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ABSTRACT

Particle Filtering (PF) algorithms propagate in time a Monte
Carlo (MC) approximation of the a posteriori filtering mea-
sure in a Hidden Markov Chain (HMC) model. In this paper
we first shed some new light on two classical PF algorithms,
which can be considered as natural MC implementations of
two two-step direct recursive formulas for computing the fil-
tering distribution. We next address the Particle Prediction
(PP) problem, which happens to be simpler than the PF prob-
lem because the optimal prediction conditional importance
distribution (CID) is much easier to sample from. Motivated
by this result we finally develop two PP-based PF algorithms,
and we compare our algorithms via simulations.

Index Terms— Particle Filtering, Sequential Importance
Sampling, Sampling Importance Resampling, Optimal impor-
tance function, Hidden Markov Chains.

1. INTRODUCTION

Let xn ∈ IRm andyn ∈ IRp be respectively a hidden and
observed process. Letp(xn|y0:n), say, denote the probabil-
ity density function (pdf) ofxn giveny0:n = {yi}n

i=0. Let
p(dx) = p(x)dx be the continuous measure with density
p(x). We assume that{xn,yn} is an HMC :

p(x0:n,y0:n) = p(x0)

n∏

i=1

p(xi|xi−1)

n∏

i=0

p(yi|xi). (1)

We deal with the Bayesian filtering problem, which consists
in computingp(xn|y0:n) at each time instantn. From (1)

p(x0:n|y0:n)=
p(xn,yn|xn−1)

p(yn|y0:n−1)
p(x0:n−1|y0:n−1), (2)

in whichp(xn,yn|xn−1) can be factorized as

p(xn,yn|xn−1)= p(yn|xn)p(xn|xn−1) (3)

= p(xn|xn−1,yn)p(yn|xn−1). (4)

Injecting (3) into (2), and taking the marginal, we see that
p(xn|y0:n) can be computed recursively by

p(xn|y0:n−1) =

∫
p(xn|xn−1)p(dxn−1|y0:n−1), (5)

p(xn|y0:n) =
p(yn|xn)p(xn|y0:n−1)∫
p(yn|xn)p(dxn|y0:n−1)

. (6)

It remains to computep(xn|y0:n) in practice. In the lin-
ear Gaussian case, exact recursive solutions are provided by
Kalman filtering (KF) techniques. In the general case how-
ever, computing eitherp(x0:n|y0:n) or p(xn|y0:n) is either
difficult or impossible, so approximate techniques have been
developed. Among them, PF (see e.g. [1] [2] [3] [4] and refer-
ences therein) are sequential MC (SMC) methods which aim
at computing a discrete approximation ofp(dxn|y0:n).

More precisely, many efforts have been devoted to the
MC approximation of the global (resp. local) recursive for-
mula (2) (resp. (5)-(6)). At this point, let us notice however
that (5)-(6), say, is one recursive formula forp(xn|y0:n)
which explicitely computes this density as the recursion
p(xn−1|y0:n−1) → p(xn|y0:n−1) → p(xn|y0:n) (or, in
short,pn−1|n−1 → pn|n−1 → pn|n); so computingpn|n from
p0|0 via (5)-(6) amounts to walking along one particular path,
made of the succession of a predictive step and an updating
step. However following this path is not the only possible
way to computepn|n. In other words, we should not neces-
sarily try to get the best possible approximation of (5)-(6);
what we really look for is a good approximation ofpn|n, no
matter how it is obtained, even ifpn|n is obtained indirectly,
as the byproduct of some recursive algorithm. These ideas
are well known in the context of KF, but not in PF, so the aim
of the present paper is to investigate them in the context of
SMC techniques.

This paper is organized as follows. In§2 we recall PF.
Next in §3 we revisit two classical PF algorithms (the Boot-
strap filter [1], and a (reorganized) SIR algorithm with opti-
mal CID [5]) from two different points of view. First, both
algorithms can be seen as direct MC implementations of (5)-
(6), which differ only by the instant when we sample from
an approximate continuous distribution in order to get a dis-
crete one; next, they can be seen as natural MC implemen-
tations of the recursive loopspn−1|n−1 → pn|n−1 → pn|n



andpn−1|n−1 → pn−1|n → pn|n which, in turn, directly stem
from the two Bayes factorizations (3) and (4) of the transi-
tion pdf p(xn,yn|xn−1) in (2). Now a drawback of direct
PF is that the optimal CID is often difficult to compute or to
sample from. So in§4 we address the PP problem, which
happens to be easier than the PF problem because in the pre-
diction case the optimal CID coincides with the prior tran-
sition p(xn|xn−1) of the Markov chainxn, which is often
straightforward to sample from. Motivated by this observa-
tion we address PP-based PF, in which the distribution of in-
terestp(xn|y0:n) is computed indirectly,via a PP algorithm
(i.e., the recursive loop is now onp(xn|y0:n−1)). Simula-
tions are performed in§5, and we end the paper with some
concluding remarks.

2. THE PF METHODOLOGY

2.1. The generic PF algorithm

Let us recall the principle of PF [2] [3] which is based on
importance sampling (IS). Assume that at timen− 1 we have
a discrete measure which approximatesp(dx0:n−1|y0:n−1) :

p(dx0:n−1|y0:n−1) ≃
N∑

i=1

wi
n−1δxi

0:n−1
(dx0:n−1) , (7)

whereδx is the Dirac mass at pointx, the samplesxi
0:n−1 are

generated from an importance distributionq(x0:n−1|y0:n−1),
and the importance weightwi

n−1 associated to thei-th
trajectoryx

i
0:n−1 is given by wi

n−1 ∝ p(xi
0:n−1|y0:n−1)/

q(xi
0:n−1|y0:n−1),

∑N
i=1 wi

n−1 = 1. Let us see how to
compute (7) recursively. If we assume that the importance
distribution factorizes as

q(x0:n|y0:n) = q(xn|x0:n−1,y0:n)q(x0:n−1|y0:n−1), (8)

i.e. thatq(x0:n−1|y0:n−1) is a marginal ofq(x0:n|y0:n), then
for all 1 ≤ i ≤ N , [xi

0:n] = [xi
0:n−1,x

i
n], in which x

i
n is

sampled from the CIDq(xn|xi
0:n−1,y0:n). As for the weights

wi
n, we see from (2) that they can be computed recursively as

wi
n ∝

p(xi
n,yn|xi

n−1)

q(xi
n|x

i
0:n−1,y0:n)

︸ ︷︷ ︸
λi

n

×
p(xi

0:n−1|y0:n−1)

q(xi
0:n−1|y0:n−1)︸ ︷︷ ︸

∝wi

n−1

. (9)

Finally
∑N

i=1 wi
nδ

x
i

0:n
(dx0:n) approximatesp(dx0:n|y0:n),

and thus
∑N

i=1 wi
nδxi

n
(dxn) approximatesp(dxn|y0:n).

2.2. Practical considerations

Now, sequential IS (SIS) algorithms are well known to suffer
from weights degeneracy. It has thus proved important in the
above generic algorithm to resample from

∑N
i=1 wi

nδxi
n
(dxn)

(either systematically or according to some strategy), andalso
to choose the CIDq(xn|xi

0:n−1,y0:n) carefully.
To that respect, sampling from thea priori transition ker-

nel of the Markov chainx (i.e., choosingq(xn|xi
0:n−1,y0:n) =

p(xn|xi
0:n−1) = p(xn|xi

n−1), which was the original choice
in the so-called Bootstrap filter [1]) is popular because sam-
pling from p(xn|x

i
n−1) is often straightforward. Moreover,

computing the incremental weightλi
n in (9) reduces to evalu-

ating the conditional likelihood of the new observation given
the updated particle position.

However, this choice can lead to poor performances,
and it is often preferable to sample from the optimal CID
qopt(xn|xi

0:n−1,y0:n) = p(xn|xi
n−1,yn) [5], i.e. the dis-

tribution which minimizes the variance of the importance
weightswi

n, conditionally on the observationsy0:n and past
samplesxi

0:n−1. In this caseλi
n = p(yn|xi

n−1).

3. REVISITING SOME DIRECT PF ALGORITHMS

In this section, we shall revisit some classical PF algorithms
(the Bootstrap filter and the PF with optimal CID evoked
above) from two different points of view (see§3.2 and 3.3).
But it will prove useful to first recall the 3 simulation tech-
niques that are used whenever we deal with PF algorithms.

3.1. Three generic simulation techniques

In all PF algorithms we sample (S) new particles, update
some weights (W ) and (possibly) resample (R) from a
weighted discrete measure. These three SMC elementary
operationsS, W andR are indeed related to the following
three simulation techniques.

1. (S step). Let xi ∼ p(x) and let us sampleyi from
p(y|xi). Then(xi, yi) is a sample fromp(x, y) and thus
yi is a sample fromp(y).

2. ((R, S) steps). Let p(y) be the mixturep(y) =
∑m

i=1

αi pi(y) with αi > 0 and
∑

αi = 1. Let j be sampled
from p(x) =

∑m
i=1 αiδi(dx) and nexty be sampled

from pj(y). Theny is a sample fromp(y).

3. ((W, R) steps). Let p̃(dx)=
∑N

i=1
p(xi)/q(xi)

P

N

i=1
p(xi)/q(xi)

δxi(dx)

in which xi are i.i.d. samples fromq. Conditionnally
on {xi}, let {x̃i}M

i=1 be i.i.d. samples from̃p; then
{x̃i}M

i=1 become i.i.d. samples fromp if N → ∞.

3.2. Sampling before or after updating ?

Eqs. (5)-(6) transformp(xn−1|y0:n−1) into p(xn|y0:n) or,
equivalently,p(dxn−1|y0:n−1) into p(dxn|y0:n). If exact
computing is impossible, MC approximations ofp(dxn|y0:n)
can still be obtained by plugging a discrete approximation of
p(dxn−1|y0:n−1) into (5)-(6). However, the resulting ap-
proximate measure is continuous, so sampling is needed at



some point of the process if we want to further proceed at
time n + 1 and finally get an SMC algorithm. Now, a nat-
ural question iswhenshould one sample the new particles;
we shall now revisit from this point of view the Bootstrap
algorithm [1], and the SIR algorithm with optimal CID [5].

3.2.1. Sampling before updating.

In this option we implement (5)-(6), with a sampling step po-
sitioned after (5). Let us thus assume that at timen − 1 we
have a discrete random approximation ofp(dxn−1|y0:n−1) :

p̂(dxn−1|y0:n−1) =

N∑

i=1

wi
n−1δxi

n−1
(dxn−1) . (10)

Injecting into (5) we get an approximation̂pc(xn|y0:n−1) (su-
perscriptc stands for continuous) ofp(xn|y0:n−1) :

p̂c(xn|y0:n−1) =

N∑

i=1

wi
n−1p(xn|x

i
n−1). (11)

Since we sample at the end of the prediction step we need to
get N samples{xi

n}
N
i=1 from the mixture pdf (11). To that

end we can use§3.1 (point 2), i.e. first sampleN pointsx̃i
n−1

according to
∑N

i=1 wi
n−1δxi

n−1
(dxn−1), and next samplexi

n

fromp(xn|x̃i
n−1). At the end of this two-step sampling mech-

anism,p̂(dxn|y0:n−1) =
∑N

i=1
1
N δxi

n
(dxn) is a discrete ap-

proximation ofp(dxn| y0:n−1), and from (6)

p̂(dxn|y0:n)
def
=

N∑

i=1

p(yn|xi
n)

∑N
i=1 p(yn|xi

n)
︸ ︷︷ ︸

wi
n

δxi
n
(dxn). (12)

Let us summarize the

Algorithm 1.

Let p̂(dxn−1|y0:n−1) =
∑N

i=1 wi
n−1δxi

n−1
(dxn−1) approxi-

matep(dxn−1|y0:n−1).

R. For1 ≤ i ≤ N , samplẽxi
n−1

from
∑N

i=1 wi
n−1δxi

n−1
(dxn−1);

S. For1 ≤ i ≤ N , samplexi
n from p(xn|x̃i

n−1);

W. For1 ≤ i ≤ N , computew̃i
n = p(yn|xi

n).

Computewi
n ∝ w̃i

n,
∑N

i=1 wi
n = 1. Then p̂(dxn|y0:n) =∑N

i=1 wi
nδxi

n
(dxn) approximatesp(dxn|y0:n).

Up to a shift, the above algorithm(R, S, W ) is thus noth-
ing but the well-known Bootstrap algorithm [1], which con-
sists of the successive stepsS → W → R. In particular, from
this point of view the famousresampling(or selection) step
R of the Bootstrap algorithm is indeed nothing but the first
step of the composition method used when sampling from the
mixture

∑N
i=1 wi

n−1p(xn|xi
n−1) (see§3.1, point 2).

3.2.2. Sampling after updating.

Let us now choose the option of sampling after the end of the
prediction and updating steps. Starting from (11) again, and
injecting (11) into (6) we get

p̂c(xn|y0:n) =

∑N
i=1w

i
n−1p(yn|xn)p(xn|xi

n−1)∑N
i=1w

i
n−1

∫
p(yn|xn)p(xn|xi

n−1)dxn

,

which, due to (4), can be rewritten as the mixture

p̂c(xn|y0:n) =

N∑

i=1

wi
n−1p(yn|xi

n−1)∑N
i=1 wi

n−1p(yn|xi
n−1)

p(xn|x
i
n−1,yn),

which one should finally sample from. Using again (§3.1,
point 2) leads to the following algorithm, which coincides
with [4, Algorithm 8.1.1 p. 253] :

Algorithm 2.

Let p̂(dxn−1|y0:n−1) =
∑N

i=1
1
N δ

x
i

n−1
(dxn−1) approximate

p(dxn−1|y0:n−1).

W. For1 ≤ i ≤ N , computewi
n ∝ p(yn|xi

n−1).

R. For1≤ i≤ N , samplẽxi
n−1∼

∑N
i=1w

i
n−1δxi

n−1
(dxn−1);

S. For1 ≤ i ≤ N , samplexi
n from p(xn|x̃

i
n−1,yn).

Thenp̂(dxn|y0:n) =
∑N

i=1
1
N δxi

n
(dxn) ≃ p(dxn| y0:n).

Comparing with§2.2, we see that Algorithm 2 is a re-
ordering of the SIR PF algorithm with optimal CID (and with
systematic resampling) [5]. However, these two algorithms
are not simply related by a shift in time, as were Algorithm 1
and the Bootstrap algorithm above. More precisely, in [5] the
successive steps areS → W → R (or W → S → R, be-
cause theS andW steps commute), while the recursive loop
of Algorithm 2 is made of the successive stepsW → R → S.
So if there is resampling,xi

n is sampled fromp(xn|xi
n−1,yn)

in [5], while in Algorithm 2x
i
n ∼ p(xn|x̃i

n−1,yn) in which

x̃
i
n−1 ∼

∑N
i=1 wi

n−1δxi

n−1
(dxn−1); in others words, each old

particlex
i
n−1 is taken equally into account in [5], while only

those with high weights do contribute to the updated trajec-
tory in Algorithm 2.

3.3. The role of the transition pdfp(xn,yn|xn−1)

As we have already seen, the two Bayes factorizations (3),
(4) of p(xn,yn|xn−1) play an important role. Injecting them
into (2) respectively gives (hereN stands for numerator) :

p(xn−1,xn|y0:n)
(3)
=

p(yn|xn)

p(xn−1,xn|y0:n−1)︷ ︸︸ ︷
[p(xn|xn−1)p(xn−1|y0:n−1)]

p(yn|y0:n−1) =
∫

Ndxn−1dxn

(13)



(4)
= p(xn|xn−1,yn) [

p(yn|xn−1)p(xn−1|y0:n−1)

p(yn|y0:n−1) =
∫

Ndxn−1
]

︸ ︷︷ ︸
p(xn−1|y0:n)

. (14)

Both formulas enable to computepn|n from pn−1|n−1; (13)
uses the pathpn−1|n−1 → pn|n−1 → pn|n, and (14) the path
pn−1|n−1 → pn−1|n → pn|n. So in the first solution we pre-
dict xn, based on the same data, and then updatepn|n−1

thanks toyn; while in the second path we update first, and
next predict the statexn.

Let us turn to MC approximations of these exact formu-
las. We first consider (13), and begin with the formula in
brackets. We assume that atn − 1 we haveN samples from
p(xn−1|y0:n−1). Using (§3.1, point 1) we getN samplesxi

n

from p(xn|y0:n−1) by drawingx
i
n from p(xn|xi

n−1). Next
using (§3.1, point 3), we getN (approximate) samples from
p(xn|y0:n) ∝ p(yn|xn) p(xn|y0:n−1) by sampling from
(12). We indeed just described the sampling stepS, followed
by the updating step(W, R) of the Bootstrap algorithm.

Let us now address (14), beginning by the equation in
brackets. Assume again that atn − 1 we haveN sam-
ples fromp(xn−1|y0:n−1). From the SIR mechanism de-
scribed in (§3.1, point 3), we compute weightswi

n pro-
portional to p(yn|xi

n−1);
∑N

i=1 wi
nδ

x
i

n−1
(dxn−1) approx-

imates p(dxn−1|y0:n), and (re)sampling from this distri-
bution provides (approximate) samples{x̃i

n−1}
N
i=1 from

p(xn−1|y0:n). Using (§3.1, point 1), we finally samplexi
n

from p(xn|x̃
i
n−1,yn) = p(xn|x̃

i
n−1,y0:n). We indeed just

described the updating step(W, R) of Algorithm 2, followed
by its sampling stepS, i.e. the reorganized SIR algorithm
with optimal CID.

3.4. SIR with optimal CID : original or reorganized ?

We now come back on the differences between Algorithm 2
and the original SIR algorithm with optimal CID. Although
both algorithms coincide in the absence of resampling, and
both rely on IS techniques, they do not stem exactly from the
same rationale, as we now explain.

Let us begin with the SIR algorithm. At fixed timen − 1,
we would like to compensate the missing pdfp(x0:n−1|y0:n−1)
by multiple imputations fromp(x0:n−1|y0:n−1), and next re-
place the corresponding expectations accordingly. Since it is
easier to sample fromq, we indeed dispose of the weighted
measure (7). Now, due to condition (8) this IS algorithm can
be sequentialized easily : each old trajectoryx

i
0:n−1 is kept

unaltered and is simply extended by one new particlex
i
n. But

a drawback of this simple computational scheme is that in
the absence of resampling, the trajectories do not fully take
into account the data : the new datumyn can only modify (at
least if the optimum CID is used) the present and future val-
ues of the trajectories, but not the past ones. So the original
algorithm is, by nature, a batch IS algorithm which has been
rendered adaptive, but in which the trajectories, in the ab-

sence of resampling, tend to diverge (as time increases) from
trajectories sampled from the target densityp(x0:n|y0:n).

By contrast, Algorithm 2 is not a SIS (or SIR) algorithm,
in the sense that it is not a sequential version of an algo-
rithm based on IS. Considered as a batch algorithm, at time
n − 1, p̂(dx0:n−1|y0:n−1) =

∑N
i=1

1
N δ

x
i

0:n−1
(dx0:n−1),

in which the N trajectories are (exactly) sampled from
q(x0:n−1|y0:n−1) = p(x0:n−1|y0:n−1). Let us now ad-
dress the sequential version. Atn we need to sample from
q(x0:n|y0:n) = p(x0:n|y0:n) =

p(xn|xn−1,yn)︸ ︷︷ ︸
p(xn|xn−1,yn)

(§3.1, point 1)

× [
p(yn|xn−1)

p(yn|y0:n−1)
p(x0:n−1|y0:n−1)]

︸ ︷︷ ︸
p(x0:n−1|y0:n)

(§3.1, point 3)

. (15)

For this density the sufficient condition (8) isnot satisfied
(because of the multiplicative factor within the bracket),so
the trajectories cannot be updated so easily. The presence
of this factor means that we should transform trajectories
sampled fromp(x0:n−1|y0:n−1) into trajectories sampled
from p(x0:n−1|y0:n). To that end we can use IS : from
Rubin’s sampling scheme (see§3.1, point 3), by updat-
ing the weights first we step from̂p(dx0:n−1|y0:n−1) =∑N

i=1
1
N δ

x
i

0:n−1
(dx0:n−1) to p̂(dx0:n−1|y0:n) =

∑N
i=1

p(yn|xi

n−1)
P

N

i=1
p(yn|xi

n−1
)

δ
x

i

0:n−1
(dx0:n−1), and next by resampling

we get (approximate) trajectories fromp(dx0:n−1|y0:n).
Comparing with SIR algorithms, in this scheme we reweight
all the trajectories first and then reselect them according to
their weights. We finally sample a new particlex

i
n by using

(§3.1, point 1).
Finally in SIR algorithms the batch estimates are funda-

mentally based on IS, but due to condition (8) no Bayes step
is needed when updating the trajectories, and so no further IS
mechanism is introduced. In Algorithm 2 the batch estimate
is not based on IS, but updating trajectories requires a Bayes
step and a Markovian step (see (15)), so IS is introduced lo-
cally as a means to implement the Bayes mechanism.

4. PREDICTION-BASED PF ALGORITHM

In §2 and 3 we focused on direct PF algorithms, i.e. on
approximate ways of computingp(dxn|y0:n) directly from
p(dxn−1|y0:n−1). Even though the process is very natural, it
leads to the difficulty that the optimal CID is difficult to com-
pute in practice. So many efforts have been expended in order
to approximate this CID (see e.g. [5] [4] ). In this section we
will try to bypass this difficulty by computingp(dxn|y0:n)
indirectly, via the prediction distributionp(dxn|y0:n−1). So
we shall first deal with the generic PP problem (see§4.1) and
we shall next address the connection with the PF problem
(see§4.2).



4.1. The generic PP problem

Similarly to §2.1, particlepredictioncan be set as follows.
From (1) we get

p(x0:n+1|y0:n) =
p(xn+1,yn|xn)

p(yn|y0:n−1)
p(x0:n|y0:n−1). (16)

Let us thus start fromp(dx0:n|y0:n−1) ≃
∑N

i=1 wi
n−1

δ
x

i

0:n
(dx0:n), in which samplesxi

0:n are generated from
q(x0:n|y0:n−1), and the prediction importance weightswi

n−1

now satisfywi
n−1 ∝ p(xi

0:n|y0:n−1)/ q(xi
0:n|y0:n−1). Let us

assume that

q(x0:n+1|y0:n) = q(xn+1|x0:n,y0:n)q(x0:n|y0:n−1).

As for the updating of the importance weights, (9) becomes

wi
n ∝

p(xi
n+1,yn|xi

n)

q(xi
n+1|x

i
0:n,y0:n)

︸ ︷︷ ︸
λi

n

×
p(xi

0:n|y0:n−1)

q(xi
0:n|y0:n−1)︸ ︷︷ ︸
∝wi

n−1

. (17)

Finally
∑N

i=1w
i
nδ

x
i

0:n+1
(dx0:n+1) approximatesp(dx0:n+1|y0:n),

and thusp(dxn+1|y0:n) ≃
∑N

i=1 wi
nδ

x
i

n+1
(dxn+1).

Similarly to §2.2, one should also chooseq(xn+1|x0:n,
y0:n) properly. It is easy to show [6] that the CIDq(xn+1|
x

i
0:n, y0:n) = p(xn+1|xi

n) minimizes the variance of weight
wi

n conditionally onx
i
0:n andy0:n. So in the PP problem,

the optimal CID coincides with the prior transition pdf of the
Markov chainx, from which it is often easy to sample from.
Computing the incremental weight is also much easier that in
PF, sinceλi

n now reduces top(yn|xn), which is nothing but
the HMC elementary observational transition in (1). Stated
otherwise, we cumulate the advantages of choosing both the
prior (for practical issues) and the posterior (for optimality re-
sults) CIDs, since in the PP problem both transitions coincide.

4.2. Prediction based PF algorithms

In §3.3, we have seen that the two factorizations ofp(xn,yn|
xn−1) obtained by Bayes ’s rule led to two different formulas
(see (13) and (14)) which indeed expressed the two two-step
paths of the elementary recursionpn−1|n−1 → pn|n which
are obtained when moving one index first and then the other
(i.e., one can choose to first update pdfpn−1|n−1, and then
propagate the state variable, or vice versa).

For PP the role played by the elementary transition
p(xn,yn|xn−1) in PF is now played byp(xn+1,yn|xn)
which, due to Bayes’s rule, can be factorized as :

p(xn+1,yn|xn) = p(yn|xn)p(xn+1|xn) (18)

= p(xn+1|xn)p(yn|xn). (19)

So the two factorizations coincide if we commute the factors.
However we should not, because injecting (18) and (19) in
(16) leads to the following equations :

p(xn,xn+1|y0:n)
(19)
= p(xn+1|xn)

p(xn|y0:n)
︷ ︸︸ ︷
p(yn|xn)p(xn|y0:n−1)

p(yn|y0:n−1) =
∫

Ndxn

(20)

(18)
=

p(yn|xn)

p(xn,xn+1|y0:n−1)︷ ︸︸ ︷
[p(xn+1|xn)p(xn|y0:n−1)]

p(yn|y0:n−1) =
∫

Ndxndxn+1
(21)

So, as above, (20) and (21) describe the two different ways of
going frompn|n−1 to pn+1|n which are obtained when incre-
menting one time index at a time. Let us now consider MC
implementations of these formulas.

The first one is the pathpn|n−1 → pn|n → pn+1|n : in (20)
pn|n−1 is first updated topn|n, and then we step to the next
prediction pdfpn+1|n. A direct MC implementation of (20)
results in the stepsW , R andS of Algorithm 1 (see§3.2.1).
So this algorithm happens to be a (time shifted) version of the
Bootstrap algorithm. At this point, it is interesting to observe
that the Bootstrap algorithm, with its prior CID, is ”optimal”
(in the sense of the CID) for the PP problem.

Taking the marginals w.r.t.xn and xn+1, we see that
(21) is a compact way of describing the pathspn|n−1 →
pn+1|n−1 → pn+1|n (which is the recursive loop of the al-
gorithm) andpn|n−1 → pn|n (already obtained in (6)). This
solution is well known in KF (see e.g. [7, Thm 9.5.1]). Using
§3.1 again, a direct MC implementation of this algorithm is
given by the following algorithm (first obtained in [6]) :

Algorithm 3. Let p(dxn|y0:n−1) ≃
∑N

i=1 wi
nδxi

n
(dxn).

Prediction.

• For i = 1, · · · , N , samplexi
n+1 ∼ p(xn+1|xi

n);

• For i = 1, · · · , N , computewi
n+1 ∝ p(yn|x

i
n) × wi

n;

• Resample (if necessary) from
∑N

i=1 wi
n+1δxi

n+1
(dxn+1);

• Thenp(dxn+1|y0:n) ≃
∑N

i=1 wi
n+1δxi

n+1
(dxn+1).

Filtering.

• For i = 1, · · · , N , setκi
n = wi

n+1;

• Thenp(dxn|y0:n) ≃
∑N

i=1 κi
nδxi

n
(dxn).

5. SIMULATIONS

In the previous sections we considered direct MC implemen-
tations of some recursive formulas for computingp(dxn|y0:n),
and finally we described four algorithms (two direct PF algo-
rithms, and two PP-based PF algorithms) :

1. The Bootstrap filter (see Algorithm 1), which corre-
sponds to the pathpn−1|n−1 → pn|n−1 → pn|n;



2. The reorganized SIR algorithm with optimal CID
(see Algorithm 2), which corresponds topn−1|n−1

→ pn−1|n → pn|n;

3. The algorithm which implementspn|n−1 → pn|n →
pn+1|n; since it is nothing but the time-shifted Boot-
strap, we shall not differentiate it from Algorithm 1;

4. And finally Algorithm 3, which corresponds to the path
pn|n−1 → pn+1|n−1 → pn+1|n

↓
pn|n

.

In this section we perform some simulations. Let

xn+1= 0.5xn +
25xn

(1 + x2
n)

+ 8 cos(1.2(n + 1)) + un,

yn= xn + vn.

We setx0 ∼ N (0, 1) andun ∼ N (0, 10). Let j be the re-
alization andn the running time. We set1 ≤ j ≤ P with
P = 50 and0 ≤ n ≤ M with M = 40. We first setN = 300
particles, and we plot the empirical standard deviationJ , de-
fined as

J =
1

M + 1

M∑

n=0

(
1

P

P∑

j=1

(x̂j
n|n − xj

n)2)1/2 (22)

as a function ofvar(vn). The results are displayed in Table
1. We next setvar(vn) = 5, and we displayJ , as a function
of the number of particlesN (see Table 2).

As far as PP-PF algorithms are concerned, the Bootstrap
algorithm always outperforms Algorithm 3, probably because
datayn is taken into account before we proceed to the sam-
pling step. On the other hand, the relative performance of the
Bootstrap w.r.t. Algorithm 2 depends onvar(vn), i.e. on the
shape of the likelihood; as is well known, the Bootstrap is ex-
pected not to give good results if the likelihood is very sharp,
but on the other hand we can see that there are situations in
which the Bootstrap gives better results than Algorithm 2. Fi-
nally the results of Table 2 confirm that for all algorithmsJ
decreases with the number of particles.

var(vn) Alg. 3 Alg. 1 Alg. 2

.3 1.0686 0.5680 0.5473
3 1.5767 1.5512 2.0090
10 2.3692 2.3611 4.3705

Table 1. Emp. standard deviation as a function ofvar(vn)

6. CONCLUSION

In this paper we first revisited two classical PF algorithms,
the Bootstrap algorithm and the reorganized SIR algorithm

N Alg. 3 Alg. 1 Alg. 2

100 2.0496 1.9145 2.7945
200 1.9303 1.8757 2.8808
400 1.9010 1.8723 2.7980
600 1.8076 1.8047 2.7660

Table 2. Empirical standard deviation as a function ofN

with optimal CID. Both algorithms are two natural MC ap-
proximations of the same exact recursive formula, which
only differ by the time instant in which sampling is intro-
duced. Alternately they are natural MC implementations of
the two two-step formulas for computingp(dxn|y0:n) from
p(dxn−1|y0:n−1), in which one first increments one time
index and then the other.

We next considered PP. This problem is simpler than PF,
because the optimal CID happens to be the prior transition of
x, from which it is often simple to sample from. We observed
in particular that the Bootstrap is indeed optimal for PP. Mo-
tivated by this result we considered PP-based PF algorithms,
in which the distribution of interestp(dxn|y0:n) is obtained
indirectly, as a byproduct of a recursive loop involving pre-
diction distributions. Simulations showed that the Bootstrap
can indeed behave better than the SIR algorithm with optimal
CID, depending on the shape of the likelihood function.
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