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ABSTRACT Injecting (3) into (2), and taking the marginal, we see that
p(xn|yo.n) caN be computed recursively by

Particle Filtering (PF) algorithms propagate in time a Mont

Carlo (MC) approximation of the a posteriori filtering mea-  P(Xn|yo:n-1) = /p(anan)p(dan|yO;n71), (5)
sure in a Hidden Markov Chain (HMC) model. In this paper

we first shed some new light on two classical PF algorithms,  p(x,|yom) = PYnXn)P(nlYom-1) (6)
which can be considered as natural MC implementations of J p(ynlxn)p(dxn|yo.n—1)

two two-step direct recursive formulas for computing the fil It remains to computg(x,,|yo.,) in practice. In the lin-

tering distribution. We next address the Particle Prealicti ear Gaussian case, exact recursive solutions are provided b
(PP) problem, which happens to be simpler than the PF prolkalman filtering (KF) techniques. In the general case how-
lem because the optimal prediction conditional importancever, computing eithep(xo..|yo.n) Of p(X,|yo.n) is either
distribution (CID) is much easier to sample from. Motivateddifficult or impossible, so approximate techniques havenbee
by this result we finally develop two PP-based PF algorithmsgeveloped. Among them, PF (see e.g. [1] [2] [3] [4] and refer-
and we compare our algorithms via simulations. ences therein) are sequential MC (SMC) methods which aim

Index Terms— Particle Filtering, Sequential Importance at computing a discrete approximationgtx yo:n)-

Sampling, Sampling Importance Resampling, Optimalimporivlclvlorer F;(rierflst?lﬁ’ T?hny e;ffgrtls rhave llaeenl drevotref\ll tof t:‘_e
tance function, Hidden Markov Chains. approximation of the global (resp. local) recursive fo

mula (2) (resp. (5)-(6)). At this point, let us notice howeve
that (5)-(6), say, is one recursive formula fpx,|yo..)
which explicitely computes this density as the recursion
p(xn—1|YO:n—1) . p(xn|YO:n—1) - p(xn|y0:n) (Or, in
: . SO, pp—_1jn—1 = Pnjn—1 = Pnjn); SO COMpUtiNG,,|,, from
Letx, € IR™ andy, € IR” be respectively a hidden and Pojo Via (5)-(6) amounts to walking along one particular path,
observed process. Lgtx,|yo.,), say, denote the probabil- made of the succession of a predictive step and an updating
ity density function (pdf) ofx,, givenyo.n = {y:i}iio- L€t  step. However following this path is not the only possible
p(dx) = p(x)dx be the continuous measure with densityyay to computep,,,. In other words, we should not neces-
p(x). We assume thgtx,, y, } is an HMC : sarily try to get the best possible approximation of (5)-(6)
what we really look for is a good approximation @f),,, no
matter how it is obtained, evenjif,,, is obtained indirectly,
P(X0:n, Yo:n) = p(X0) HP(XAXZ”) HP(Yi|Xi)~ @ as the byproduct of some recurslive algorithm. These ideas
=t =0 are well known in the context of KF, but not in PF, so the aim

We deal with the Bayesian filtering problem, which consistsOf the present paper is to investigate them in the context of

. : P SMC techniques.
in computin »|yo:n) at each time instant. From (1 : . .
Putingp(xx yo:n) @ This paper is organized as follows. 2 we recall PF.

Next in §3 we revisit two classical PF algorithms (the Boot-

1. INTRODUCTION

n n

p(xn,7 Yn|xn—1)

P(X0:n|Yon)= p(Xo:n—1|yom—1), (2)  strap filter [1], and a (reorganized) SIR algorithm with epti
P(¥nlyom—1) mal CID [5]) from two different points of view. First, both
, , i algorithms can be seen as direct MC implementations of (5)-
in whichp(xy, yu|xn-1) can be factorized as (6), which differ only by the instant when we sample from
an approximate continuous distribution in order to get a dis
P(Xns Ynlxn—1) = p(¥nlxn)p(Xn|Xn-1) (3)  crete one; next, they can be seen as natural MC implemen-

= p(Xn|Xn-1,¥n)P(¥Yn|Xn-1). (4) tations of the recursive l00RS, _1jn—1 — Prujn—1 — Pnjn



andp,,_1jn—1 — Pn—1|n — Pn|n Which, inturn, directly stem (either systematically or according to some strategy) zsa
from the two Bayes factorizations (3) and (4) of the transi-to choose the CIQ(x,,|x}.,,_1,Yo.n) carefully.
tion pdf p(x,,,y¥n|xn—1) in (2). Now a drawback of direct To that respect, sampling from tlaeprioritransition ker-
PF is that the optimal CID is often difficult to compute or to nel of the Markov chaix (i.e., choosing (x,, [x}.,,_1, Yo.n) =
sample from. So if§4 we address the PP problem, which p(x,|x}.,,_1) = p(x.|x,_;), which was the original choice
happens to be easier than the PF problem because in the pie-the so-called Bootstrap filter [1]) is popular because-sam
diction case the optimal CID coincides with the prior tran-pling from p(x,, |x%,_,) is often straightforward. Moreover,
sition p(x,|x,—1) of the Markov chainx,,, which is often computing the incremental weigh, in (9) reduces to evalu-
straightforward to sample from. Motivated by this observa-ating the conditional likelihood of the new observationegiv
tion we address PP-based PF, in which the distribution of inthe updated particle position.
terestp(x,, |yo.») is computed indirectlyyia a PP algorithm However, this choice can lead to poor performances,
(i.e., the recursive loop is now am(x,|yo.n—1)). Simula- and it is often preferable to sample from the optimal CID
tions are performed i§5, and we end the paper with some ¢°P!(x,,|x%.,_1,Yon) = p(Xn|x%,_1,¥n) [5], i.e. the dis-
concluding remarks. tribution which minimizes the variance of the importance
weightsw?,, conditionally on the observations., and past

> THE PE METHODOLOGY samples}.,,_;. In this case\!, = p(y,|x%_1).

2.1. The generic PF algorithm 3. REVISITING SOME DIRECT PF ALGORITHMS

Let us recall the principle of PF [2] [3] which is based on | this section, we shall revisit some classical PF algarith

importance sampling (IS). Assume that attime 1 we have  (the Bootstrap filter and the PF with optimal CID evoked

a discrete measure which approximaiééxo..—1|yon—1) ©  above) from two different points of view (sé8.2 and 3.3).
But it will prove useful to first recall the 3 simulation tech-

al nigues that are used whenever we deal with PF algorithms.

p(dxo:n—l |y0:n—1) =~ Z wgfléxém_l (dXO:n—l) ) (7)
=1

3.1. Three generic simulation techniques

whered,, is the Dirac mass at point, the samples}_, ; are

generated from an importance distributigixo.,.—1|yo:n—1),

and the importance weights!,_, associated to the-th

trajeCtoryX%):n—l is given byw:v—l X p(xgzn—1|y0:n—1)/

In all PF algorithms we sampleS} new particles, update
some weights 1{’) and (possibly) resampleR) from a
weighted discrete measure. These three SMC elementary
operationsS, W and R are indeed related to the following

A(Xpon 1[Yom—1), Tl w), g = L. Letus see how to g G e techniques.
compute (7) recursively. If we assume that the importance
distribution factorizes as 1. (S step. Letx; ~ p(x) and let us sampleg; from
p(ylx;). Then(z;,y;) is a sample from(z, y) and thus
q(XO:n|yO:n) = Q(Xn|X0:n717 yO:n)q(XO:n71|y0:n71)a (8) Yi isa Sample fror@(y)
i.e. thatq(xo.n—1|y0.n—1) is @ marginal ofj(xo.»|yo.»), then 2. (R, S) step}. Letp(y) be the mixturep(y) = > "1~
forall1 <i < N, [x}.,] = [x}.,,_1,%], in which x!, is a; pi(y) with a; > 0 and>” «; = 1. Letj be sampled
sampled from the CIQ(x,,|x%.,,_1, Yo:n)- As for the weights from p(z) = >, @;d;(dx) and nexty be sampled
w;,, we see from (2) that they can be computed recursively as fromp;(y). Theny is a sample fronp(y).
wi o PO Y1) PO [Yomo1) ©) 3. (W, R) step}. ggtp(dx):zi’i 1%@@@
" (X X1, Y0n)  A(XG 1 |Y0m—1) in which z; are i.i.d. samples from. Conditionnally

on {z;}, let {z'}M be i.i.d. samples fronp; then
{7'}M | become i.i.d. samples fromif N — oco.

AL oxw?
Finally Zi}:\# w”’,5x5=n (dx0:n) appr-OXImateS;o(dxo;n|y0;n), 3.2. Sampling before or after updating ?

and thusy J;” | wy, dx: (dx,,) approximate®(dx,|yo.n)-

Egs. (5)-(6) transformp(x,,_1|yo:n_1) iNt0 p(x,|yo.n) OF,
equivalently, p(dx,—1|yo.n—1) INto p(dx,|yo.n)- If exact
computing is impossible, MC approximationgsgfix,,|yo.»)

Now, sequential IS (SIS) algorithms are well known to suffercan still be obtained by plugging a discrete approximation o
from weights degeneracy. It has thus proved important in the(dx,,—1|yo.n—1) into (5)-(6). However, the resulting ap-
above generic algorithm to resample fr@'fv:1 wgéx; (dx,)  proximate measure is continuous, so sampling is needed at

2.2. Practical considerations



some point of the process if we want to further proceed aB.2.2. Sampling after updating.

timen + 1 and finally get an SMC algorithm. Now, a nat-
ural question isvhenshould one sample the new particles;
we shall now revisit from this point of view the Bootstra

algorithm [1], and the SIR algorithm with optimal CID [5].

3.2.1. Sampling before updating.

Let us now choose the option of sampling after the end of the

D prediction and updating steps. Starting from (11) agaid, an

injecting (11) into (6) we get

N )

“c Ziszz%,—lp(yn|Xn)p(xn|va,—1)

p (an’():n) - N i i B
Zi:lwn—l fp(YH|Xn)p(Xn|Xn—1)dxn

In this option we implement (5)-(6), with a sampling step po-

sitioned after (5). Let us thus assume that at time 1 we
have a discrete random approximatiorp¢fx,,—1|yo.n—1) :

(dx,1) . (10)

n—

N
]/D\(dxn,1 |y0:n71) - Z wifldxi
=1

Injecting into (5) we get an approximatiof(x,, |yo.n—1) (Su-
perscriptc stands for continuous) @f(x,, |yo.n—1) :

N
Pe(%nlyom—1) = D wh_ip(xalx,_y).  (11)
=1

which, due to (4), can be rewritten as the mixture

N

ﬁc(xn|y0:n) = Z

i=1

w;—1P(Yn|qu,—1)

N i : p(Xn|Xi 71aYn)a
> im1 W1 P(YnlX), 1) "

which one should finally sample from. Using aga§3.q,
point 2) leads to the following algorithm, which coincides
with [4, Algorithm 8.1.1 p. 253] :

Algorithm 2.

Letp(dxn1|yom-_1) = S0, %0 (dx,_1) approximate

—1

Since we sample at the end of the prediction step we need {gdx,, 1|yo.n_1)-

get N samples{x},} ', from the mixture pdf (11). To that

end we can usg3.1 (point 2), i.e. first sampl®& pointsx},_;
according toy ) wy,_10xi _ (dx,—1), and next sample;,

—1

fromp(x,|x!,_;). Atthe end of this two-step sampling mech-

anismp(dx, |yo.n—1) = Zf;l + dx: (dx,) is a discrete ap-

proximation ofp(dx,,| yo..—1), and from (6)

def o plyalxi)
p(dxn|y0:n) = N T P 5x
=7 > im1 p(ynlxi)
—_

i
Wy,

(dx,).  (12)

i
n

Let us summarize the
Algorithm 1.
Let p(dxn—1|yon—-1) = Zf\; w%-ﬁxﬁl_l(dxnfl) approxi-
matep(dx, _1|Yom_1)-
R. Forl <i< N,samplex!,_,

from >N wi_ 8 (dxa_1);

S. Forl <i < N, samplex?, from p(x,|X%_;);

W. Forl <i < N, computer!, = p(y,|x%).

Computew!, o @l,, SN, w!, = 1. Thenp(dx,|yom) =

Zfil w;,0x: (dxy,) approximated(dxy |yo:n)-
Up to a shift, the above algorithR, S, W) is thus noth-

ing but the well-known Bootstrap algorithm [1], which con-

sists of the successive steps— W — R. In particular, from
this point of view the famousesampling(or selectio step

R of the Bootstrap algorithm is indeed nothing but the first S)
. . p(xn—17xn|y0:n)
step of the composition method used when sampling from the

mixture "N | wi_ p(x, %) (see§3.1, point 2).

W. Forl <i < N, computew! oc p(y,|xi_;).

R. For1< i< N,samplexi,_~ SN wi 6. (dx, 1);

—1

S. Forl <i < N, samplext fromp(x,|X!_1,yn).

Thenﬁ(dxn|y0:n) = Ef\il %5le (dxn) =~ p(an| yo:n)-
Comparing with§2.2, we see that Algorithm 2 is a re-
ordering of the SIR PF algorithm with optimal CID (and with
systematic resampling) [5]. However, these two algorithms
are not simply related by a shift in time, as were Algorithm 1
and the Bootstrap algorithm above. More precisely, in [8] th
successive stepsafe— W — R (or W — S — R, be-
cause thes andW steps commute), while the recursive loop
of Algorithm 2 is made of the successive stégs— R — S.
So ifthere is resampling’, is sampled fromp(x,, |x!,_;, yx)
in [5], while in Algorithm 2x! ~ p(x,|X}_;,y,) in which
iy~ YL wh 10y (dx,_1);in others words, each old
particlex?, _, is taken equally into account in [5], while only
those with high weights do contribute to the updated trajec-
tory in Algorithm 2.

3.3. The role of the transition pdf p(x,,, ¥ |Xn—1)

As we have already seen, the two Bayes factorizations (3),
(4) of p(x,, yn|xn—1) play an important role. Injecting them
into (2) respectively gives (he® stands for numerator) :

p(xnflyxnl)’[]:nfl)

@ p(yn|xn) [p(xn|xn71)p(xnfl|y0:n71)]
p(yn|y0:n71) = deanlan
(13)




4)

n | Xn— Xn— n— i i i i
o [Xn_1, ) [P(y [Xn—1)P(Xn—1|y0 1)] (14)  sence of resampling, tend to diverge (as time increases) fro

p(Ynlyom—1) = [ Ndx,_1"" trajectories sampled from the target dengityo.,|yo:» )-

By contrast, Algorithm 2 is not a SIS (or SIR) algorithm,
in the sense that it is not a sequential version of an algo-
Both formulas enable to computg,,, from p,,_1j,—1; (13)  rithm based on IS. Considered as a batch algorithm, at time
uses the patP, —1jn—1 = Pujn—1 = Pujn, @A (LA) the path n — 1, p(dxom-1lyon-1) = Yoy w0 (dXon-1),
Pn—1jn—1 = Pn—1jn — Pnn- SO in the first solution we pre- jn which the N trajectories are (exactly) sampled from
dict x,,, based on the same data, and then up@ale_1  (xg.,_1|yom_1) = p(Xom_1|yom_1). Let us now ad-
thanks toy,; while in the second path we update first, andgress the sequential version. Atwe need to sample from
next predict the state,,. o (X0 |Yom) = P(Xoin|youm) =

Let us turn to MC approximations of these exact formu-
las. We first consider (13), and begin with the formula in P(Yn|Xn—1)
brackets. We assume thatiat- 1 we haveN samples from  P(XnlXn—1,¥n) x [p(yn|y0m_1)p(x():”*1|yo¢”*1)] - (19)
p(xn—1lyon—1). Using §3.1, point 1) we gefV samples<’, P | 1.7m)
fro.m p(xnlyo:n__l) by drawingx?, from'p(xn|x;71). Next (§3.1, point 1) P(X0:m—1]y0:m)
using §3.1, point 3), we getV (approximate) samples from (§3.1, point 3)

P(Xn|}’0:n) o8 p(yn|xn) P(an’o:nfl) by Samp“ng from . . . . i L
(12). We indeed just described the sampling stefollowed ~ For this density the sufficient condition (8) i®t satisfied
by the updating stefi¥, R) of the Bootstrap algorithm. (because of the multiplicative factor within the brackeb,

Let us now address (14), beginning by the equation ihe trajectories cannot be updated so easily. The presence
brackets. Assume again that at— 1 we have N sam- of this factor means that we should transform trajectories
ples fromp(x,_1|yo:n_1). From the SIR mechanism de- sampled fromp(xo.n—1|yo:n—1) into trajectories sampled

scribed in §3.1, point 3), we compute weights? pro-  from p(xo.n—1lyo:n). To that end we can use IS : from

portional to p(y,|x%,_,); SN, wid. (dx, 1) approx- Rubin's sampling scheme (se.1, point 3), by updat-
not ing the weights first we step from(dxo.n—1|yon—1) =

imates p(dx,—1|yo.»), and (re)sampling from this distri- _T\ . N
bution provides (approximate) samples:, ,}~, from 2= N Oy, (@X0in—1) 10 P(dX:n-1[yoin) = D,y
p(xn-1|yo:n). Using §3.1, point 1), we finally sample;, %’“I‘l)) 6. (dxo.,_1), and next by resampling
from p(x,|X5,_1,¥n) = p(XnlX,_1,Yo0n). We indeed just —2i=tPWYnPn—1) Com—t

described the updating stép, R) of Algorithm 2, followed V¢ get (approximate) trajectories fromldxo:n—1[yon).
by its sampling stefs, i.e. the reorganized SIR algorithm Comparing with SIR algorithms, in this scheme we reweight

. X all the trajectories first and then reselect them according t
with optimal CID. their weights. We finally sample a new partictg by using
(83.1, point 1).
3.4. SIR with optimal CID : original or reorganized ? Finally in SIR algorithms the batch estimates are funda-

entally based on IS, but due to condition (8) no Bayes step
is needed when updating the trajectories, and so no furgher |
echanism is introduced. In Algorithm 2 the batch estimate
not based on IS, but updating trajectories requires a8aye
tep and a Markovian step (see (15)), so IS is introduced lo-
cally as a means to implement the Bayes mechanism.

P(Xn—1|y0:n)

We now come back on the differences between Algorithm
and the original SIR algorithm with optimal CID. Although
both algorithms coincide in the absence of resampling, ang
both rely on IS techniques, they do not stem exactly from th%
same rationale, as we now explain.

Let us begin with the SIR algorithm. At fixed time— 1,
we would like to compensate the missing p&o.,,—1|yo.n—1)
by multiple imputations fromp(x¢.,,—1|y0:n—1), @and next re- 4. PREDICTION-BASED PF ALGORITHM
place the corresponding expectations accordingly. Sinise i
easier to sample fronp, we indeed dispose of the weighted In §2 and 3 we focused on direct PF algorithms, i.e. on
measure (7). Now, due to condition (8) this IS algorithm carapproximate ways of computingdx,, |yo.,) directly from
be sequentialized easily : each old trajectgfy, ; is kept  p(dx,_1|yo.n—1). Even though the process is very natural, it
unaltered and is simply extended by one new partiéleBut  leads to the difficulty that the optimal CID is difficult to com
a drawback of this simple computational scheme is that ipute in practice. So many efforts have been expended in order
the absence of resampling, the trajectories do not fullg takto approximate this CID (see e.qg. [5] [4] ). In this section we
into account the data : the new datym can only modify (at  will try to bypass this difficulty by computing(dx,|yo.»)
least if the optimum CID is used) the present and future valindirectly, via the prediction distributiop(dx,, |yo.,—1). S0
ues of the trajectories, but not the past ones. So the ofiginave shall first deal with the generic PP problem (§é4.) and
algorithm is, by nature, a batch IS algorithm which has beemve shall next address the connection with the PF problem
rendered adaptive, but in which the trajectories, in the abfsee§4.2).



4.1. The generic PP problem

Similarly to §2.1, particlepredictioncan be set as follows. P(xn|yo:n)
From (1) we get 1o
P\Yn|Xn )P\ Xn|Y0:n—
p(Xn,Xn+1|YO:n) (:)p(xn+1|xn) ( | ) ( _| - 1)
P(}’n|}’0:n71) - dexn
p(XO:n|y0:n—1)- (16) (20)

I’(xnvxn-f—l ‘YO:n—l)

p(xn,+17 Yn|xn)

PXo:n+1Yo:n) =
(onalyom) P(Yn|Yom—1)

Let us thus start fromp(dxo:n|yom-1) ~ SN wh @8) P(¥n|Xn) P(Xn1|%0)p(Xn[y0in—1)] 21)
Oxi., (dxo), In which samplesx;., are generated from P(YnlYom_1) = | Ndx,dx, i1

4(xo:n|yo:n—1), and the prediction importance weighty_, So, as above, (20) and (21) describe the two different ways of

gggfrﬁgiﬁgnﬂ o P(X0:n[Yon-1)/ 4(X0:n|[Yon—1)- LetUS going fromp,,|,,_; 10 p,, 11}, which are obtained when incre-
menting one time index at a time. Let us now consider MC
implementations of these formulas.
The firstone is the pathy,|,,—1 — Ppjn — Pntijn - I (20)
As for the updating of the importance weights, (9) becomes Pnjn—1 is first updated tg,,,, and then we step to the next
prediction pdfp,,,,),. A direct MC implementation of (20)
: . , (17)  results in the stepd/, R andS of Algorithm 1 (see§3.2.1).
4% 41[X0:05Y0m) — 4(X0.0|Y0:m—1) So this algorithm happens to be a (time shifted) version®f th
Bootstrap algorithm. At this point, it is interesting to eipge
that the Bootstrap algorithm, with its prior CID, is "optifha
Finally Zjvzlw;dxg_nﬂ(dxo:nﬂ) approximatep(dxo.,+1|yo:n), (in the sense of the CID) for the PP problem.
and thus(dx, 1 [Youn) = Eiz\il w2,5x;+1(dxn+1)- Tgkmg the marginals ;N.r.t.xn. a_md xﬁH, we see that
Similarly to §2.2, one should also choog€éx,, 1 1|X0:n, (21) is a compact way of describing the pagis,; —

: Prtijn—1 — Pnt1|n (Which is the recursive loop of the al-
Yo:n) properly. It is easy to show [6] that the Clix;,+1| : ) : .
X Yom) = p(xns1[xi ) minimizes the variance of weight gorithm) andp,,,,—1 — pn» (already obtained in (6)). This

w! conditionally onxi, . andyo... So in the PP problem, solution is well known in KF (see e.g. [7, Thm 9.5.1]). Using

the optimal CID coincides with the prior transition pdf o&th §.3'1 agal?l’ 6} ollllreqt MCI |mplr]emezfptat|obn O.f tf;lg algor.lthm IS
Markov chainx, from which it is often easy to sample from. given by the following algorithm (first obtained in [6])
Computing the incremental weight is also much easier that imlgorithm 3. Let p(dx,,|yo.n—1) =~ EiNzl w;(sx; (dxp).

PF, since)\!, now reduces t@(y,|x,), which is nothing but

the HMC elementary observational transition in (1). StatedPrediction.

otherwise, we cumulate the advantages of choosing both the

q(XO:n+1 |YO:n,) = q(Xn,+1 |X01n7 yo:n)Q(XO:n |YO:n,—1)-

'LU;L x p(XiL+17yn|X:L) p(xé):n|yo:n—1) .

i

)‘n KXWy 1

prior (for practical issues) and the posterior (for optiityare- o Fori=1,--- N, samplex; ., ~ p(Xn+1/x;);
sults) CIDs, since in the PP problem both transitions cdieci e Fori=1,---,N, computew;H o p(yn|xt) x wi;
4.2. Prediction based PF algorithms e Resample (if necessary) froﬁjﬁ\;1 wfv,+15x;+1 (dXn+1);

In §3.3, we have seen that the two factorizationp(©f,,, y .|
xn,—1) Obtained by Bayes 's rule led to two different formulas
(see (13) and (14)) which indeed expressed the two two-stepjjtering.
paths of the elementary recursipn_ij,,_; — py,, Which

e Thenp(dx,+1]yo:n) =~ vazl wﬁlﬂéxzﬂ (dxp41)-

are obtained when moving one index first and then the other o Fori =1,---, N, setx!, = w! _;

(i.e., one can choose to first update pgf |,,_,, and then N

propagate the state variable, or vice versa). e Thenp(dxn|yon) = > ;1 K 0xi (dXy).
For PP the role played by the elementary transition

P(Xn, yn[Xn-1) in PF is now played byp(x,+1,yn|Xn) 5. SIMULATIONS

which, due to Bayes's rule, can be factorized as :
In the previous sections we considered direct MC implemen-
PXnt1,¥nlXn) = PYnlXn)P(Xnt1/%2)  (18)  tations of some recursive formulas for computiidx, |yo.n ),
= p(Xnt41|x2)p(¥nlxn).  (19)  and finally we described four algorithms (two direct PF algo-

o L rithms, and two PP-based PF algorithms) :
So the two factorizations coincide if we commute the factors

However we should not, because injecting (18) and (19) in 1. The Bootstrap filter (see Algorithm 1), which corre-
(16) leads to the following equations : sponds to the path, _1j,,—1 — Prjn—1 — Pn|n



2. The reorganized SIR algorithm with optimal CID
(see Algorithm 2), which corresponds 19, 1,1

— Pn—1|n — Pn|n;
3. The algorithm which implements,,,_1 — pp, —

Pn+1jn; SINCE it is nothing but the time-shifted Boot-
strap, we shall not differentiate it from Algorithm 1;

4. And finally Algorithm 3, which corresponds to the path
Pnjn—1 7 Pn+lln—-1 7 DPntln
!
Pn|n

In this section we perform some simulations. Let

25xy,
(14 22)
Yn= Tp + Up.

Tpi1= 0.5z, + +8cos(1.2(n+ 1)) + up,

We setry ~ N(0,1) andu,, ~ N(0,10). Letj be the re-
alization andn the running time. We set < j < P with

P =50and0 <n < M with M = 40. We first setV. = 300

particles, and we plot the empirical standard deviatigrde-
fined as

1 , ,
_ =7 .0)2)1/2
T M1 Ean = Tn)")

J

(22)

> (

n=0

>

=1

P

as a function obar(v, ). The results are displayed in Table
1. We next sevar(v,,) = 5, and we display7, as a function
of the number of particled’ (see Table 2).

b

| N | Alg.3 ] Alg.1 | Alg. 2 |
100 | 2.0496| 1.9145| 2.7945
200 | 1.9303| 1.8757| 2.8808
400 | 1.9010| 1.8723| 2.7980
600 | 1.8076| 1.8047| 2.7660

Table 2. Empirical standard deviation as a function/éf

with optimal CID. Both algorithms are two natural MC ap-
proximations of the same exact recursive formula, which
only differ by the time instant in which sampling is intro-
duced. Alternately they are natural MC implementations of
the two two-step formulas for computingdx,, |yo.,) from
(d%n-1]yo:n—1), In Which one first increments one time
index and then the other.

We next considered PP. This problem is simpler than PF,
because the optimal CID happens to be the prior transition of
x, from which it is often simple to sample from. We observed
in particular that the Bootstrap is indeed optimal for PP-Mo
tivated by this result we considered PP-based PF algorjthms
in which the distribution of interegi(dx,,|yo..) is obtained
indirectly, as a byproduct of a recursive loop involving pre
diction distributions. Simulations showed that the Bawist
can indeed behave better than the SIR algorithm with optimal
CID, depending on the shape of the likelihood function.

7. REFERENCES

As far as PP-PF algorithms are concerned, the Bootstrg] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel

algorithm always outperforms Algorithm 3, probably beaaus

datay,, is taken into account before we proceed to the sam-

pling step. On the other hand, the relative performanceef th
Bootstrap w.r.t. Algorithm 2 depends oar(v,,), i.e. on the
shape of the likelihood; as is well known, the Bootstrap is ex
pected not to give good results if the likelihood is very ghar
but on the other hand we can see that there are situations
which the Bootstrap gives better results than Algorithmi2. F
nally the results of Table 2 confirm that for all algorithfis
decreases with the number of particles.

| var(v,) | Alg.3 | Alg. 1 | Alg. 2 |

3 1.0686| 0.5680| 0.5473
3 1.5767| 1.5512| 2.0090
10 2.3692| 2.3611| 4.3705

Table 1. Emp. standard deviation as a functionaf-(v,,)

6. CONCLUSION

In this paper we first revisited two classical PF algorithms

approach to nonlinear/ non-Gaussian Bayesian state esti-
mation,” IEE Proceedings-Fvol. 140, no. 2, 1993.

[2] A. Doucet, N. de Freitas, and N. Gordon, EdSequen-
tial Monte Carlo Methods in PracticeStatistics for En-
gineering and Information Science. Springer Verlag, New

. York, 2001.

in

[3] P.M. Djuric, J.H. Kotecha, Jianqui Zhang, Yufei Huang,

T. Ghirmai, M.F. Bugallo, and J. Miguez, “Particle filter-

ing,” IEEE Signal Processing Magazin2003.

[4] O. Cappé, E. Moulines, and T. Rydémference in Hid-
den Markov ModelsSpringer-Verlag, 2005.

[5] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential
Monte Carlo sampling methods for Bayesian filtering,”
Statistics and Computingol. 10, pp. 197-208, 2000.

[6] B. Ait el Fquih and F. Desbouvries, “A new Particle
Filtering algorithm with structurally optimal importance

function,” in Proc. IcasspLas Vegas, 2008.

[7] T. Kailath, A. H. Sayed, and B. HassibLinear estima-
tion, Prentice Hall Information and System Sciences Se-
ries. Prentice Hall, Upper Saddle River, NJ, 2000.

the Bootstrap algorithm and the reorganized SIR algorithm



