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Abstract—Sequential Monte Carlo algorithms, or Particle pdf p(z|yo.x), i.€. the pdf of the hidden state given the past
Filters, are Bayesian filtering algorithms which propagate in gpservations:
time a discrete and random approximation of the a poste-
riori distribution of interest. Such algorithms are based on _
Importance Sampling with a bootstrap resampling step which O = /@(wk)p(lﬂyo;k)dxk. )
aims at struggling against weight degeneracy. However, in some . .
situations (informative measurements, high dimensional model), ~ AS is well known,©,, can be exactly computed only in very
the resampling step can prove inefficient. In this paper, we revisit specific models, and one needs to resort to approximations in

the fundamental resampling mechanism which leads us back to the general case. In this paper, we focus on a popular class
Rubin’s static resampling mechanism. We propose an alternative of approximations called sequential Monte Carlo (SMC) algo

rejuvenation scheme in which the resampled particles share the . . .
same marginal distribution as in the classical setup, but are now rithms or Particle Filters (PF), see e.g. [l]__[‘?’]' PF prapag

independent. This set of independent particles provides a new OVer time a set ofV MC weighted sample{;wlk,x};}fil which
alternative to compute a moment of the target distribution and defines a discrete approximation.. wj,0,: Of p(zk|yo)

the resulting estimate is analyzed through a CLT. We next adapt P .
our results to the dynamic case and propose a particle filtering and enables to compute an estiméltg of O

algorithm based on independent resampling. This algorithm can N
be seen as a particular auxiliary particle filter algorithm with @ _ wh o2t 3
a relevant choice of the first-stage weights and instrumental k Z k(). (3)
distributions. Finally we validate our results via simulations =1

which carefully take into account the computational budget. More precisely, the computation of the Sﬁbi,%}f\il is
Index Terms—Sequential Monte Carlo algorithms; Particle based on the sequential application of the Importance Sam-
Filters; Importance Sampling; Auxiliary Particle Filter; Resam-  pling (IS) mechanism [4] [5]. This mechanism consists in
pling. sampling particles according to an importance distribuéad
weighting these samples in order to correct the discrepancy
between the target and importance distributions. Howdwer t
I. INTRODUCTION direct sequential application of the IS mechanism in motigl (
. N . fails in practice since after a few time steps most weights ge
L ET {z). € R™}i>o (resp.{yx € R"}x>0) be a hidden ojnsat6 7er0, with only a few particles havingon-negligible
(resp. observed) process. Lejx = {2,0 < < k} \yeights Consequently IS alone becomes more and more

Bj — [l g : indi ;
andz"? = {z',i <1 < j} (lower indices are used for time;,ofective since a lot of computational effort is devoted to
and upper ones for Monte Carlq ,(MC) t”_alg‘)e'[p@) (resp. sampling particles which will hardly contribute to the estite
p(z|y)), say, denote the probability density function (pdf) o@k in (3).

random variable (r.v.)c (resp. ofz given y); note that we = aq ig" e known, a traditional rescue against weight

do not d'Stmgl.“Sh V. from their real|zz_:1t|on$1e assume that degeneracy consists iresamplingthe particles (- either at
{(zx, y&) b0 is @ Hidden Markov chaiHMC), i.e. that  o,0h time step or depending on some criterion such as the
& & number ofeffective particles [6] [7] [8] [9]), i.e. of re-drawing
. )= . . each particle with a probability equal to its weight amelxt
p(Zo:k; Yo:k) P(»”Eo)Hfz($z|xzfl)ggz(yl‘ml)' @) assigning to the resampled particles the same weiGhis
yields the class of Sampling Importance Resampling (SIR)
Roughly speaking, pdf(zx|zr—1) describes the dynamicalalgorithms [10] [1] [11] [12]. Resampling has proved to be
evolution of the Markovian hidden proce$s;, } >0 between beneficial in the long runsince it recreates diversity for
time £ — 1 and timek while the likelihood gx(yx|zr) de- subsequent time steps, but also results in dependency among
scribes the relation at time between an observatioy, and the resampled points and support shrinkage.
the associated hidden staitg. We address the problem of The local effect of the resampling step can be measured by
computing a moment of some functigr(.) w.r.t. the filtering comparing the additional variance of the estimate of irstere
deduced from the resampled particles with the variance of
R. Lamberti, Y. Petetin and F. Deshouvries are with Samovdecden the estimate before resampling and has consequences on the
?udparis, CNRS, UniversitParis-Saclay, 9 rue Charles Fourier, 91011 Ev%lsymptotic statiscal properties of the estim@t@ [11]; thus,
fiﬁgeeptier is with IMT Lille Douai, Univ. Lille, CNRS, UMR 91 - reducing the additional variance introduced by the resagpl
CRIStAL, F-59000 Lille, France while keeping the advantage of this operation is critical
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and it has been proposed to reduce that additional variancél. IS wWITH RESAMPLING VIEWED AS A COMPOUNDIS

by replacing the multinomial resampling step by alterraativ SCHEME

schemes such as residual, systematic or stratified resempli As recalled in the introduction, resampling from time to
schemes [13] [11] [12]. However even when using Sudfine is a standard rescue when applying IS in a sequential
schemesparticle filters based on the resampling mechanisgéttmg_ In this section we thus focus on one such time step
can give poor results in some Markovian models (1), such gs_, . 1 1. This amounts to revisiting Rubin’s static SIR
informative models where the likelihoag (yx|=x) is sharpor - mechanism (see section (11-A)), which consists in resangpli
high dimensional models [14] points {z*}¥ from the weighted distributioy " | wé;

o . . i iid. ) o
Our aim in this paper is not to propose a new resamplinghere’ "~ ¢ and the pre-resampling weights’ oc Zgzg

scheme, but ratheto revisit this complete key rejuvenationyith Zf\ilwi = 1. As is well known, whenN — oo the
scheme (sampling, weighting and resampling) in order f@sampled point§z*}y become asymptotically i.i.d. from
design new PF algorithms which would keep the benefits e target distributio. For finite N however, these samples
the resampling mechanism, while avoiding the local impogre dependent and drawn from some géf which differs
erishment of the resulting MC approximation of the filteringrom p and can indeed be seen as a compound IS density
distribution. ¢ = é(p, q, N) produced by the succession of the sampling

, weighting (W) and resampling §) steps. We prove the

To that end we begin with revisiting the SIR mechanis ! e - .
at one single time step — k + 1. This leads us back to enefits of drawing independent samples fri@h(see section

an analysis of Rubin's static SIR mechanism [42] [16] II-.B), and next pro_pose tg rewgight th(?se indepen(_jentmnpl
[10] [17, §9.2], in which, roughly speaking, one obtains sam¥ith post-resampling weights’* oc K7k (see section II-C).
ples =7 approximately drawn from a target distributignby In all this sect|o_n we assume the scalar case for simplicity.
drawing intermediate samplesi}?Y, from an instrumental We end the section with a summary (see section II-D).
distribution ¢, and next selecting:? among {z*} , with a

probability proportional tazgi—g We first observe thdor fixed A- The dependent SIR mechanism

N, the samples{z’} produced by this SIR mechanism are Let us begin with a brief review of Rubin’s classical SIR

dependent and marginally distributed from some compousé@mpling mechanisndescribed in Algorithm land of the

pdf ¢V = ¢(p,q, N) which takes into account the effectsproperties of the sampled and resampled particles.

of both pdfsp and ¢. Here the dependency is detrimental, 1) Properties of the sampled particlegz’}/",: In the

because samples that would be i.i.d frgf would produce, context of this paper we first recall the principle of IS. Let

whichever the number of sampled and resampled particlesp(&) be a probability density function and assume that we

moment estimate with reduced variance; this result is &rthwant to compute

illustrated by a central limit theorem (CLT) which is comedr

to the existing CLTs for the static IS estimate (based on the 0= /‘P(x)l?(x)dﬂf = Ep(p()). 4)

pre-resampling samplgg}Y ,), on the one hand, and for the . )

SIR estimate (based on the post-resampling ({@é#@{), on In the Bayeslan framewori(x) is ggnerglly only known'up to

the other hand. a constant, i.ep(x)  p,(x) (subscriptu is for unnormalized)

and it is not possible to obtain samples directly drawn from

We next propose a procedure to obtain i.i.d. samples fronw). A solution is to introduce an importance distribution

g~ , which leads to the computation of two point estimategx) which satisfiesy(x) > 0 whenp(z) > 0 and to rewrite

of © = [¢(x)p(x)dx. The first one is based on unweighted as the ratio of two expectations w.f.

i.i.d. samples and is an improved version of the classical, (i

pul(x) p(z)
dependent) SIR estimate; the second one is based on post- o _ J ole) Sy alz)de _ Eq(o(2) ) )
resampling-weighted i.i.d. samples and can be seesrasv %q(x)dm Eq(zgi;) '

IS estimate, based on the compound §lif Finally we adapt
these results to the sequential computationSgf in model
(1). We thus propose two new PF algorithms. One of the
has an interesting interpretation in terms of Auxiliary titde
Filter (APF); more precisely, that algorithm naturally duzes R N

a relevant importance mixture distribution from which it is O = szw(fc”) = Es(o(x)) (6)
easy to sample. We finally illustrate our results via simafe, i=1

and carefully compare our algorithms with existing ones iwhere

terms of Root Mean Square Error (RMSE) and computational ) N i

cost. The rest of this paper is organized as follows. Section blz) = Z“’ 0z (x) 7
Il is devoted to the static case. In section Il we address =t

the sequential case, and derive new PF based on the resum@w’ (the i-th normalized importance weight) reads

Next, each expectation is approximated &y MC method
hased onV i.i.d. samplegz',--- , ") drawn fromg(.); the
IS estimate of© is given by

of section Il. In section IV we perform simulations and Pu(@’) (&)
discuss implementation issues, and we end the paper with a W — a(z?) _ (@) @)
conclusion SN m@) Ty @)

. J=1 q(@7) Jj=1 q(z7)



As is well known [5], under mild assumptions samples are independent given the intermediate{ 6tY ,
but become dependent when this conditioning is removed). In

QIS,N a.

© =6, ©) practice, this dependency results in support shrinkageesin
and a CLT is available too [513> denotes convergence inby construction, an_intermediate sampfecan be resampled
distribution): several times, an¢lz’} 'Y is a subset of #°} Y., . For instance

) let My = N. If we assume thatv/ = 1 for some; and
VN@Y -0) 3 N (O,Eq (p («) (p(z)) — @)2)> . (10) w' =0 fori # j, thenaz’ = @/ for all i. By contrast, if
¢*(z) w' = 1/N for all i, then the average number of different

2) Properties of the resampled particlés’} ¥ From (9) samples{z*}_, is approximately2N/3 [18]. Nevertheless

and (10),5 can be seen as a discrete approximation of t{g€ resampling step remains useful in a dynamic setup (see

target density, and one expects that for largé, (re)sampling S€ction lll): even though locally it leads to an impoverisi

from p would produce samples approximately drawn frorff the d|V(_erS|ty, this step is critical for recreating disity at

p. This is the rationale of Rubin’s SIR mechanism [§g], the next time step.

[16], [10], [17,§9.2]. More precisely, let us as above draéw

i.i.d. samplesz’ from ¢, and nextMy i.i.d samplesz® from B. The independent SIR mechanism

pin (7). It is indeed well-known (see [10] [15]) that when QOpserve that the two factors in (13) reflect the effects of

N — oo, each r.v.z* produced by this mechanism convergeghe sampling and resampling step: pgfis used in theS

in distribution top, so Rubin’s technique can be seen as a twatep, while ™ (), which can be interpreted as the condi-

step sampling mechanism which transforms samples drawghal expectation of a normalized importance weight when

from ¢ into samples (approximately) drawn from its associated particle is, results from the (V,R) steps.So
This convergence result can be completed by a CLT whigfrticles drawn frong"¥ are likely to be in regions where both

involves the estimate oP based on the unweighted sef;(.) and the ratiop(.)/q(.) are large Now our objective is

{(Wl,wm’)}f\i]f: to propose an alternative mechanism which, in the sequentia
M case, will produce the same positive effect as the classical
OSIR. My _ 1 Z‘P(Ii)' (11) SIR mechanism (i.e. fighting against weight degeneracy by

My P eliminating the samples with weak importance weights) |evhi

nsuring the diversity of the final support. Such a support
iversity is ensured if we draw samplieglependentlyrom the

. N .
My — oo, and let lim —-— = a > 0 (possiblyco); then  continuous pdi™(.). We first study the potential benefits of

Let N — oo, let My be a non-decreasing sequence witﬁ

under mild conditions (seeNe.g. [159]) this sampling mechanism (see section 11-B1) and next déscus
S SIR M D its implementation (see section 11-B2).
VMy (07N —0) = N(0, vary ((z))+ 1) Statistical propertiesLet us now assume that we have at

1w [(PA(2) o2 1) Our disposal a set i/ i.id. samples{z’} Xy drawn from
a q2(x)( (@)= ©)7)). (12) g™V (.) defined in (13) (14). Before addressing the practical

. . i f h ion 11-B2), | i
If o — oo then the asymptotic variance tendswar ((z)), computation of such a set (see section ), let us stugly it

which shows that the SIR estimate asymptotically has thcesaFHrOpertles by considering the crude estimateSobased on

behavior as a crude Monte Carlo estimate directly deducec?seMN i.d samples:
from My samples drawn according to the target distribution R 1 My .
p(.), provided the numbeN of intermediate samples is large OISty — My > e (15)
as compared td/y. i=1

However, for computational reasons, the numbers of safh-in notation I-SIR stands for independent). Our aim is to
ples N and My should not be too large in practice. Consesompare0!~SIR:Mx to @SIR-M~ and more generallp!s,
quently we now focus on the samples produced by the S#E™-M~ and ©-SIR-M~ e first have the following result.

procedure_ from a non asymptotical point of view and we ha\ﬁ’oposition 2 Let us consider the three estimat@as:y
the following result. GSIRMx and B1-SIR My defined in(6), (11) and (15) re-
Proposition 1. Let us consider the samplé#}f‘g produced spectively. Then

by the SIR mechanism described above. Then these samplei(@Is,N) _ E(@SIR,MN) _ E(éI—SIR,MN)

are identically distributed according to a pdf¥, with (16)

N ~ My —1 ~
(@SIR,MN):Var(@I*SIR*MN)+]J\V47Nvar(@ls’N). (17)

iN(z) = NN (2)q(x), (13) V&r
p(z) N-1 P ; ;
ey Proof. The proof is given in the Appendix. O
W (z) = // — Q(f\?_l — Hq(xl)dxl.(14) p g pp
%+Zl:1 f;(xl) =1 Equation (17) ensures that an estimate based on inde-

pendent samples obtained frog?’ would outperform the

classical SIR estimatea( this step, we have not discussed on
So for fixed sample siz&/, the SIR mechanism produceshow to obtain such samplesthe gain of ©'~5%-M~ w.rt.

dependent samplgs:*} ¥ distributed according tg™ (these ©5™%-M~ depends onvar(©'S:¥). On the other hand it is

Proof. The proof is given in the Appendix.



well known (see e.g. [17, p. 213]) thatr(©SR:My) —
var(0'5:N) + E(var(©SIR-M~ | {7} )): so both®!~SIR.Mxy
and ©':V are preferable t®SR-M~

Now, comparing the variance oS-V to that of

Algorithm 1 The SIR algorithm
Input: an importance distribution, N and My
Result: {2/}My " gV
for 1 <7< N do

OISR My s more difficult, because we have to compare  S.#' ~ ¢(.);

svargy (9(T)) to var(Yr wi(d, -, #N)p(3')) where
CURESS q(.). However, we have the following CLT.

W. wi o pu() /q(37), S, w' = 1;
end for
for 1 <i< My do

Theorem 1. Let us consider the independent SIR estimate R ,i P LW
j= T

defined in(15). Let us assume thaV — oo, My is a non-

decreasing sequence wiffiy — oo and lim — =a >0
N—oo VI N

(possiblyoc). We also assume that (Zf;l wi(go(xi))2) is
finite. Then©'SIR:-M~ satisfies

V My (O SRMN @) BN (0,var,(¢(z))).  (18)

end for

Algorithm 2 The independent SIR algorithm
Input: an importance distribution, N and My
Output: {a?}My "k gN
for 1 <i< My do

for 1<j <N do

Proof. The proof is given in the Appendix O S. 2% ~ q(.);
Let us comment this result. First Theorem 1 agai W, wid oc py (49) /q(i9), Y0, wid =1,
. gain enables to J=1
compare®!—SIR:Mxy o §SIR.My - Comparing (12) and (18) end ifor N
confirms (17), since the asymptotic variance @S-~ ende.of ~ 2= W O

is always lower than that o™~ Also note that in the
independent case the asymptotic variancegbfS™-M~ ng
longer depends on > 0.

OI-SIR.Mx tg QIS:N_ et for simplicity My = N. Then the

. .steps, the independent procedure should be compared with
Next Theorem 1 also gives some elements for compari

Qclassical SIR one in which we samplé x My points
and resampléV/y of them. In this last case, we obtaif y

comparison of both estimates relies on that of the asymmoaependent samples drawn frafi M~ _ First, using (12) with

variances in (10) and (18):

Ugéls(q) _ Eq (p (.13) ((p(x) _ @)2) , (19)

¢*(x)

o3 = vary(p(2). (20)
For a given target pdp(.) and functiony(.), note that even-
though©'—SR-M~ was obtained from samples drawn from th
importance pdfy(.), ¢2!=5™® no longer depends oq(.), by
contrast witho%5(¢). Now, 025(q) is well known [19,§2.9]
[5, Theorem 3] to be minimum foy* (z) o p(z)|¢(x)—O|; for
thatq*, o215 (¢*) = ([ |o(x) — O|p(z)dz)? < vary(p(x)), SO
O'S:N (¢*) outperformsd'~SR:N for large values ofV. How-
ever note that for other importance distributiong;' 5% (q)
may become lower than2!S(q), by contrast with traditional

NXMN

a = limy_oeo AN~ = 00, we see that both estimates
OISR, My gndOSIR-My with N x My intermediate samples
have the same asymptotic behavior. However the independent
procedure can be easily parallelized because the resamplin
steps are by nature independent contrary to the SIR progedur
where theN x My intermediate samples are directly resam-
Pled. Comparing both estimates in the case where the number
of particles is the same before and after the resampling step
of the SIR dependent algorithm is more difficult. Indeed, in
this casear = 1 in (12) and the rates in (12) and in (18) are
not necessarily the same. So the comparison also depends on

B, (58 (0@) - 0)2)).

resampling techniques where resampling always introdudes Reweighting the independent samples?
extra variance.Also note that the variances in (19) and (20) We finally discuss the final weights which are attributed

depend on functionp(.); on the other hand, for largév,

to the resampled particles. In the SIR procedure, each final

OI-SIR.N has the same behavior as a crude estimate btmple is weighted byl/My. From an IS point of view,
from samples drawn fromp(.) and so is adapted for a largethis weighting traduces the fact that the final samples becom

class of functionsp(.).

drawn from the target distributiop(.) and independent when
N — oo [15]. Moreover the convergence results @f ™M~

2) Sampling procedurelt remains to describe a procedurdgo © (see e.g. [20] [17]) confirm that these weights are valid

to obtain i.i.d. samples frong"¥. Algorithm 2 ensures that the
final samples{z!,.-- 2~} are drawn independently from
~N
q .

Compared to the classical SIR procedure based\on
intermediate samples from which are deduced ilig final

from an asymptotical point of view. In the independent SIR

procedure, the only difference is that the final samples are

independent, even from a non-asymptotical point of view.
Now, if N is finite, one can wonder if weight$/My

are optimal. In Algorithm 2, samplegs?} MY arei.i.d. from

samples the independent SIR algorithm described in Algog". Consequently, for a giverV, ¢¥ can be seen as a

rithm 2 relies on a sampling step & x My intermediate

post-resampling compound importance distributigh =

samplesz®/ and My independent resampling steps. Coné(p,q, N), and a final sample:* should be weighted by a
sequently, for a given budget of sampling and resamplimpst-resampling weight proportional g, (z*)/G™ (z*). This



yields a new estimat®!—STR—w of (4) (superscriptw stands computational cost which, however, can be exploited in orde

for weighted) to associate to the i.i.d. samples post-resampling impogta
, : weights based on thg™(z). We thus obtain a weighted
My py(z") ; AI-SIR—w,M ; ;
Q!-SIR—w,My _ Z V(=) oz 1) estimate© N which can be seen as the estimate
My pu(z?) ' deduced from the IS mechanism based on the compound

i=1 Z':l qN (xd . . . . . :
' =L &) IS distribution ¢V (z). We will compare these estimates via

which coincides with the IS estimate (6) with importancgjmylations taking into account their computational cdats
distribution g™ (.). It is difficult to compare®'5'"%-M~ and  gaction IV-A.

O1-SIR—w.My hecause the expression of the weights in this
last case depends oN. However, it is interesting to note
that contrary to©'S™-M~ A7y impacts the bias of the
estimate©@'—SIR-w.M~  For example, if we sefV = 1 (so We now adapt these results to the Bayesian filtering prob-
G = ¢) and M is arbitrary then®!=SIE—w.M1 coincides lem. In section I1I-A we briefly recall the principle of cldsal

with the IS estimate with)/; i.i.d. samples drawn frong SIR algorithms which are based on dependent resampling. Our
while the unweighted estimate'~S™®:M js a crude estimate SIR algorithm with independent resampling and unweighted
of [¢(z)g(x)dz and is not adaptedo the estimation of samples is proposed in section IlI-B. However, computirg th
©. More generally, using the delta method to approximafost-resampling weights is more challenging here thanen th
E(O!-SIR-Mn) and E(O!-SIR-w:Mn) [21] we observe that ~static case because the gdf of the static case becomes a sum
of N terms which should be computed for each final sample.

IIl. | NDEPENDENT RESAMPLING BASEDPF

2
E(@)I*SIRMN):E((?)ISVN)z@_lEq <p2(x) (dx)—@)), So in section 1lI-C we revisit the algorithm of section 11I-B
N q*(x) 5o in terms of APF. We first observe that the independent SIR
2(0) (22) algorithm can be seen as the first step of an APF algorithm
AI-SIR— 1 p-(z since it implicitly draws samples from a mixture pdf. Makin
B(B-SR—w.Myy o L g ( _o). plicitly p p g
( ) My " ((jN(a:))Q((p(x) ) full use of the APF methodology enables us to weight our

(23) final samples.

So for a fixed number of sampled poind$, we see that in

the unweighted case the bias®f~S"®M~ is independent of A, Classical SIR algorithms (based on dependent resampling
My . By contrast, whicheveN the bias ofE(Q!—SIR—w.Mx)

tends to0 as My — oo, (1) and we briefly recall howo, in (2) can be computed

Finally, it remains to compute, (z%)/G" (z) in practice. . . : . o
In general g™ in (13) is not available in closed form becauséecurswely via PF. PF relies on the sequential application

it relies on the integrak™ () in (14). However, theV x My of the normalized IS mechanism described in Section II-A

intermediate samples which have been used in Algorithmﬂ}r the target distributiorp(zo.k[yo.x) which is known up to

. L .a_constant according to (1). Letx,.,) be an importance
can be recycled to approximate the conditional eXpeCtat'%Pstribution (o) can depend o but this dependenc
RN (z). For a givenz and using the intermediate samplés 0:k b Bo:k P y

of Algorithm 2, a crude Monte Carlo estimate fo¥ () reads Ew;iwgltézntrg?retto' avgnd notatlonlaldt}urden). Startingir
g jectories;, , sampled fromg(zo.—1), we
-~ 1 Mx Pq"((f)) first extend each trajectony;, , , with a particlez; sampled
h™ (x) = . Z @ | SN G (24)  from g(xy |z}, _,) and next update the old weighis, | via
i=1 q(x) j=1 q(i%])

Importance weights% in (21) can be approximated by  wi o wi_,

% Note that the computation of these approximated
Weights does not require extra cost sineéi’7)/q(z"7) has Unfortunately, it is well-known that this direct sequehtia

already been computed in Algorithm 2 to obtain i.i.d. sarspleapplication of IS leads to weight degeneracy: after a few

iterations only few weightsv;, have a non null value [22]. A

traditional rescue consists in resampling, either systieally

_ ~or according to some criterion such as the Effective Sample
In summary, we now have at our disposal four estimateg,e [6] [7] which is approximated bV/ZN_l(w%;)Q- The

thSc](\)]mputeAGSIg]Af) from an importance distribution(.). _corresponding algorithm is given in Algorithm 3 and we shall

©™% and @7~ are deduced from the IS and Rubin'ssume that the siz&/ of the MC approximation remains

SIR mechanisms, respective®§ H My relies on unweighted constant throughout the iterations. Finally Algorithm Zibles
dependent samples frogi". Using unweighted independent, compute two estimates 6,

samples fromg" produces the estAimatéI—SIRMN which

outperforms©S®-M~ and possibly@™:V; it also becomes SIS
asymptotically independent of the choice of the initial onp k
tance distributiory(.) according to Theorem 1. This estimate N
does not suffer from the support impoverishment caused by QSIR.N - _ 1 Z (1) 27)
the resampling step. On the other hand it requires a larger k N k-

We now assume that we are given sor®C model

S (@) _ ) gr (ye|Z),) XN:

— wh = 1. (25)
q($k|x0:k71) i=1 i

D. Summary

= 2w, (26)



As is well known, the pre-resampling estimat@FkIS’N is Then given the initial trajectorie$z , ,}~ ,, the new sam-
preferable to the post-resampling 088™ " and should be ples{z}}Y, are identically distributed according to a pgf’

used in practice; bu®;"™" is recalled here because it willwhich reads
be compared below to the independent resampling estimator N N o ,
(32). Qv (x) = D hi(@)ah (), (30)
1=1
Algorithm 3 The classical SIR algorithm (based on dependewherer: (z) coincides with the conditional expectation (given
resampling) (zi = x)) of thei-th importance weight at time,
Input: q(xklxozk—l)]{[yk, {w}i—l’xézk—l}ﬁil i ()
Output: {wi, z , }N, b :/ 4}, (x) LDde! (31
S. i‘;ﬁ ~ q(l’k|$6k,1). qk(-’lJ) #i qk(m ) ) )
. RGlel el N s .. Proof. The proof follows the same line of reasoning as the
W. wj, ocwj,_, aGilet, ) v 2im Wy =1 Proof of Proposition 1. N
end for o " o
if Resamplinghen Note that in this proposition we focus on the distribution
for 1<i< N do of zj given {xzf, ,}}*,. Given {z{, ,,7;}iL,, the new
R. [ N_Pr(L = |{z} FN ) =l samples{zi }¥ | are independent; when we remove the de-
B SRre y pendency in{zi}N |, {zi}N, become identically distributed

Set 7 — I ~1" , i 1 . - .
o = (Toa-1 %) W = ¥ according togf but are dependent (a same particle can be

e|s,ee nelfor resampled several times).
Set{zi )V, = {7 N Sinceq}c\’ is a pdf, a procedure which would produce sam-
end if el ples conditionally i.i.d. fromjf” would enable us to keep the

advantage of the resampling step, i.e. to recreate diyefsit
) . ) ) N ) the next time iteration, while avoiding local impoverishmhe

In practice, it remains tadesignthe conditional impor- of the support. Except in a particular case which will be
tance distributiong(wx|zo:x-1). A popular solution consists gescribed later, sampling directly frof (z) is difficult for an
in choosingq(zy|zox—1) = fi(zrler—1), since this pdf is grpitrary conditional importance distributiafizy, |zo.s_1 ). We
part of model (1) and is generally easy to sample fromgys propose a procedure similar to Algorithm 2 but adaped t
another one is the so-called optimal conditional imporangne gynamical context. The SIR algorithm with independent
distribution g(xy|zo:x—1) = p(xk|zk—1,yr) Which takes into resampling is given by Algorithm 4. Note that a difference
account the new observatign and for which weightsu; N0 ith Algorithm 3 is that the distribution of the discrete ad
longer depend on the sampled partl_c{ésg}ﬁir The optimal ;i now depends or. In addition, note also that the proposed
conditional importance distribution is generally not d&Bie echanism is different from that proposed in [28] in the
in closed form but some approximation techniques have begshtext of Population MC methods. Here, the trajectories
proposed, see e.g. [22] [23] [24] [25The choice of the (yi 1 still remain dependent: some of them can disappear
importance distribution will not be discussed in this papet 5 the end of the procedure or be partially replicated but

all the existing improvements cited above can be used in ti |ast componentéxi } of these trajectories are necessarily
algorithms that we propose in the next sections: they do nqkferent.

impact the proposed methodologlinally, let us mention that
convergence results are also available for the PF presémtedgorithm 4 A SIR algorithm based on independent resam-
Algorithm 3, see e.g. [26] [27] [20] [17]Some of them are Pling
based on an extension of the CLTs recalled in Section Il forInput: g(zx|zo:k—1), Yk, {wi_; b, 1Y,
conditionally independent triangular arrays and next airth  Outut: {w},z{ ,}V
recursive application. for 1 <i< N do
for1<j<Ndo
S. 2" ~ qaklwgy_y )i

B. An alternative SIR algorithm (based on independent re- W w’i’jO(wzilfk(i;jlmifl)gk(yk‘j;;]),ZN .

sampling) aG2d ) j=1WE =

. . . end for
Let us first adapt Proposition 1 to the sequential context. So R. 1 ~ {Pr(l|{z’ SN ) )N

we address the conditional distribution givéni , 1Y, of A S . xo:k—Nlivlf*"k =t = Wi j1=1>

the resampled particlesi, and we have the following result Setzp, = (To.p-1, T ) Wy, = -

(the proof is omitted). end for

Proposition 3. Let us consider the sampl¢s: } ¥ | produced We now propose a new estimﬂjsm’N of © which is

by the SIR mechanism of Algorithm 3. Let based on the szt 1Y | produced by Algorithm 4:
p}c(x) = w}cflfk(a’|$§ﬁfl)gk(yk“r)’ (28) él*SIR,N _ iisﬁ(l’l> (32)
a(x) = q(@zhe_1)- (29) g N “ i

=1



Comparing (32) with (27), remember that the samgles}? 1) A brief presentation of APFIn model (1), the filtering
share the same pdf), but that in (32) they are now indepen-density at timek can be written in terms of that at tinie— 1,
dent given{z{ , ,}¥,. Starting from a datasdtz{, ,}~,,
it is ensured tha®;, *"™ outperforms®;™" since p(xx[yo:r) o< 9k(yk|xk)/fk(xk|xk*1)p(xk’*1|yOIk*1)dxk*1-
~ . . , (35)
B0, {1 }0) = B0 ™V {ahx1}L1). (33) Plugging an MC  approximation {w}_;,z} ,}Y, of
p(Tk—1|yo:—1) into (35) yields

ASIR,N i AI-SIR,N i
var(©y ‘{xO:k—l}i\Ll) = var(O), |{$0:k—1}£\;1> N _
Plaklyor) o< gr(yelzr) > wio i fulonlzh_y)
N-1 QSIS,N ¢ i N i=1
t——var(© b1 biz1)- (34) N
e . o ) wi1p(yklei 1 )p(@klvh 1, i) (36)
Of course, computin®; > via the samples produced by ; o o e

Algorithm 4 requires an extra computational cost. This pOir\}vhere (0] = [ Sl Yr (yrla)d and
will be discussed in detail in our Simulations section, kit f P(Yrlr—) RATEITE—1) Gk Yk Tk )Lk

the moment let us make two comments: first, this algorith el er-1,k) o Je(wk|or_1)gx(yxlr). Sampling from
can be seen as an alternative SIR mechanism which ensijgi!vo:) In (36) leads to a particular SMC algorithm re-

the diversity of the resampled support without changing thgrred to as thefully adapted APF (FA-APF)30]. How-

conditional distribution of the final samples; if resamglin cver samplmgi directly from;?(:ck|y0:k) N often_lmpossmle
needs to be performed rarely, then the independent reswgnplecaus@(y’“‘xk—l) of p(xk|z}_y, yi) are unavaﬂablgSome
rocedure mav be used onI’ when necessarv. On the of gproaches have been proposed to sample approximately from
P may "I—SIR7Ny >sary. | . e mixture (36). For example, [31] has proposed to first
hand, we will see the®, can also provide an interesting imat . 2 a local MC method and t |
alternative to @iIS’N but requires an extra computationa rgr&:oxzma] %)(ykw’“)*lv)i;”?eaegggn sanr?elino aHr:)wng?mtrrJ}ee
cost; so if we want to perform the independent resamplir& D\Tk|Tg 1, Yk re| sampling. )
’ d t each time step we will decrease the number mputational cost associated to this method is randombend t

p][oce t_urle a ted 'tEE)I*SIRvN . der h th rejection method can be particularly inefficient in infortive

of particles associated Wit 'nAorS% 0 reach € or high dimensional modelsAn alternative approach called
same computational cost associated Vﬁi‘l ' the APF has been proposed [30] to obtain samples from an

Remark 1. Note that the idea of using extra MC sampletstrumental mixture pdf

has already been proposed in the context of Island PFs N

[29]. The idea behind this class of techniques is to exploit g(xg) = Zu(xgik_l)r(xk\xg:k_l) (37)
parallel architectures, and the rationale is as followsstead i=1

of considering a unique set of particles, the method consistsand to use IS in augmented dimension; finally APF aims at tar-
in dividing the population of N samples intoN; sets of geting the mixture pdfi(z|yo.x) in (36) which, itself, targets
N, sampleswith N1 N, = N. It is well known that such the filtering distributionp(z o). The resulting algorithm is

a configuration does not improve the classical PF with displayed below.

samples, but it has the advantage of splitting the assatiate
computational cost when parallel architectures are avialida Algorithm 5 The APF algorithm
In other words, the objective diie Island PHs not to struggle  |nput: 1w(won—1), T(@x|Tok—1), Y, {wh_pxb, 1Y,
against the support impoverishment. outut: {wi, =i, 1N,
for 1 <i< N do

R. 1P~ {Pr(”{%;kq}i]\;) = (0.1 Hss

S. aj ~ 7(xn|20,-1);

C. Interpretation of the independent resampling scheme in
terms of APF

wfclflflf(z;.c‘35571)9&(%\7«2) ZN wi =1
At this point, we have seen that it was possible to obtain plall, r(eilall, ) =1k ’
an estimate 0B;, based orconditionnallyi.i.d. samples from Setzi, = (zb, |, xi)

the conditional pdfyY. As in the static case, we now wonder end for

whether the final weightd /N used to compute@}g_SIR’N
(see eq. (32)) are optimal wheN is finite. To this end Let us comment the choice of the instrumental distribution
we would like to make use of the expression @ to g(xy) in (37). Compared to the SIR algorithm of paragraph
propose an alternative weighting mechanism. At first glandél-A we see that there is an additional degree of freedom,
the computation of a weight which would rely on (30)-(31)«(zo.x—1), which is called the first stage weight(z|x{., ;)
seems compromised becaug® involves a sum ofN terms is some importance distribution. Generally, the objectife
which should be computed for each final sampje As we the first stage weights is to avoid the computational waste
will see, the interpretation of the independent SIR al¢ponias induced by the resampling step of the SIR algorithm by pre-
a particular first step of an APF algorithm will help circumte selecting trajectories at timie—1 which are in accordance with
this limitation. Let us first begin with a brief presentatioh the new observatio,. Designing this pdfg(xy) is critical
APF filters. and classical approximations of the predictive likelihaaath

W. wij(x




as the likelihood taken at the mode of the transition pdfhich itself constitutes a class of instrumental distriog
(i-e. p(zhy 1) o< wi_ygk(yrl(zy_,)) where(z_,) is  G(xy) in (37) parametrized by(z|zo.x—1)-

the mode of ;. (z1|z},_,)) can actually damage the perfor- In order to appreciate the relevance of that particular-solu
mance of the estimate. This is why it is often suggested fion let us comment on the choice of the first-stage weights
practice to build a first-stage weight as close as possible i84(z} , ) and distributionsri®d (zy|z{, _,):

wy—1p(yk|zx-1), although this problem is generally difficult , at timek — 1, trajectories{z?, _,}/, are first resampled

[32] [33] due to the computation Qb(yk|zx—1). It remains according to first stage weights which coincide with
to chooser (z|zo;-1); @s in the SIR algorithm, one gener-  the expectation of the importance weights, of the
ally tries to approximate the optimal importance distribnt SIR algorithm defined in (25). In other words, these

p(zk|zr—1,yx)- Finally, note that it has been proved in [34]  {rgjectories are preselected in such a way that the new
that the estimate which results from the direct sampling importance weightwi which will be assigned in the
from mixture (36) has not necessarily an optimal asymptotic weighting step of the SIR algorithm will tend to be large;
variance. once a trajectoryz{, , has been selected, it is not
Some improvements of the APF have been proposed. ensured that its associated weighf will indeed be
In particular, instead of using IS in augmented dimension, large. By sampling according to a'pdf proportional to
the marginal APF of [35] directly targets the mixture pdf hi(z)qi(z), the objective is to produce a sample in a
plaklyo.x) In (36) In this case, the second stage weights region wherehi () (the conditional expectation of the

become importance weightw!, given that(z} = z)) and the
i O(Zjv Jwl L fe(@blal g (uklel) i\’: 1 @) distribution ¢..(z) are both large.
k Z;'Vzlﬂ(ka Or ($k|%k ) P Consequently, the mixture pdfy () appears as a natural

instrumental candidate for the APF when the objective is
As a result, the variance of weighig, in (38) is reduced w.r.t. to pre-select the trajectories and extend them in accoedanc
that of the second stage weights of Algorithm 5. Howeves thivith the given conditional importance distribution(z) =
variance reduction is closely related to the choice of the firy(z|2{ , ,) used in the SIR algorithm. If the SIR algorithm
stage weights and of the importance distribution. In pallic 1S densities ¢ (z) coincide with the optimal importance
in the case whereu(zp,,_;) oc wj_, and 7(wx|ag,_) = distribution p(z|a}_,,y:), then one can easily see that our
fe(zi|zi_,) (i.e. it is difficult to approximate(yx|zx—1) and canonical APF instrumental pdf (39) reduces to the target
we can only sample according . (zx|zx—1)), there is no mixture (36) (sincé:’, in (31) is reduced to a term proportional
improvement since the M-APF reduces to the boostrap B w! p(yx|zi ,)) and the independent SIR procedure to
algorithm. the FA-APF algorithm. In that case one can sample from
2) Independent resampling as the first step of a canonicgl very efficiently (since (39) is a known mixture) and the
APF algorithm: Let us now turn to the interpretation of ourresulting estimate outperforms the SIR estmﬁﬁéR N \with
independent resampling procedure in terms of APF. Let ®gtimal importance distribution [17] [18]. In case the FRA
observe thag in (30) can be rewritten as algorithm is not available, it remains possible to sampbenfr
h i the mixture pdfgy (z) in (39) as soon as we can sample
Z/ B () gk (2)dz X (I)ql (x) (39) from the root pdfg(z), even Whenu“‘d(m ) cannot be
J b (@) g () computed, or one cannot sample frofid (z |z, _;).

and thus can be seen as one particular mixture gidf,) 3) Reweighting the independent sample¥®e can finally
in (37) |n which the weightsu™ (2., _,) are given by use this APF interpretation in order to reweight our con-

jhz z)dz and the Componentg_lnd(xk|x0h ) by ditionaly independent sampleézi}Y . Since g qk can be

seen as a mlxture (37) with paramete;rg1 (z.,_,) and

(w)qk(x)
[m @} ()" We now check that the couple of sampleslnd($k|x0k D i d(%k ) x (xmk ) reduces to

(I',x},) produced by the independent resampling algorithpy (;:)4i (). Finally when we target mixture (36), the second-
(Algorithm 4) can indeed be seen as an augmented Saméfﬁge weights associated with the independent samyles
according togy () in (39): produced by Algorithm 4 read
o given {zf, }¥, and {#7},, Pr(l! = 1) =
wy'. Since @7 ~ qi(z), the distribution of wi o wh Fi(ailoh_D)gr(ueleh) Z wi=1  (40)
I glven (), 1}3 . becomes Pr(ll = 1) = hi () gl ()
E(wy, |{m0k 1} fhk (note that we could compute these second stage weights in

o given{z}, }Y,, {332 =1 andl’ }2 = l‘k . Remov- the context of the M-APF using (38) at the price of an extra-
ing the dependency |Fﬁx” §V 1» the distribution ofz{  computational cost)We thus obtain a new estimate 6,

) i hk (m)qk (z)
given {gr;oﬂcfl}j:1 and!/* become Th @)l (0)de” 1 SIR-w. N Zw 1)
In summary, our independent resampling procedure is noth- k(e

ing but the first step of one particular APF algorithm, beeaus
the pdf ¢&¥(x) from which we draw i.i.d. samples (givenwherew! are defined in (40). The practical computation of
{wi_ b, ,}Y¥,) coincides with the mixture pdf (39), these final weights relies on that éf () in (31), which



can be approximated via the extra sampiéé generated in estimated by recycling the extra samples produced by
Algorithm 4, Algorithm 4. This approximation of the weights intro-
duces additional MC error but the interpretation of the
iy 1 X () previous point ensures that it is sufficient to propagate
hp(a) = = Y (42) " aht
N — pi(2) JAC uniform weights.
d@ t 2 (@7 These three estimates are now going to be compared (in terms
Let us comment this approximation. First, it does not ‘r&quin performances and computational cost) in the next section
zzgz’:gi IV. SIMULATIONS
are recycled from Algorithm 4. Next},(z) can be seen as We now validate our discussions through computer-
the conditional expectation of tHeth normalized importance generated experiments. In section IV-A we first illustraie t
weight and z;’ are sampled fromy)(x), so hj(z) is an results of Section Il and we compare the classical resamplin
unbiased estimate df},(x). However, analyzing the variancemechanism to the independent one with both unweighted and
of hl(z) is more complicated because the dimension of theeighted samples. We also discuss the computational cost
integral inhl (z) is directly related to the number of samplesissociated with our independent resampling mechanism.
N used to approximate it. This point will be discussed in In section IV-B we next perform simulations in the ARCH
our Simulations section and we will see that in some casesribdel [36]. On the one hand, the FA-APF algorithm can be
is possible to predict the behavior 6 °""~"*" compared computed in this model [30]. On the other hand, remember that
to ©F 5™V Finally, this MC approximation introduces addi-our weighted estimate (41) can be interpreted as the estimat
tional variance in the obtained approximation which is diffi deduced from a particular APF which uses the instrumental
to measure. However, it is not necessary to propagate th&ture pdf g in (39), from which it is always possible
approximated weights over time. Indeed, the approximatiea sample from (with an extra computational cost). Thus the
can only be used to compute the local estim@fg> """ estimate deduced from the FA-APF algorithm is used as a
but the interpretation in terms of SIR algorithm developed ibenchmark and enables us to analyze the relevance of the
Section I1I-B ensures that it is sufficient to propagate amif instrumental pdfYY in the APF algorithm.
weights. Next in section IV-C we compute our independent estimates
for a target tracking problem with range-bearing measure-
. AT_SIR.N AT_STR—w.N ments.Our estimates are compared to those obtained from
Remark 2 Compgtlng@k ’ an.d O " is based the classical SIR algorithm, for a given computational eidg
on extra-intermediate samples as n .[31]’ for example. HOW?easured via the number of sampling operations; this means
ever, contrary to such approach in which the extra sampkes HMat we Compare@I—SIR,M and O~ SR—w.M (M is the
use_d o build a new targe_t d|str|but|on, our extrg samplelsl bun mber of particles after the independent resampling step)
an important mixture which has an interpretation in terms ofsis,» in which N — w Thus all estimates are based

S o X
APF and en.able us to obtain i.i.d. samples from this mixture: M? + M sampling operations (we do not distinguish if we
and to reweight these samples.

sample according to a continuous or a discrete distribution
The relative performances of the estimates are analyzed in
function of the parameters of the state-space model.

Finally in section IV-D we compute our estimates in models
Let us summarize the discussions of section Ill. When thﬂqere the dimensiorm of the hidden state is |arge and
objective is to comput®),, in (2) we have several options: we analyze their performances w.r.t. classical PF estinate
1) using the classical SIR algorithm (see Algorithm 3)n function of the dimensionn and with a fixed number

in which we computeéiIS’N. defined in (26). The of sampling operations. Finally throughout this sectiorr ou
resampling step which follows the computation of thisimulations are averaged ovét = 1000 MC runs, we set
estimate produces a conditionally dependent unweighte¢c) = = in (2) and we use an averaged Root Mean Square
set of particles sampled frogy, ; Error (RMSE) criterion, defined as
2) an alternative to avoid the local impoverishment induced LT p 1/2
by the traditional resampling step is to run Algorithm o) — -~ = o _ .(p)2
4 and compute estimatéi‘SIR’N. This estimate is RMSE(©) Tkzz‘; (P;H@k il ) (43)
still based on an unweighted set of particles marginally ®) _ o
sampled fromgl but these samples have become CoryAvhere:ckp is the true state at timg for the p-th realization,
ditionally independent; 0" is an estimate of:") and T is the time length of the
3) finally, the samples produced by Algorithm 4 can alsscenario.
be seen as the result of a partial sampling procedure
according to an APF instrumental mixture pdf (39)A. Comparison of static sampling procedures
Further using the APF methodology with mixtué’, Let us first consider the (static) Bayesian estimation bl
it is possible to target mixture (36) which itself isin which we look for computing
an approximation op(x|yo.z). This leads to estimate
oL 8N in (41), in which the weights (40) are O = E(zly) = / zp(zly)dx (44)

an extra computational cost since sampfé’é and

D. Summary
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via the techniques described in Section Il. We assume thasults for such setting because this point will be disaligse
p(zly) is known up to a constanp(x|y) p( )p (y\x) where the dynamic case.
p(x) = N(2;0;02) and p(y|z) = N(y;z,0,) with o2 = 10 2) Bias and variance of estimatedNext we study the
ando? = 3. We choose the IS dlstrlbutlar(x) p(x ) For a behaviour of the empirical variance and bias of these esti-
given number of final sampled’, we compute six estimates:mators. Contrary to the previous simulation in this section
the estimate®S™>N deduced from the IS mechanism withve have made sure to fix the observatignfor all MC
importance distributiong(.); the estimate©™®N deduced runs so as to display the empirical variance corresponding
from the SIR mechanism witt\' intermediate samples andto the same variance termar(®)!~S™®:N and var(©)S™E-N
My = N final samples; our estima®'~5"%" based onV mentioned throughout this paper (such as in equation (17)),
unweighted independent samples drawn frgth (see (15)); which are conditional on the observations; The results ate n
our estimated! S~V hased onV weighted independent displayed for space reasons but the order of performance of
samples from™ (see (21)). Remember that the computatiothe estimators in terms of variance or bias remains the same
of the independent resampling mechanism is based on #tethat in terms of RMSE; the variances of béth SI®:V and
sampling of N2 intermediate particles andv resampling ©'S:¥ become much closer to each other as well as to that
steps and thus requires an extra computational cost wet. bf O!-SIR-w.N ' compared to when we consider the RMSE
dependent one. Consequently, we also Comﬂﬂ%éR 2N averaged over dlﬁerent observations.
based on the classical SIR procedure wiii intermediate  3) Estimation of the predictive likelihoodwe finally con-
samples andV (dependent) resampling steps; in other word§ider the problem of estimating the predictive likelihood
thls estimate relies oV dependent samples obtained fron})(yk‘yOk 1) which has a critical role for parameter estimation
g~ or smoothing problems [37]. Let us consider two ways of
1) RMSE of estimatedn Fig. 1 we display the distance of approximatingp(yx |yo.c—1), based on the observation that it
each estimate w.r.t. the true expectatiBfz|y) in function ¢an be deduced from the filtering pdf, singyi|yo.x_1) =
of the number of samplesV while Table | describes the [ 9x (el k) fie (i |k —1)p(T0:5—1|Yo:x—1)dzo.. The first one
performances of each estimate in terms of RMSE w.r.t. t)81] is an unbiased estimate based on f§ié intermediate
true = for small values of N. As expected, the estlmatesamp|esfw Nq(xk\xk L
O-SIR.N hased onN independent samples drawn frapf

outperforms the estima®S™®-V which is computed fromV fe(@ )2l _)
~1 ] k—1

dependent samples drawn fropY . However, an interesting P(Yx|Yo:x—1) E wk 1N E Ik (Yk| Ty, 7” .

result is that®!—SIE:-N also outperformsdSSV, It means (@ 1750

~ 45)
that the distributiong”¥ produced by the SIR mechanism (
is more adapted than the prigfz) — p(z), which is not The second one uses the APF interpretation of our algorithm;

surprising sincej’¥ implicitly uses the observation through from our weighted samples, one can build the following

the resampling mechanism of intermediate samples. Of epur gstlmator of the predictive likelihood:
the computation oB'~S™®:N requires an extra computational Felai |zl )
cost but it is interesting to note that the size of the final 5(yx|yo.._1) Zwk Lai( yk\xk)#
support is the same in the three cases. We then compare hL (x3)ql, (x})
the estimates based on the same computational cost. When

N increases, these estimates have the same asymptoNYféﬂ?re thehl; (x},) have already been estimated by recycling
behavior. It can be seen that the estimafd® 2N pased on the N? extra particles.

N samples drawn froqu outperforms@l SIR.N (and other ~ Turning back to the static linear and Gaussian model, we
simulations as well as Table | show that the difference betwehave estimateg(y) from (45) (which is also the estimate
the two increases whetV gets smaller, more specificallydeduced from IS withV? samples) and (46) as well as the
N < 100). However, when our i.i.d. samples are weighte@istimate deduced from IS with’ samples (see [22]). It can
by a term proportional to(x,y)/¢" (z) in an IS perspective, be observed from Fig. 2 that estimates (46) and (45) both
our estimated!—SIR—w,N slightly outperforms@SIR 2,N for converge to the true value much quicker and more smoothly
small N and has the same performances whén+ oo, which  than the IS one a& increases, and that (46) is slightly more
confirms the discussion in 1I-B2. However, remember that tiséable than (45), as long as the number of particles is not
Independent SIR procedure can easily be paralleliaed that extremely low (belowl0 particles in this simulation).
OI-SIR-w.N relies on the approximation (42) of (31) whic
recycles the intermediate samplgs . To ensure the quality of
this approximation, we have estimated (31) withadditional [ 20 | 1.6844 | 1.6819 1.6542 | 1.5951 | 1.5618 | 1.5610
sets of N particles,M > N, rather than only recycling the a0 12225 | 1-5951 | 1.5765 | 15008 | L5220 | 1510
N available sets ofV particles; the performances obtained’so | 15623 | 1.5639 1.5530 | 1.5345 | 1.5309 | 1.5293
for @Istwa,N USing these additional sets of partiCleS arplOO 1.5519 1.5504 1.5410 1.5320 1.5290 1.5290

,  (46)

N | 65IRK,N | 65IR—w.N| gSIS.N | I-SIR,N gSIR—2,§ gI-SIR—w,N

identical, which tends to show that recycling the partici&$ TABLE |
L - . STATIC LINEAR AND GAUSSIAN MODEL - RMSE VALUES OF EACH
is indeed sufficient to approximate (31). It also been olexérv ESTIMATE.

that ©'~S™®:N outperforms other estimates whep — 0, i.e.
when the observations become informative. We do not display
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v distr.ibution q(zg|zo.p—1) coincides_withp(xk.|:pk__1,yk) (see _
o4 _e_f';fz;jmfféfij‘v‘;‘> section [lI-C2). However this setting can be implemented in
e Intepondent SR it ) specific models only, while Algorithm 4 can be used with
Wit mdopenient STy et (O ) any importance distributioq(zx|xo.,_1), while keeping the
same interpretation as the FA-APF (see our discussion in
section 111-C2). So we also compute our estimﬁgsmw
and (:)};SIR’W’N, which can be seen as an estimate deduced
from the APF in which the importance mixture (37) coincides
with g¥. We finally compute the estima®.""" which is
deduced from the APF withu(xo.x—1) x wi—10(yk|Tr—1)
and7(xg|ro.x—1) = fx(xr|zr—1); with this configuration, the
L N S S S s B particles are pre-selected with the so-called optimal $itatje
O b of fmsl particlen for ol agorithuns) 0 weight and sampled from the transition pdf.

The RMSE of each estimate is displayed in Fig. 3(a) as a

Fig. 1. Static linear and Gaussian modet% = 10, o2 = 3 - Bayesian esti- function of the number of sample¥. Interestingly enough,

mates offi(«|y) based on the independent resampling mechanism outperfogur weighted independent resampling algorithm which pro-

the estimates based on the traditional IS and SIR mechanishmiglt they  ,cag @2—SIR—W7N has the same performance as the FA-
require an extra computational co8ther simulations as well as Table | show . . . ..
that for smallN (N < 100), the estimate based on weighted i.i.d. sample&PF algorithm whenN' > 20, without using the predictive

from gV slightly2outpen‘orms the estimate based on identically itisted likelihood p(yx|xx—1) nor the optimal importance distribution
samples fromg™N~ (which uses the same overall computational cost), Whil?’(xk|fk—17yk)- It means that the mixture pdf,l: which has
for large N the performances coincide. . L7 . . .
been implicitly built by our algorithm differs from the tag
mixture (36) (because there is a significant difference betw
00012 __ using uniform and non uniform weights) but is as relevant
T dependent SIR ctimator (post esampling weights) as this target mixture (36)indeed, one advantage of the
T e e mixture pdf ¢ deduced from the resampling mechanism
is that its interpretation does not depend on the importance
distribution ¢{ which has been chosen and that it is possible
to sample from it in general HMC models (1). We also
observe that re-weighting the final samples is beneficiat.w.r
attributing uniform weights. In order to analyze the bebavi
of the weights associated to our estima&g > ™", we
compute the normalized effective sample size defined as
» Noormeff = m It can be observed tha¥,,om. e f
"N (oonber of particles for all lgorithm) quickly converges frond.9 to nearlyl as N increases frond
t0 100 (reachingNy,opm, e 5 = 0.99 for N = 30), meaning that
Fig. 2. Static linear Gaussian modelo? = 10, o2 = 3. Estimates of these weights tend to become uniform, so estimétgs ™
the nf(r)gﬁé’ilﬁi(rgg Const_arl(ij(y)-l The squared e:_rO(rﬁ(l#)t; p(y))ZéaV?fff?geld and©} "N hecome close whe is sufficiently large.
g\alltretricles for allrue?lz)orlﬁhnllss‘.) Ell\%/c()ete “jtlﬁai1 hLérr]g I?hne OindeT)ennucgrR r:stir:?:te Additionally, we show in Fig. 3(b) the RM\SE of the various
(before resampling) is equivalent to an IS estimate \th particles because estimators w.r.t. time. It can be observed t@éfSIR’N (which
the scenario is static. is deduced from samples drawn frofi(z |z; 1)) andO

have the same performances whatever time

RMSE w.r.t. E[X]y]

0.1r

0.001

0.0008

0.0006 -

0.0004

0.0002

=t

Normalizing constant squared error w.r.t. the real value p(y)

B. Comparison with APF algorithms
. . ) C. Tracking from range-bearing measurements
We now focus on the interpretation of our indepen- . .
We now study the performance of our algorithms in a

dent resampling a'go_”thm n terms of APF. We StUdi’racking scenario with range-bearing measurements. We loo
the ARCH model which is a particular HMC model (1)for estimating the state Vector, = [pux Pa.k: Dy By
c T T,k SR MY,k K

i i — -0 2
in_which fy(zklzp—1) = N(ak0:fo + frzg,) and (position and velocity in Cartesian coordinates) of a tar-
gk(yklzr) = N(yg;ar; R). We set R = 1, By = X ] .
. get from noisy range-bearing measuremepts The pdfs
3 and ;7 = 0.75. In this model one can com-: del iated with thi K bl
oute plyrler 1) = N0 R + B + fia? ;) and in model (1) associated with this tracking problem are
' oty RGorpiaz . Ie@klTe) = N Fep1;Q) and gy(yeler) =
p($k|xk_l’yk) ) : N(mk’ R+/50+[31:§271yk; R+Bo+p1zi_, )’ pi‘k er?/ k 0’% 0
consequently, it is possible to obtain i.i.d. samples from tV (v ¥ ety Pk s lt) where R = { o2)
target mixture (36) and thus compute the estim@t?’N Pa,k
based on the FA-APF algorithrin such a setting, the M-APF 1 1 0 0 1l 00
described in l1I-C1 coincides with the FA-APRemember 01 0 0 P 1 0 0
- F = Q=05 |2 (47)
that the FA-APF can also be seen as a particular case of our 00 1 1] @lo o &+ 3
independent resampling Algorithm 4 in which the importance 00 0 1 0 0 g 1
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case whererg = /10, 0, = 0.05 andop = 5555 For the

2 e Bootsrap e — first configuration, we observe thar. > ™ outperforms
—3— APF estimate with optimal first stage weights (6;""")[] . . g Y y .
IV A the other estimates and improves 5" which does not
L8 SI-SIR,N 1 .
. - = = I-SIR estimate with uniform w@ighl‘sk(l(%:m ' \) I'E|y on Welghted Samp|esf0r any M. Compared to the
Lol ——1-SIR-w estimate with reweighting (6} 5™ ") 1 . . SI-SIR, M .
v classical SIS estimaté), alsogives better performance

as long as the number of sampl@$ is weak (M < 30,
so N < 465) but is next outperformed. As shown in Fig.
4(b), when the observations become informatigg, '
gives the best performances. Contraney®", 61"~ and
O N " our estimate does not suffer from the degeneration
of the importance weights. Indeed when the measurements are
T informative (and so the likelihood is sharp), few importanc

N (mumber of particles for all algorithmns) weights have a non null value aneven more advanced
resampling schemes do not achieve to create a diversifidd fina
support By contrast, the independent resampling procedure
ensures the diversity of the final samples when we use uniform

0.8

(a) RMSE w.r.t. number of particles

iy Bootstrap estimate . . . . ~1— — .

O] 2 D et with optimal first stnge weights (B7°) weights. Finally remember tha®' 5B~ relies on the
¥ FA-APF estimate (O5) . . k . .2
O L - - LSIR cstimate with miform weights (8 ) ] MC approximation (42)If we study the approximatior!

L o4 | ISIR-w estimate with reweighting G pi (iz ¥ )

in (42), any term- %= with ¢t (z) = fr(zk|zi_,) can be
considered negligif)le when compared to any other highdr suc
term because the model is very informative. Consequeitty, t
final unnormalized approximated second stage weights tend t
become equal to the intermediary unnormalized wei ;
STR—w, M

RMSE

1% Ko of the corresponding particles and the estinﬁﬁcé
is affected by the lack of diversity.
For reference, the averaged computational times for aesingl

oo m o w w Timj‘;gp @ s w time iteration of the algorithms (without parallelizatjomhen
' N = 50 are as follows (this experiment used Matlab software
(b) RMSE w.r.t. time and a laptop featuring .80 GHz Intel(R) Core(TM) i7-

Fig. 3. ARCH model -R = 1, 8o = 3 and 81 = 0.75 - (a) The estimate 4810MQ CPU)its/g ~ 0.0010s, t;pp ~ 0.0014s, t;_srr ~
based on the independent resampling mechanism with a finaigietiveg has  0.0011s, t7_g7r—w ~ 0.0020s.

the same performances as the estimate deduced from the FA-ABRingl

reweighting mechanism is beneficial when compared to the ussitdrm

weights. - (0)RMSE w.r.t time of the various estimates fof = 100 D. High dimensional problems

We finally study the impact of the dimension of the
N . o hidden stater;. We consider a state vector of dimension
The conditional importance distribution used to sample- pay, — 4 » ;. ,, — Per(1), Por(1), pyi(l), pyr(l), -
ticles is the transition pdfj(wx|o.r—1) = fe(@rlzr-1); SO ) (1) po (1), pyr(l), pyr(D)]T. Each component; (1) =
the importance weightsyj at time k are proportional to a0, Pes(D), pyr(D), y.r(1)]7 evolves independently from
; ). We compute®©?™V (see (26)),0. 5RM ’ ’ ’ ’ i _
wkflg(yk‘xlg\)l We compute® O all the other components, according fo(zy(1)|zr_1(1)) =
(see (32)),0, "™ (see (41)) withN = M to  Af(z,(1); Fay_1(1); Q) where F andQ given by (47), and is
set the number of sampling operations. We also compayeserved independently vig (yi|zx (1)) = N (yx; Hzi(1); R)
these estimates With—)}fF’N (calculated after resampling) where

deduced from the Island PF withislands andV/5 particles 100 0 o2 0
; ASIRR,N ; _ _ (%%
per island and ©,"" (also calculated after resampling) H <0 0 1 0) R = (0 02)
Y

which results from a classical SIR procedure using residual
resampling with stratified resampling for its residual parfAgain, we compute the estimate based on classice@)?ﬁ’N
rather than multinomial resampling [11]. Note that we usg@ee (26)). It is well known that the PF tends to degenerate
a small number of islands for Island PF, which would nothen the dimension of the hidden state increases. We also
be efficient in practice due to poor parallelization. Howevecompute®} *" (see (32)),01 5" (see (41)) with
as shown in [29], increasing the number of islands can only — @ for M = 100 and M = 1000 as a function of
worsen the performance of the final estimator. For the sakedinensionm to see how the dimension impacts our estimate
comparing RMSE performances we thus choose a favorabled the classical PF estimatiote that we use the basic
parametrization for the Island PF, regardless of para#iébn. importance distributionf, (z|zx_1) in order to measure the
The results are displayed for two sets of parameters. Fimpact of our method but the improvements developed for high
4(a) corresponds to the case where = /10, o, =0.25and dimensional models (such as e.g. [25]) can also be included
09 = =55 While Fig 4(b) corresponds to a very informativewith the independent SIR algorithm.
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m = 20, the dependent SIR is already completely degenerated,

16 T T T T T T T T

ul o~ loland PF estimate (5 sands, O ) | with only one or very few non-null weights). The same

ol SIR estimate with rsidual resampling e ] performance gap can be observed between the unweighted and
e LSIH et it o weights (@1 ) weighted independent SIR estimates, except that this time f

L N L-SIR estimate with reweighting (6} St 1

m < 12 the weighted estimate actually performs slightly better
] than the unweighted one, and the subsequent gam:for20
(which also increases linearly im) is smaller.

RMSE

250 | —€—SIS estimate, before resampling (87 )
—3¢—I-SIR estimate with reweighting (O} 5" '%")
—$—I-SIR estimate with uniform weights

oy = © = IS estimate, before resampling (6]
= ""”xxxxuxx 200 Y

- % = L-SIR estimate with reweighting (65"

0 10 20 30 10 30 60 70 80 90 100 - B - I-SIR estimate with uniform weights (6} "%"") oe®
» o

M (number of particles of i.i.d. PF) 7%

150

1000 1

(@ og = V10, 0p = 0.25 and oy =

720

RMSE
b\
Y¥e
WX
v\

i ’
100 - S xxc ¥ 1
',
S — g i’? ¥
= = ~Tsland PF estimate (5 Islands, ©, "~ 7 ) | e
——SIS estimate (857" 50 o2y P |
JU— é

SIR estimate with residual resampling (6 ) g'} ¥

—-—-=1-SIR estimate with reweighting (6 511 A3

«+3¢+ 1-SIR estimate with uniform weights (8] %™

-

e

8
T

=
;
X
——

0
4 0 10 20 30 40 50 60 70 80 90 100
Dimension

3
T

RMSE
=
JUES _—

Fig. 5. Multi-dimensional linear Gaussian modet?, = 25, 02 = 4 and

2 = 4. The estimates of interest are compared as a function of thendiore
1 m of the hidden state:;, for a fixed number of sampling operations. The
independent resampling mechanism limits the impact of the ldiigension
m and estlmateeI SIR,1000 \yhensm = 46 has the same performance as
@SIR 500500 whenm = 32.

=
g

. . . .
0 10 20 30 40 50 60 70 80 90 100
M (number of particles of i.i.d. PF)

(b) 0 = V10, 0, = 0.05 and oy = 3755 V. CONCLUSION

Fig. 4. Target tracking model from range-bearing measureme(@s the SMC algorithms in Hidden Markov models are based on

independent resampling procedure with final weighting atigpens the other the sequential application of the IS principle. However the
estimates and is particularly interesting when the numbemal 8amples is

weak - (b) in the informative case, all estimates suffer fromdegeneration dir€Ct sequential application of the IS principle leads to
of the importance weights except that based on the unwe|ghdm)endent the degeneration of the weights, against which multinomial
resampling algorithm. To achieve the sam2e performanc@ Iggth—w. M resampling has been proposed. This rejunevation scheme,
with M =20, the classical PF use¥' = (502 + 50) /2 = 1275 samples which is now routinely used in SIR algorithms, enables
to discard particles (or trajectories) with low weights,t bu
particles with large weights will be resampled several ime
The results are displayed in Fig. 5. It can be seen thahich leads to dependency and support degeneracy. In this
the estimate® 5" and©} 5" ~"™ outperform@?™S"  paper we thus revisited the resampling step used in classica
more and more significantly as the dimension increases, doikR algorithms. We first addressed the static case, showed
to the local impoverishment phenomenon. Fi@f, ™" that the particles sampled by Rubin’s SIR mechanism are
outperforms; "™ as long as the dimension of the hidderlependent samples drawn from some @tif and proposed an
state is low fn = 4 andm = 8); when m increases, the alternative sampling mechanism which produces indepénden
estimate based on weighted samples frgth limits the de- particles drawn from that same marginal pdf. This set of
generation phenomenon w.r.t. that based on weighted samphglependent samples enables us to build a moment estimator
from ¢ but using unweighted samples when the dimensionWich outperforms the classical SIR-based one, both from a
large ensures the diversity and gives better performanote Nnon-asymptotical and an asymptotical points of view. fynal
that the dependent and independent SIR algorithms appréxe succession of the sampling, weighting and resampléejgst
imately give the same performance whenis low but the indeed transforms an elementary instrumental pdhto a
gap between the dependent and the independent SIR estime@ggpound importance distributiof™ = ¢(p, ¢, N), which
increases with the dimensioklore precisely, this gap appeardeads us to reweight the (originally unweighted) resampled
and is significantly amplified whem increases fron® to 20; particlesz® by post-resampling weights proportlonal
for higher values ofn, it then increases linearly witlh which ~ Such post-resampling weights cannot be computed exauﬂy, b
is solely due to the RMSE adding up an increasing numbean easily be estimated by recycling the extra MC samples
of factors which always present the same gap of performanghich were needed for producing the independently resainple
per-dimension as whem = 20 (which means that around particles.
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We next adapted this methodology to the dynamic case,iin which z¢ ~ V¥ for all i. The first term is
order to estimate a moment of interest in an HMC modetqual to var(©-SI®:M~) et us compute the second
The computation of the post-resampling weights is moterm. For all k, [, 1 < k,I,< My with k # |,
challenging than in the static case, but reinterpreting olﬂ(w(xk)w(xl)\il‘ ) = (@ISJDQ, so E(p(zF)p(z!)) =
independent resampling scheme as the first step of a particll(E(p(z*)p(z!)|z'Y)) = E((©'S:V)?). Using (48) again,
APF algorithm enables us to make full use of the AP#e conclude thaCov(p(z*), o(z!)) = var(©'Y), whence
methodology and thus reweight the final samples via tlg7).
second-stage APF weights. Finally we validated our discus-
sions through computer-generated experiments and cireful PROOF OFTHEOREM 1
took into account the computational budget. Simulationa in

model where the FA-APF algorithm is computable show that We first introduce the following notations:

the independent resampling with reweighting algorithnegia

performance close to the FA-APF algorithm. Consequerttly, i Op) = /@(x)P(w)dxa (50)
confirms the relevance of the instrumental mixture pdf il N p(z?)

itly used by the independent resampling PF which can be used ~ gIs.¥ 9@y, ), (51
in any HMC model since it does not require to compute the (0) = ; ;Vl {;g; (p( ) ) G
predictive likelihood nor the optimal importance disttiiom. My

Finally independent PF gives very satisfying results when@I*SIR,MN(SD) - LZ@@Z’), i - v (), (52)
applied in highly informative models which are challenging My =1

for classical PF and limits the degeneration phenomenon |n L SIR.AM ~ls N
high dimensional models. Using E(& IV (p)) = E(©7 7 (p)), we have

APPENDIX vV My (él*SIR’MN (¢) — @(<P)> = Ay + By, (53)
PROOF OFPROPOSITION1 Ay = /My (O STRMN (o) — (O STRMN () (54)
Let A be any Borel set. Lell4(z) = 1if z € A and0 VMy .
otherwise. Then for ang/ 1<1< My, By = Vi E(VN(@©"(p) - 0(p))). (55)
N
~1.xOur objective is to show thatly converges to a centered
5.0 1:N N
Pr(c' € 4) /]RN z;w U q(#7)dz Gaussian distribution with variancewr,(¢(z)) and thatBy
’ B converges td).
N N
if~ ~N ~i ~i\qm1:N
= Z/]RN w'(@t, e BV )La() HQ(xj)dxl Convergence 0By
=1 =1
N N ! We have recalled (see (10)) that under mild assumptions [5]
_ [/ ’wi(i‘l, . ,i‘N) q(i,j)d.i,lzifl,i+1:N]q(ji)dj~ji R > p2 .
ATRG 1l VRERN (o)-0(0) 3 (0.8, (L (el - 0011 ) ).
J#i

& LN (2000 (391 5 According to [17, Theorem 9.1.10JE(]VN(OS:¥(p) —
=2 (#)q(2")dz O(p))?) is bounded and so its upper bound is finite. Ac-
cording to [38, corollary of Theorem 25.12], it is ensuredtth
= / NN (2)q(z)dz, VNE((ON(p) — O(p))) — 0; consequently
A
soz! has pdfgV w.r.t. Lebesgue measure. V\/Aﬁ\’ E(VN (OB (p) — 0(p))) — 0. (56)
N

PROOF OFPROPOSITION2
Letz! (for anyi, 1 < i < My) be produced by the classicalConvergence ofi 5

SIR mechanism. Then Ay reads
E(p(a’)[z") = 855, (48) | My
So E(@SIR My )|z Ny = ors, N and E(@SIR,MN) _ vV My (MN Z o(T") — E(¢(xz))> . (57)
E(O'S:N). On the other hand(©'~ SR, Myy — B(OSIRMn), =
whence (16). Next To prove the convergence whe¥i — oo, we need a CLT
My for triangular arrays and we use the version presented in [17
var(©SIRMNy - — % Zvar(w(ggi)) + Theorem 9.5.13]. The required assumptions are:
N =1 1) { M }vare mdependent
[N —1 .
| o 2) aty iy B @) — (Ble(@)? = vary(o(2));
e k;COV@P(l‘ ), p(z')) (49) 3) for any positiveC’, 51— > :2Y E(0? (@) 1)y >c) —

e O(p?*Lip>0)-



Assumption 1) is satisfied sincéz’}My are iid. from [16]
g". Next, E(p(z")) = Ez~(¢(z)) which coincides with
E(O':N (). Using again [17, Theorem 9.1.10] and [38}17]
Theorem 25.12]E(OS:N(p)) — O(p) when N — oo.
With the same argumenk(2(z')) — O(?). Consequently, 8l
assumption 2) is satisfied since

o | | [19]
e ; E(p% (@) — (E(p(@)))? = [20]
Eqn (¢°(@) — (v (p(@))” = 00" = (0(0)’ = )
vary (¢ (2)). [22]

Finally, E(*(@") 1,z =c) = E(OSN(¢?1),5¢)) which
converges toO(¢?1,>c) and assumption 3) is satisfied

123]
Consequently,

[24]

VAl (5= Y ela) ~ Blp(@) B N0, van(¢(2)

(58) [25]
Combining (56), (58) and (53) we obtain (18).
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