplingthen

for 1 ≤ i ≤ N do
R. li ∼ Pr(L = l|{xj0:k−1, x̃

j
k}Nj=1) = wl

k

Setxi0:k = (xl
i

0:k−1, x̃
li

k ), w
i
k = 1

N
end for

else
Set{xik}Ni=1 = {x̃ik}Ni=1

end if

In practice, it remains todesign the conditional impor-
tance distributionq(xk|x0:k−1). A popular solution consists
in choosingq(xk|x0:k−1) = fk(xk|xk−1), since this pdf is
part of model (1) and is generally easy to sample from;
another one is the so-called optimal conditional importance
distribution q(xk|x0:k−1) = p(xk|xk−1, yk) which takes into
account the new observationyk and for which weightswi

k no
longer depend on the sampled particles{x̃ik}Ni=1. The optimal
conditional importance distribution is generally not available
in closed form but some approximation techniques have been
proposed, see e.g. [22] [23] [24] [25].The choice of the
importance distribution will not be discussed in this paperbut
all the existing improvements cited above can be used in the
algorithms that we propose in the next sections: they do not
impact the proposed methodology.Finally, let us mention that
convergence results are also available for the PF presentedin
Algorithm 3, see e.g. [26] [27] [20] [17].Some of them are
based on an extension of the CLTs recalled in Section II for
conditionally independent triangular arrays and next on their
recursive application.

B. An alternative SIR algorithm (based on independent re-
sampling)

Let us first adapt Proposition 1 to the sequential context. So
we address the conditional distribution given{xi0:k−1}Ni=1 of
the resampled particlesxik and we have the following result
(the proof is omitted).

Proposition 3. Let us consider the samples{xik}Ni=1 produced
by the SIR mechanism of Algorithm 3. Let

pik(x) = wi
k−1fk(x|xik−1)gk(yk|x), (28)

qik(x) = q(x|xi0:k−1). (29)

Then given the initial trajectories{xi0:k−1}Ni=1, the new sam-
ples{xik}Ni=1 are identically distributed according to a pdf̃qNk
which reads

q̃Nk (x) =
N∑

i=1

hik(x)q
i
k(x), (30)

wherehik(x) coincides with the conditional expectation (given
(xik = x)) of the i-th importance weight at timek,

hik(x) =

∫ ∫ pi
k(x)

qi
k
(x)

pi
k
(x)

qi
k
(x)

+
∑

l 6=i
pl
k
(xl)

ql
k
(xl)

∏

l 6=i

qlk(x
l)dxl. (31)

Proof. The proof follows the same line of reasoning as the
Proof of Proposition 1.

Note that in this proposition we focus on the distribution
of xik given {xi0:k−1}Ni=1. Given {xi0:k−1, x̃

i
k}Ni=1, the new

samples{xik}Ni=1 are independent; when we remove the de-
pendency in{x̃ik}Ni=1, {xik}Ni=1 become identically distributed
according toq̃Nk but are dependent (a same particle can be
resampled several times).

Since q̃Nk is a pdf, a procedure which would produce sam-
ples conditionally i.i.d. fromq̃Nk would enable us to keep the
advantage of the resampling step, i.e. to recreate diversity for
the next time iteration, while avoiding local impoverishment
of the support. Except in a particular case which will be
described later, sampling directly from̃qNk (x) is difficult for an
arbitrary conditional importance distributionq(xk|x0:k−1). We
thus propose a procedure similar to Algorithm 2 but adapted to
the dynamical context. The SIR algorithm with independent
resampling is given by Algorithm 4. Note that a difference
with Algorithm 3 is that the distribution of the discrete index
li now depends oni. In addition, note also that the proposed
mechanism is different from that proposed in [28] in the
context of Population MC methods. Here, the trajectories
{xi

0:k} still remain dependent: some of them can disappear
at the end of the procedure or be partially replicated but
the last components{xi

k} of these trajectories are necessarily
different.

Algorithm 4 A SIR algorithm based on independent resam-
pling

Input: q(xk|x0:k−1), yk, {wi
k−1, x

i
0:k−1}Ni=1

Outut: {wi
k, x

i
0:k}Ni=1

for 1 ≤ i ≤ N do
for 1 ≤ j ≤ N do

S. x̃i,jk ∼ q(xk|xj0:k−1);

W. wi,j
k ∝ wi,j

k−1
fk(x̃

i,j

k
|xj

k−1
)gk(yk|x̃

i,j

k
)

q(x̃i,j

k
|xj

0:k−1
)

,
∑N

j=1w
i,j
k =1;

end for
R. li ∼ {Pr(l|{xj0:k−1, x̃

i,j
k }Nj=1) = wi,l

k }Nl=1;

Setxi0:k = (xl
i

0:k−1, x̃
i,li

k ), wi
k = 1

N .
end for

We now propose a new estimatêΘI−SIR,N
k of Θ which is

based on the set{xik}Ni=1 produced by Algorithm 4:

Θ̂I−SIR,N
k =

1

N

N∑

i=1

ϕ(xik). (32)
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Comparing (32) with (27), remember that the samples{xik}Ni=1

share the same pdf̃qNk , but that in (32) they are now indepen-
dent given{xi0:k−1}Ni=1. Starting from a dataset{xi0:k−1}Ni=1,
it is ensured that̂ΘI−SIR,N

k outperformsΘ̂SIR,N
k since

E(Θ̂I−SIR,N
k |{xi0:k−1}Ni=1) = E(Θ̂SIR,N

k |{xi0:k−1}Ni=1), (33)

var(Θ̂SIR,N
k |{xi0:k−1}Ni=1) = var(Θ̂I−SIR,N

k |{xi0:k−1}Ni=1)

+
N − 1

N
var(Θ̂SIS,N

k |{xi0:k−1}Ni=1). (34)

Of course, computinĝΘI−SIR,N
k via the samples produced by

Algorithm 4 requires an extra computational cost. This point
will be discussed in detail in our Simulations section, but for
the moment let us make two comments: first, this algorithm
can be seen as an alternative SIR mechanism which ensures
the diversity of the resampled support without changing the
conditional distribution of the final samples; if resampling
needs to be performed rarely, then the independent resampling
procedure may be used only when necessary. On the other
hand, we will see that̂ΘI−SIR,N

k can also provide an interesting
alternative to Θ̂SIS,N

k but requires an extra computational
cost; so if we want to perform the independent resampling
procedure at each time step we will decrease the numberN
of particles associated witĥΘI−SIR,N

k in order to reach the
same computational cost associated withΘ̂SIS,N

k .

Remark 1. Note that the idea of using extra MC samples
has already been proposed in the context of Island PFs
[29]. The idea behind this class of techniques is to exploit
parallel architectures, and the rationale is as follows. Instead
of considering a unique set ofN particles, the method consists
in dividing the population ofN samples intoN1 sets of
N2 sampleswith N1N2 = N . It is well known that such
a configuration does not improve the classical PF withN
samples, but it has the advantage of splitting the associated
computational cost when parallel architectures are available.
In other words, the objective ofthe Island PFis not to struggle
against the support impoverishment.

C. Interpretation of the independent resampling scheme in
terms of APF

At this point, we have seen that it was possible to obtain
an estimate ofΘk based onconditionnallyi.i.d. samples from
the conditional pdf̃qNk . As in the static case, we now wonder
whether the final weights1/N used to computêΘI−SIR,N

k

(see eq. (32)) are optimal whenN is finite. To this end
we would like to make use of the expression ofq̃Nk to
propose an alternative weighting mechanism. At first glance,
the computation of a weight which would rely on (30)-(31)
seems compromised becauseq̃Nk involves a sum ofN terms
which should be computed for each final samplexik. As we
will see, the interpretation of the independent SIR algorithm as
a particular first step of an APF algorithm will help circumvent
this limitation. Let us first begin with a brief presentationof
APF filters.

1) A brief presentation of APF:In model (1), the filtering
density at timek can be written in terms of that at timek−1,

p(xk|y0:k) ∝ gk(yk|xk)
∫
fk(xk|xk−1)p(xk−1|y0:k−1)dxk−1.

(35)
Plugging an MC approximation {wi

k−1, x
i
k−1}Ni=1 of

p(xk−1|y0:k−1) into (35) yields

p̂(xk|y0:k) ∝ gk(yk|xk)
N∑

i=1

wi
k−1fk(xk|xik−1)

∝
N∑

i=1

wi
k−1p(yk|xik−1)p(xk|xik−1, yk) (36)

where p(yk|xk−1) =
∫
fk(xk|xk−1)gk(yk|xk)dxk and

p(xk|xk−1, yk) ∝ fk(xk|xk−1)gk(yk|xk). Sampling from
p̂(xk|y0:k) in (36) leads to a particular SMC algorithm re-
ferred to as thefully adapted APF (FA-APF)[30]. How-
ever sampling directly from̂p(xk|y0:k) is often impossible
becausep(yk|xik−1) or p(xk|xik−1, yk) are unavailable.Some
approaches have been proposed to sample approximately from
the mixture (36). For example, [31] has proposed to first
approximatep(yk|xik−1) via a local MC method and to sample
from p(xk|xik−1, yk) via rejection sampling. However, the
computational cost associated to this method is random and the
rejection method can be particularly inefficient in informative
or high dimensional models.An alternative approach called
the APF has been proposed [30] to obtain samples from an
instrumental mixture pdf

q(xk) =

N∑

i=1

µ(xi0:k−1)τ(xk|xi0:k−1) (37)

and to use IS in augmented dimension; finally APF aims at tar-
geting the mixture pdf̂p(xk|y0:k) in (36) which, itself, targets
the filtering distributionp(xk|y0:k). The resulting algorithm is
displayed below.

Algorithm 5 The APF algorithm

Input: µ(x0:k−1), τ(xk|x0:k−1), yk, {wi
k−1, x

i
0:k−1}Ni=1

Outut: {wi
k, x

i
0:k}Ni=1

for 1 ≤ i ≤ N do
R. li ∼ {Pr(l|{xi0:k−1}Ni=1) = µ(xl0:k−1)}Nl=1;
S. xik ∼ τ(xk|xl

i

0:k−1);

W. wi
k ∝ wli

k−1
fk(x

i
k|x

li

k−1
)gk(yk|x

i
k)

µ(xli

0:k−1
)τ(xi

k
|xli

0:k−1
)

,
∑N

i=1 w
i
k = 1;

Setxi0:k = (xl
i

0:k−1, x
i
k)

end for

Let us comment the choice of the instrumental distribution
q(xk) in (37). Compared to the SIR algorithm of paragraph
III-A we see that there is an additional degree of freedom,
µ(x0:k−1), which is called the first stage weight;τ(xk|xi0:k−1)
is some importance distribution. Generally, the objectiveof
the first stage weights is to avoid the computational waste
induced by the resampling step of the SIR algorithm by pre-
selecting trajectories at timek−1 which are in accordance with
the new observationyk. Designing this pdfq(xk) is critical
and classical approximations of the predictive likelihoodsuch
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as the likelihood taken at the mode of the transition pdf
(i.e. µ(xi0:k−1) ∝ wi

k−1gk(yk|ψ(xik−1)) where ψ(xik−1) is
the mode offk(xk|xik−1)) can actually damage the perfor-
mance of the estimate. This is why it is often suggested in
practice to build a first-stage weight as close as possible to
wk−1p(yk|xk−1), although this problem is generally difficult
[32] [33] due to the computation ofp(yk|xk−1). It remains
to chooseτ(xk|x0:k−1); as in the SIR algorithm, one gener-
ally tries to approximate the optimal importance distribution
p(xk|xk−1, yk). Finally, note that it has been proved in [34]
that the estimate which results from the direct sampling
from mixture (36) has not necessarily an optimal asymptotic
variance.

Some improvements of the APF have been proposed.
In particular, instead of using IS in augmented dimension,
the marginal APF of [35] directly targets the mixture pdf
p̂(xk|y0:k) in (36) In this case, the second stage weights
become

wi
k∝
∑N

j=1 w
j
k−1fk(x

i
k|xjk−1)gk(yk|xik)∑N

j=1 µ(x
j
0:k−1)τ(x

i
k|x

j
0:k−1)

,
N∑

i=1

wi
k = 1. (38)

As a result, the variance of weightswi
k in (38) is reduced w.r.t.

that of the second stage weights of Algorithm 5. However, this
variance reduction is closely related to the choice of the first
stage weights and of the importance distribution. In particular,
in the case whereµ(xi0:k−1) ∝ wi

k−1 and τ(xk|xi0:k−1) =
fk(xk|xik−1) (i.e. it is difficult to approximatep(yk|xk−1) and
we can only sample according tofk(xk|xk−1)), there is no
improvement since the M-APF reduces to the boostrap PF
algorithm.

2) Independent resampling as the first step of a canonical
APF algorithm: Let us now turn to the interpretation of our
independent resampling procedure in terms of APF. Let us
observe that̃qNk in (30) can be rewritten as

q̃Nk (x) =
N∑

i=1

∫
hik(x)q

i
k(x)dx× hik(x)q

i
k(x)∫

hik(x)q
i
k(x)dx

(39)

and thus can be seen as one particular mixture pdfq(xk)
in (37), in which the weightsµind(xi0:k−1) are given by∫
hik(x)q

i
k(x)dx and the componentsτ ind(xk|xi0:k−1) by

hi
k(x)q

i
k(x)∫

hi
k
(x)qi

k
(x)dx

. We now check that the couple of samples

(li, xik) produced by the independent resampling algorithm
(Algorithm 4) can indeed be seen as an augmented sample
according toq̃Nk (x) in (39):

• given {xj0:k−1}Nj=1 and {x̃i,jk }Nj=1, Pr(li = l) =

wi,l
k . Since x̃i,jk ∼ qik(x), the distribution of

li given {xj0:k−1}Nj=1 becomes Pr(li = l) =

E(wi,l
k |{xj0:k−1}Nj=1) =

∫
hlk(x)q

l
k(x)dx;

• given{xj0:k−1}Nj=1, {x̃i,jk }Nj=1 andli, xik = x̃i,l
i

k . Remov-
ing the dependency in{x̃i,jk }Nj=1, the distribution ofxik

given {xj0:k−1}Nj=1 and li becomes hli

k (x)ql
i

k (x)
∫
hli

k
(x)ql

i

k
(x)dx

.

In summary, our independent resampling procedure is noth-
ing but the first step of one particular APF algorithm, because
the pdf q̃Nk (x) from which we draw i.i.d. samples (given
{wi

k−1, x
i
0:k−1}Ni=1) coincides with the mixture pdf (39),

which itself constitutes a class of instrumental distributions
q(xk) in (37) parametrized byq(xk|x0:k−1).

In order to appreciate the relevance of that particular solu-
tion let us comment on the choice of the first-stage weights
µind(xi0:k−1) and distributionsτ ind(xk|xi0:k−1):

• at timek−1, trajectories{xi0:k−1}Ni=1 are first resampled
according to first stage weights which coincide with
the expectation of the importance weightswi

k of the
SIR algorithm defined in (25). In other words, these
trajectories are preselected in such a way that the new
importance weightwi

k which will be assigned in the
weighting step of the SIR algorithm will tend to be large;

• once a trajectoryxi0:k−1 has been selected, it is not
ensured that its associated weightwi

k will indeed be
large. By sampling according to a pdf proportional to
hik(x)q

i
k(x), the objective is to produce a sample in a

region wherehik(x) (the conditional expectation of the
importance weightwi

k, given that (xik = x)) and the
distributionqik(x) are both large.

Consequently, the mixture pdf̃qNk (x) appears as a natural
instrumental candidate for the APF when the objective is
to pre-select the trajectories and extend them in accordance
with the given conditional importance distributionsqik(x) =
q(x|xi0:k−1) used in the SIR algorithm. If the SIR algorithm
IS densities qik(x) coincide with the optimal importance
distribution p(x|xik−1, yk), then one can easily see that our
canonical APF instrumental pdf (39) reduces to the target
mixture (36) (sincehik in (31) is reduced to a term proportional
to wi

k−1p(yk|xik−1)) and the independent SIR procedure to
the FA-APF algorithm. In that case one can sample from
q̃Nk very efficiently (since (39) is a known mixture) and the
resulting estimate outperforms the SIR estimateΘ̂SIR,N

k with
optimal importance distribution [17] [18]. In case the FA-APF
algorithm is not available, it remains possible to sample from
the mixture pdf q̃Nk (x) in (39) as soon as we can sample
from the root pdfqik(x), even whenµind(xi0:k−1) cannot be
computed, or one cannot sample fromτ ind(xk|xi0:k−1).

3) Reweighting the independent samples?:We can finally
use this APF interpretation in order to reweight our con-
ditionally independent samples{xik}Ni=1. Since q̃Nk can be
seen as a mixture (37) with parametersµind(xi0:k−1) and
τ ind(xk|xi0:k−1), µ

ind(xi0:k−1) × τ ind(x|xi0:k−1) reduces to
hik(x)q

i
k(x). Finally when we target mixture (36), the second-

stage weights associated with the independent samplesxik
produced by Algorithm 4 read

wi
k ∝ wli

k−1fk(x
i
k|xl

i

k−1)gk(yk|xik)
hl

i

k (x
i
k)q

li
k (x

i
k)

,

N∑

i=1

wi
k = 1 (40)

(note that we could compute these second stage weights in
the context of the M-APF using (38) at the price of an extra-
computational cost).We thus obtain a new estimate ofΘk,

Θ̂I−SIR−w,N
k =

N∑

i=1

wi
kϕ(x

i
k) (41)

wherewi
k are defined in (40). The practical computation of

these final weights relies on that ofhik(x) in (31), which
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can be approximated via the extra samplesx̃i,jk generated in
Algorithm 4,

ĥlk(x) =
1

N

N∑

i=1

pl
k(x)

ql
k
(x)

pl
k
(x)

ql
k
(x)

+
∑

j 6=l
pj

k
(x̃i,j

k
)

qj
k
(x̃i,j

k
)

. (42)

Let us comment this approximation. First, it does not require

an extra computational cost since samplesx̃i,jk and pj

k
(x̃i,j

k
)

qj
k
(x̃i,j

k
)

are recycled from Algorithm 4. Next,hlk(x) can be seen as
the conditional expectation of thel-th normalized importance
weight and x̃i,jk are sampled fromqjk(x), so ĥlk(x) is an
unbiased estimate ofhlk(x). However, analyzing the variance
of ĥlk(x) is more complicated because the dimension of the
integral inhlk(x) is directly related to the number of samples
N used to approximate it. This point will be discussed in
our Simulations section and we will see that in some cases it
is possible to predict the behavior of̂ΘI−SIR−w,N

k compared
to Θ̂I−SIR,N

k . Finally, this MC approximation introduces addi-
tional variance in the obtained approximation which is difficult
to measure. However, it is not necessary to propagate the
approximated weights over time. Indeed, the approximation
can only be used to compute the local estimateΘ̂I−SIR−w,N

k

but the interpretation in terms of SIR algorithm developed in
Section III-B ensures that it is sufficient to propagate uniform
weights.

Remark 2. ComputingΘ̂I−SIR,N
k and Θ̂I−SIR−w,N

k is based
on extra-intermediate samples as in [31], for example. How-
ever, contrary to such approach in which the extra samples are
used to build a new target distribution, our extra samples build
an important mixture which has an interpretation in terms of
APF and enable us to obtain i.i.d. samples from this mixture
and to reweight these samples.

D. Summary

Let us summarize the discussions of section III. When the
objective is to computeΘk in (2) we have several options:

1) using the classical SIR algorithm (see Algorithm 3)
in which we computeΘ̂SIS,N

k . defined in (26). The
resampling step which follows the computation of this
estimate produces a conditionally dependent unweighted
set of particles sampled from̃qNk ;

2) an alternative to avoid the local impoverishment induced
by the traditional resampling step is to run Algorithm
4 and compute estimatêΘI−SIR,N

k . This estimate is
still based on an unweighted set of particles marginally
sampled fromq̃Nk but these samples have become con-
ditionally independent;

3) finally, the samples produced by Algorithm 4 can also
be seen as the result of a partial sampling procedure
according to an APF instrumental mixture pdf (39).
Further using the APF methodology with mixturẽqNk ,
it is possible to target mixture (36) which itself is
an approximation ofp(xk|y0:k). This leads to estimate
Θ̂I−SIR−w,N

k in (41), in which the weights (40) are

estimated by recycling the extra samples produced by
Algorithm 4. This approximation of the weights intro-
duces additional MC error but the interpretation of the
previous point ensures that it is sufficient to propagate
uniform weights.

These three estimates are now going to be compared (in terms
of performances and computational cost) in the next section.

IV. SIMULATIONS

We now validate our discussions through computer-
generated experiments. In section IV-A we first illustrate the
results of Section II and we compare the classical resampling
mechanism to the independent one with both unweighted and
weighted samples. We also discuss the computational cost
associated with our independent resampling mechanism.

In section IV-B we next perform simulations in the ARCH
model [36]. On the one hand, the FA-APF algorithm can be
computed in this model [30]. On the other hand, remember that
our weighted estimate (41) can be interpreted as the estimate
deduced from a particular APF which uses the instrumental
mixture pdf q̃Nk in (39), from which it is always possible
to sample from (with an extra computational cost). Thus the
estimate deduced from the FA-APF algorithm is used as a
benchmark and enables us to analyze the relevance of the
instrumental pdf̃qNk in the APF algorithm.

Next in section IV-C we compute our independent estimates
for a target tracking problem with range-bearing measure-
ments.Our estimates are compared to those obtained from
the classical SIR algorithm, for a given computational budget
measured via the number of sampling operations; this means
that we compareΘ̂I−SIR,M

k and Θ̂I−SIR−w,M
k (M is the

number of particles after the independent resampling step)to
Θ̂SIS,N

k in which N = M2+M
2 . Thus all estimates are based

onM2+M sampling operations (we do not distinguish if we
sample according to a continuous or a discrete distribution).
The relative performances of the estimates are analyzed in

function of the parameters of the state-space model.
Finally in section IV-D we compute our estimates in models

where the dimensionm of the hidden state is large and
we analyze their performances w.r.t. classical PF estimates
in function of the dimensionm and with a fixed number
of sampling operations. Finally throughout this section our
simulations are averaged overP = 1000 MC runs, we set
ϕ(x) = x in (2) and we use an averaged Root Mean Square
Error (RMSE) criterion, defined as

RMSE(Θ̂) =
1

T

T∑

k=1

(
1

P

P∑

p=1

||Θ̂(p)
k − x

(p)
k ||2

)1/2

(43)

wherex(p)k is the true state at timek for the p-th realization,
Θ̂

(p)
k is an estimate ofx(p)k and T is the time length of the

scenario.

A. Comparison of static sampling procedures

Let us first consider the (static) Bayesian estimation problem
in which we look for computing

Θ = E(x|y) =
∫
xp(x|y)dx (44)
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via the techniques described in Section II. We assume that
p(x|y) is known up to a constant,p(x|y) ∝ p(x)p(y|x) where
p(x) = N (x; 0;σ2

x) and p(y|x) = N (y;x, σ2
y) with σ2

x = 10
andσ2

y = 3. We choose the IS distributionq(x) = p(x). For a
given number of final samplesN , we compute six estimates:
the estimateΘ̂SIS,N deduced from the IS mechanism with
importance distributionq(.); the estimateΘ̂SIR,N deduced
from the SIR mechanism withN intermediate samples and
MN = N final samples; our estimatêΘI−SIR,N based onN
unweighted independent samples drawn fromq̃N (see (15));
our estimateΘ̂I−SIR−w,N based onN weighted independent
samples from̃qN (see (21)). Remember that the computation
of the independent resampling mechanism is based on the
sampling of N2 intermediate particles andN resampling
steps and thus requires an extra computational cost w.r.t. the
dependent one. Consequently, we also computeΘ̂SIR−2,N

based on the classical SIR procedure withN2 intermediate
samples andN (dependent) resampling steps; in other words
this estimate relies onN dependent samples obtained from
q̃N

2

.
1) RMSE of estimates:In Fig. 1 we display the distance of

each estimate w.r.t. the true expectationE(x|y) in function
of the number of samplesN while Table I describes the
performances of each estimate in terms of RMSE w.r.t. the
true x for small values ofN . As expected, the estimate
Θ̂I−SIR,N based onN independent samples drawn from̃qN

outperforms the estimatêΘSIR,N which is computed fromN
dependent samples drawn from̃qN . However, an interesting
result is thatΘ̂I−SIR,N also outperformsΘ̂SIS,N . It means
that the distributionq̃N produced by the SIR mechanism
is more adapted than the priorq(x) = p(x), which is not
surprising sincẽqN implicitly uses the observationy through
the resampling mechanism of intermediate samples. Of course,
the computation of̂ΘI−SIR,N requires an extra computational
cost but it is interesting to note that the size of the final
support is the same in the three cases. We then compare
the estimates based on the same computational cost. When
N increases, these estimates have the same asymptotical
behavior. It can be seen that the estimateΘ̂SIR−2,N based on
N samples drawn from̃qN

2

outperformsΘ̂I−SIR,N (and other
simulations as well as Table I show that the difference between
the two increases whenN gets smaller, more specifically
N < 100). However, when our i.i.d. samples are weighted
by a term proportional top(x, y)/q̃N (x) in an IS perspective,
our estimatêΘI−SIR−w,N slightly outperformsΘ̂SIR−2,N for
smallN and has the same performances whenN → ∞, which
confirms the discussion in II-B2. However, remember that the
Independent SIR procedure can easily be parallelized,and that
Θ̂I−SIR−w,N relies on the approximation (42) of (31) which
recycles the intermediate samplesx̃i,jk . To ensure the quality of
this approximation, we have estimated (31) withM additional
sets ofN particles,M > N , rather than only recycling the
N available sets ofN particles; the performances obtained
for Θ̂I−SIR−w,N using these additional sets of particles are
identical, which tends to show that recycling the particlesx̃i,jk
is indeed sufficient to approximate (31). It also been observed
that Θ̂I−SIR,N outperforms other estimates whenσy → 0, i.e.
when the observations become informative. We do not display

results for such setting because this point will be discussed in
the dynamic case.

2) Bias and variance of estimates:Next we study the
behaviour of the empirical variance and bias of these esti-
mators. Contrary to the previous simulation in this section
we have made sure to fix the observationy for all MC
runs so as to display the empirical variance corresponding
to the same variance termsvar(Θ̂)I−SIR,N and var(Θ̂)SIR,N

mentioned throughout this paper (such as in equation (17)),
which are conditional on the observations; The results are not
displayed for space reasons but the order of performance of
the estimators in terms of variance or bias remains the same
as that in terms of RMSE; the variances of bothΘ̂I−SIR,N and
Θ̂IS,N become much closer to each other as well as to that
of Θ̂I−SIR−w,N , compared to when we consider the RMSE
averaged over different observations.

3) Estimation of the predictive likelihood:We finally con-
sider the problem of estimating the predictive likelihood
p(yk|y0:k−1) which has a critical role for parameter estimation
or smoothing problems [37]. Let us consider two ways of
approximatingp(yk|y0:k−1), based on the observation that it
can be deduced from the filtering pdf, sincep(yk|y0:k−1) =∫
gk(yk|xk)fk(xk|xk−1)p(x0:k−1|y0:k−1)dx0:k. The first one

[31] is an unbiased estimate based on theN2 intermediate
samples̃xi,jk ∼ q(xk|xjk−1):

p̂(yk|y0:k−1) =

N∑

j=1

wj
k−1

1

N

N∑

i=1

gk(yk|x̃i,jk )
fk(x̃

i,j
k |xjk−1)

q(x̃i,jk |xjk−1)
.

(45)
The second one uses the APF interpretation of our algorithm;
from our weighted samples, one can build the following
estimator of the predictive likelihood:

p̂(yk|y0:k−1) =

N∑

i=1

wli

k−1gk(yk|xik)
fk(x

i
k|xl

i

k−1)

ĥl
i

k (x
i
k)q

li
k (x

i
k)
, (46)

where theĥl
i

k (x
i
k) have already been estimated by recycling

theN2 extra particles.
Turning back to the static linear and Gaussian model, we

have estimatedp(y) from (45) (which is also the estimate
deduced from IS withN2 samples) and (46) as well as the
estimate deduced from IS withN samples (see [22]). It can
be observed from Fig. 2 that estimates (46) and (45) both
converge to the true value much quicker and more smoothly
than the IS one asN increases, and that (46) is slightly more
stable than (45), as long as the number of particles is not
extremely low (below10 particles in this simulation).

N Θ̂
SIR,N

Θ̂
SIR−w,N

Θ̂
SIS,N

Θ̂
I−SIR,N

Θ̂
SIR−2,N

Θ̂
I−SIR−w,N

20 1.6844 1.6819 1.6542 1.5951 1.5618 1.5610
40 1.5925 1.5981 1.5763 1.5606 1.5446 1.5410
60 1.5752 1.5777 1.5637 1.5442 1.5395 1.5335
80 1.5623 1.5639 1.5530 1.5345 1.5309 1.5293
100 1.5519 1.5504 1.5410 1.5320 1.5290 1.5290

TABLE I
STATIC LINEAR AND GAUSSIAN MODEL - RMSE VALUES OF EACH

ESTIMATE.



11

M (number of final particles for all algorithms)
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Weighted independent SIR estimate (Θ̂I−SIR−w,N )

Fig. 1. Static linear and Gaussian model -σ2
x = 10, σ2

y = 3 - Bayesian esti-
mates ofE(x|y) based on the independent resampling mechanism outperform
the estimates based on the traditional IS and SIR mechanisms although they
require an extra computational cost.Other simulations as well as Table I show
that for smallN (N < 100), the estimate based on weighted i.i.d. samples
from q̃N slightly outperforms the estimate based on identically distributed
samples fromq̃N

2

(which uses the same overall computational cost), while
for largeN the performances coincide.
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IS estimator

Independent SIR estimator (post-resampling weights)

Independent SIR estimator (before resampling)

Fig. 2. Static linear Gaussian model -σ2
x = 10, σ2

y = 3. Estimates of
the normalizing constantp(y). The squared error(p̂(y)− p(y))2 (averaged
over 1000 MC runs) is displayed as a function of the numberN of final
particles for all algorithms. Note that here the independentSIR estimate
(before resampling) is equivalent to an IS estimate withN2 particles because
the scenario is static.

B. Comparison with APF algorithms

We now focus on the interpretation of our indepen-
dent resampling algorithm in terms of APF. We study
the ARCH model which is a particular HMC model (1)
in which fk(xk|xk−1) = N (xk; 0;β0 + β1x

2
k−1) and

gk(yk|xk) = N (yk;xk;R). We set R = 1, β0 =
3 and β1 = 0.75. In this model one can com-
pute p(yk|xk−1) = N (yk; 0;R + β0 + β1x

2
k−1) and

p(xk|xk−1, yk) = N (xk;
β0+β1x

2

k−1

R+β0+β1x2

k−1

yk;
R(β0+β1x

2

k−1
)

R+β0+β1x2

k−1

);
consequently, it is possible to obtain i.i.d. samples from the
target mixture (36) and thus compute the estimateΘ̂FA,N

k

based on the FA-APF algorithm.In such a setting, the M-APF
described in III-C1 coincides with the FA-APF. Remember
that the FA-APF can also be seen as a particular case of our
independent resampling Algorithm 4 in which the importance

distribution q(xk|x0:k−1) coincides withp(xk|xk−1, yk) (see
section III-C2). However this setting can be implemented in
specific models only, while Algorithm 4 can be used with
any importance distributionq(xk|x0:k−1), while keeping the
same interpretation as the FA-APF (see our discussion in
section III-C2). So we also compute our estimatesΘ̂I−SIR,N

k

and Θ̂I−SIR−w,N
k , which can be seen as an estimate deduced

from the APF in which the importance mixture (37) coincides
with q̃Nk . We finally compute the estimatêΘAPF,N

k which is
deduced from the APF withµ(x0:k−1) ∝ wk−1p(yk|xk−1)
andτ(xk|x0:k−1) = fk(xk|xk−1); with this configuration, the
particles are pre-selected with the so-called optimal firststage
weight and sampled from the transition pdf.

The RMSE of each estimate is displayed in Fig. 3(a) as a
function of the number of samplesN . Interestingly enough,
our weighted independent resampling algorithm which pro-
duces Θ̂I−SIR−w,N

k has the same performance as the FA-
APF algorithm whenN ≥ 20, without using the predictive
likelihood p(yk|xk−1) nor the optimal importance distribution
p(xk|xk−1, yk). It means that the mixture pdf̃q

N

k which has
been implicitly built by our algorithm differs from the target
mixture (36) (because there is a significant difference between
using uniform and non uniform weights) but is as relevant
as this target mixture (36);indeed, one advantage of the
mixture pdf q̃Nk deduced from the resampling mechanism
is that its interpretation does not depend on the importance
distribution qik which has been chosen and that it is possible
to sample from it in general HMC models (1). We also
observe that re-weighting the final samples is beneficial w.r.t.
attributing uniform weights. In order to analyze the behavior
of the weights associated to our estimateΘ̂I−SIR−w,N

k , we
compute the normalized effective sample size defined as
Nnorm,eff = 1

N
∑

N
i=1

(wi
k
)2

. It can be observed thatNnorm,eff

quickly converges from0.9 to nearly1 asN increases from5
to 100 (reachingNnorm,eff = 0.99 for N = 30), meaning that
these weights tend to become uniform, so estimatesΘ̂I−SIR,N

k

and Θ̂I−SIR−w,N
k become close whenN is sufficiently large.

Additionally, we show in Fig. 3(b) the RMSE of the various
estimators w.r.t. time. It can be observed thatΘ̂I−SIR,N

k (which
is deduced from samples drawn fromfk(xk|xk−1)) andΘ̂FA,N

k

have the same performances whatever timek.

C. Tracking from range-bearing measurements

We now study the performance of our algorithms in a
tracking scenario with range-bearing measurements. We look
for estimating the state vectorxk = [px,k, ṗx,k, py,k, ṗy,k]

T

(position and velocity in Cartesian coordinates) of a tar-
get from noisy range-bearing measurementsyk. The pdfs
in model (1) associated with this tracking problem are
fk(xk|xk−1) = N (xk;Fxk−1;Q) and gk(yk|xk) =

N (yk;

(√
p2x,k + p2y,k

arctan
py,k

px,k

)
;R) whereR =

(
σ2
ρ 0
0 σ2

θ

)
,

F =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 , Q = σ2

Q




1
3

1
2 0 0

1
2 1 0 0
0 0 1

3
1
2

0 0 1
2 1


 .(47)
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N (number of particles for all algorithms)

R
M
S
E

10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Bootstrap estimate

APF estimate with optimal first stage weights (Θ̂APF,N
k )

FA-APF estimate (Θ̂FA,N

k )
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(a) RMSE w.r.t. number of particles
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I-SIR estimate with uniform weights (Θ̂I−SIR,N
k )

I-SIR-w estimate with reweighting (Θ̂I−SIR−w,N
k )

(b) RMSE w.r.t. time

Fig. 3. ARCH model -R = 1, β0 = 3 andβ1 = 0.75 - (a) The estimate
based on the independent resampling mechanism with a final reweighting has
the same performances as the estimate deduced from the FA-APF. The final
reweighting mechanism is beneficial when compared to the use ofuniform
weights. - (b)RMSE w.r.t time of the various estimates forN = 100

The conditional importance distribution used to sample par-
ticles is the transition pdfq(xk|x0:k−1) = fk(xk|xk−1); so
the importance weightswi

k at time k are proportional to
wi

k−1g(yk|xik). We computeΘ̂SIS,N
k (see (26)),Θ̂I−SIR,M

k

(see (32)),Θ̂I−SIR−w,M
k (see (41)) withN = M2+M

2 to
set the number of sampling operations. We also compare
these estimates witĥΘIPF,N

k (calculated after resampling)
deduced from the Island PF with5 islands andN/5 particles
per island, and Θ̂SIRR,N

k (also calculated after resampling)
which results from a classical SIR procedure using residual
resampling with stratified resampling for its residual part,
rather than multinomial resampling [11]. Note that we use
a small number of islands for Island PF, which would not
be efficient in practice due to poor parallelization. However,
as shown in [29], increasing the number of islands can only
worsen the performance of the final estimator. For the sake of
comparing RMSE performances we thus choose a favorable
parametrization for the Island PF, regardless of parallelization.

The results are displayed for two sets of parameters. Fig.
4(a) corresponds to the case whereσQ =

√
10, σρ = 0.25 and

σθ = π
720 while Fig 4(b) corresponds to a very informative

case whereσQ =
√
10, σρ = 0.05 and σθ = π

3600 . For the
first configuration, we observe that̂ΘI−SIR−w,M

k outperforms
the other estimates and improvesΘ̂I−SIR,M

k , which does not
rely on weighted samples, for any M . Compared to the
classical SIS estimate,̂ΘI−SIR,M

k alsogives better performance
as long as the number of samplesM is weak (M < 30,
so N < 465) but is next outperformed. As shown in Fig.
4(b), when the observations become informative,Θ̂I−SIR,M

k

gives the best performances. Contrary toΘ̂SIS,N
k , Θ̂IPF,N

k and
Θ̂SIRR,N

k , our estimate does not suffer from the degeneration
of the importance weights. Indeed when the measurements are
informative (and so the likelihood is sharp), few importance
weights have a non null value andeven more advanced
resampling schemes do not achieve to create a diversified final
support. By contrast, the independent resampling procedure
ensures the diversity of the final samples when we use uniform
weights. Finally remember that̂ΘI−SIR−w,M

k relies on the
MC approximation (42).If we study the approximation̂hlk
in (42), any termpj

k
(x̃i,j)

qj
k
(x̃i,j)

with qik(x) = fk(xk|xik−1) can be

considered negligible when compared to any other higher such
term because the model is very informative. Consequently, the
final unnormalized approximated second stage weights tend to

become equal to the intermediary unnormalized weightspj

k
(·)

qj
k
(·)

of the corresponding particles and the estimateΘ̂I−SIR−w,M
k

is affected by the lack of diversity.
For reference, the averaged computational times for a single

time iteration of the algorithms (without parallelization) when
N = 50 are as follows (this experiment used Matlab software
and a laptop featuring a2.80 GHz Intel(R) Core(TM) i7-
4810MQ CPU):tSIR ≈ 0.0010s, tIPF ≈ 0.0014s, tI−SIR ≈
0.0011s, tI−SIR−w ≈ 0.0020s.

D. High dimensional problems

We finally study the impact of the dimension of the
hidden statexk. We consider a state vector of dimension
m = 4 × l, xk = [px,k(1), ṗx,k(1), py,k(1), ṗy,k(1), · · · ,
px,k(l), ṗx,k(l), py,k(l), ṗy,k(l)]

T . Each componentxk(l) =
[px,k(l), ṗx,k(l), py,k(l), ṗy,k(l)]

T evolves independently from
all the other components, according tofk(xk(l)|xk−1(l)) =
N (xk(l);Fxk−1(l);Q) whereF andQ given by (47), and is
observed independently viagk(yk|xk(l)) = N (yk;Hxk(l);R)
where

H =

(
1 0 0 0
0 0 1 0

)
, R =

(
σ2
x 0
0 σ2

y

)
.

Again, we compute the estimate based on classical PFΘ̂SIS,N
k

(see (26)). It is well known that the PF tends to degenerate
when the dimension of the hidden state increases. We also
computeΘ̂I−SIR,M

k (see (32)),Θ̂I−SIR−w,M
k (see (41)) with

N = M2+M
2 for M = 100 andM = 1000 as a function of

dimensionm to see how the dimension impacts our estimate
and the classical PF estimate.Note that we use the basic
importance distributionfk(xk|xk−1) in order to measure the
impact of our method but the improvements developed for high
dimensional models (such as e.g. [25]) can also be included
with the independent SIR algorithm.
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M (number of particles of i.i.d. PF)
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Fig. 4. Target tracking model from range-bearing measurements- (a) the
independent resampling procedure with final weighting outperforms the other
estimates and is particularly interesting when the number of final samples is
weak - (b) in the informative case, all estimates suffer from the degeneration
of the importance weights except that based on the unweightedindependent
resampling algorithm. To achieve the same performances asΘ̂I−SIR−w,M

k
with M = 20, the classical PF usesN = (502 + 50)/2 = 1275 samples.

The results are displayed in Fig. 5. It can be seen that
the estimateŝΘI−SIR,M

k andΘ̂I−SIR−w,M
k outperformΘ̂SIS,M

k

more and more significantly as the dimension increases, due
to the local impoverishment phenomenon. First,Θ̂I−SIR−w,M

k

outperformsΘ̂I−SIR,M
k as long as the dimension of the hidden

state is low (m = 4 and m = 8); when m increases, the
estimate based on weighted samples fromq̃N limits the de-
generation phenomenon w.r.t. that based on weighted samples
from q but using unweighted samples when the dimension is
large ensures the diversity and gives better performance. Note
that the dependent and independent SIR algorithms approx-
imately give the same performance whenm is low but the
gap between the dependent and the independent SIR estimates
increases with the dimension.More precisely, this gap appears
and is significantly amplified whenm increases from8 to 20;
for higher values ofm, it then increases linearly withm which
is solely due to the RMSE adding up an increasing number
of factors which always present the same gap of performance
per-dimension as whenm = 20 (which means that around

m = 20, the dependent SIR is already completely degenerated,
with only one or very few non-null weights). The same
performance gap can be observed between the unweighted and
weighted independent SIR estimates, except that this time for
m < 12 the weighted estimate actually performs slightly better
than the unweighted one, and the subsequent gap form > 20
(which also increases linearly inm) is smaller.

Dimension

R
M
S
E

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250 SIS estimate, before resampling (Θ̂
SIS, 100

2+100
2

k )

I-SIR estimate with reweighting (Θ̂I−SIR−w,100
k )

I-SIR estimate with uniform weights (Θ̂I−SIR,100
k )

SIS estimate, before resampling (Θ̂
SIS, 1000

2+1000
2

k )

I-SIR estimate with reweighting (Θ̂I−SIR−w,1000
k )

I-SIR estimate with uniform weights (Θ̂I−SIR,1000
k )

Fig. 5. Multi-dimensional linear Gaussian model -σ2

Q = 25, σ2
x = 4 and

σ2
y = 4. The estimates of interest are compared as a function of the dimension

m of the hidden statexk for a fixed number of sampling operations. The
independent resampling mechanism limits the impact of the largedimension
m and estimatêΘI−SIR,1000

k
whenm = 46 has the same performance as

Θ̂SIR,500500
k

whenm = 32.

V. CONCLUSION

SMC algorithms in Hidden Markov models are based on
the sequential application of the IS principle. However the
direct sequential application of the IS principle leads to
the degeneration of the weights, against which multinomial
resampling has been proposed. This rejunevation scheme,
which is now routinely used in SIR algorithms, enables
to discard particles (or trajectories) with low weights, but
particles with large weights will be resampled several times,
which leads to dependency and support degeneracy. In this
paper we thus revisited the resampling step used in classical
SIR algorithms. We first addressed the static case, showed
that the particles sampled by Rubin’s SIR mechanism are
dependent samples drawn from some pdfq̃N , and proposed an
alternative sampling mechanism which produces independent
particles drawn from that same marginal pdfq̃N . This set of
independent samples enables us to build a moment estimator
which outperforms the classical SIR-based one, both from a
non-asymptotical and an asymptotical points of view. Finally
the succession of the sampling, weighting and resampling steps
indeed transforms an elementary instrumental pdfq into a
compound importance distributioñqN = φ(p, q,N), which
leads us to reweight the (originally unweighted) resampled
particlesxi by post-resampling weights proportional top(x

i)
q̃(xi) .

Such post-resampling weights cannot be computed exactly, but
can easily be estimated by recycling the extra MC samples
which were needed for producing the independently resampled
particles.
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We next adapted this methodology to the dynamic case, in
order to estimate a moment of interest in an HMC model.
The computation of the post-resampling weights is more
challenging than in the static case, but reinterpreting our
independent resampling scheme as the first step of a particular
APF algorithm enables us to make full use of the APF
methodology and thus reweight the final samples via the
second-stage APF weights. Finally we validated our discus-
sions through computer-generated experiments and carefully
took into account the computational budget. Simulations ina
model where the FA-APF algorithm is computable show that
the independent resampling with reweighting algorithm gives a
performance close to the FA-APF algorithm. Consequently, it
confirms the relevance of the instrumental mixture pdf implic-
itly used by the independent resampling PF which can be used
in any HMC model since it does not require to compute the
predictive likelihood nor the optimal importance distribution.
Finally independent PF gives very satisfying results when
applied in highly informative models which are challenging
for classical PF and limits the degeneration phenomenon in
high dimensional models.

APPENDIX

PROOF OFPROPOSITION1

Let A be any Borel set. Let1A(x) = 1 if x ∈ A and 0
otherwise. Then for anyl, 1 ≤ l ≤MN ,

Pr(xl ∈ A) =

∫

IRN

[

N∑

i=1

wi(x̃1, · · · , x̃N )1A(x̃
i)]

N∏

j=1

q(x̃j)dx̃1:N

=
N∑

i=1

∫

IRN

wi(x̃1, · · · , x̃N )1A(x̃
i)

N∏

j=1

q(x̃j)dx̃1:N

=

N∑

i=1

∫

A

[

∫

IRN−1

wi(x̃1, · · · , x̃N )

N∏

j=1
j 6=i

q(x̃j)dx̃1:i−1,i+1:N ]q(x̃i)dx̃i

=

N∑

i=1

∫

A

hN (x̃i)q(x̃i)dx̃i

=

∫

A

NhN (x̃)q(x̃)dx̃,

so xl has pdfq̃N w.r.t. Lebesgue measure.

PROOF OFPROPOSITION2

Let xi (for anyi, 1 ≤ i ≤MN ) be produced by the classical
SIR mechanism. Then

E(ϕ(xi)|x̃1:N ) = Θ̂IS,N . (48)

So E(Θ̂SIR,MN )|x̃1:N ) = Θ̂IS,N , and E(Θ̂SIR,MN ) =
E(Θ̂IS,N ). On the other handE(Θ̂I−SIR,MN ) = E(Θ̂SIR,MN ),
whence (16). Next

var(Θ̂SIR,MN ) =
1

M2
N

MN∑

i=1

var(ϕ(xi)) +

1

M2
N

MN∑

k,l=1
k 6=l

Cov(ϕ(xk), ϕ(xl)) (49)

in which xi ∼ q̃N for all i. The first term is
equal to var(Θ̂I−SIR,MN ). Let us compute the second
term. For all k, l, 1 ≤ k, l,≤ MN with k 6= l,
E(ϕ(xk)ϕ(xl)|x̃1:N ) = (Θ̂IS,N )2, so E(ϕ(xk)ϕ(xl)) =
E(E(ϕ(xk)ϕ(xl)|x̃1:N )) = E((Θ̂IS,N )2). Using (48) again,
we conclude thatCov(ϕ(xk), ϕ(xl)) = var(Θ̂IS,N ), whence
(17).

PROOF OFTHEOREM 1

We first introduce the following notations:

Θ(ϕ) =

∫
ϕ(x)p(x)dx, (50)

Θ̂IS,N (ϕ) =
N∑

i=1

p(xi)
q(xi)∑N

j=1
p(xj)
q(xj)

ϕ(xi), xi
i.i.d.∼ q(.), (51)

Θ̂I−SIR,MN (ϕ) =
1

MN

MN∑

i=1

ϕ(xi), xi
i.i.d.∼ q̃N (.), (52)

UsingE(Θ̂I−SIR,MN (ϕ)) = E(Θ̂IS,N (ϕ)), we have
√
MN

(
Θ̂I−SIR,MN (ϕ)−Θ(ϕ)

)
= AN +BN , (53)

AN =
√
MN (Θ̂I−SIR,MN (ϕ)− E(Θ̂I−SIR,MN (ϕ))), (54)

BN =

√
MN√
N

E(
√
N(Θ̂IS,N (ϕ)−Θ(ϕ))). (55)

Our objective is to show thatAN converges to a centered
Gaussian distribution with variancevarp(ϕ(x)) and thatBN

converges to0.

Convergence ofBN

We have recalled (see (10)) that under mild assumptions [5]

√
N(Θ̂IS,N (ϕ)−Θ(ϕ))

D→ N
(
0,Eq

(
p2(x)

q2(x)
(ϕ(x)−Θ(ϕ))2

))
.

According to [17, Theorem 9.1.10],E(|
√
N(Θ̂IS,N (ϕ) −

Θ(ϕ))|2) is bounded and so its upper bound is finite. Ac-
cording to [38, corollary of Theorem 25.12], it is ensured that√
NE((Θ̂IS,N (ϕ)−Θ(ϕ))) → 0; consequently

√
MN√
N

E(
√
N(Θ̂IS,N (ϕ)−Θ(ϕ))) → 0. (56)

Convergence ofAN

AN reads

√
MN

(
1

MN

MN∑

i=1

ϕ(xi)− E(ϕ(xi))

)
. (57)

To prove the convergence whenN → ∞, we need a CLT
for triangular arrays and we use the version presented in [17,
Theorem 9.5.13]. The required assumptions are:

1) {xi}MN

i=1 are independent;
2) 1

MN

∑MN

i=1 E(ϕ2(xi))− (E(ϕ(xi)))2 → varp(ϕ(x));

3) for any positiveC, 1
MN

∑MN

i=1 E(ϕ2(xi)1|ϕ(xi)|≥C) →
Θ(ϕ2

1|ϕ|≥C).
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Assumption 1) is satisfied since{xi}MN

i=1 are i.i.d. from
q̃N . Next, E(ϕ(xi)) = Eq̃N (ϕ(x)) which coincides with
E(Θ̂IS,N (ϕ)). Using again [17, Theorem 9.1.10] and [38,
Theorem 25.12],E(Θ̂IS,N (ϕ)) → Θ(ϕ) when N → ∞.
With the same argument,E(ϕ2(xi)) → Θ(ϕ2). Consequently,
assumption 2) is satisfied since

1

MN

MN∑

i=1

E(ϕ2(xi))− (E(ϕ(xi)))2 =

Eq̃N (ϕ2(x))− (Eq̃N (ϕ(x)))2 → Θ(ϕ2)− (Θ(ϕ))2 =

varp(ϕ(x)).

Finally, E(ϕ2(xi)1|ϕ(xi)|≥C) = E(Θ̂IS,N (ϕ2
1|ϕ|≥C)) which

converges toΘ(ϕ2
1|ϕ|≥C) and assumption 3) is satisfied.

Consequently,

√
MN (

1

MN

MN∑

i=1

ϕ(xi)− E(ϕ(xi)))
D→ N (0, varp(ϕ(x))).

(58)
Combining (56), (58) and (53) we obtain (18).
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