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Abstract—The Probability Hypothesis Density (PHD) filter is a
recent solution to the multi-target filtering problem. Because the
PHD filter is not computable, several implementations have been
proposed including the Gaussian Mixture (GM) approximations
and Sequential Monte Carlo (SMC) methods. In this paper, we
propose a marginalized particle PHD filter which improves the
classical solutions when used in stochastic systems with partially
linear substructure.
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Density, Gaussian Mixture, Particle Filter, Sequential Monte-
Carlo filter, Marginalized Particle Filters, Jump Markov Linear
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I. INTRODUCTION

S
INGLE object Bayesian filtering has been developed in

non linear and / or non Gaussian stochastic models; avail-

able solutions include extended (EKF) or unscented (UKF)

Kalman filter methods [1] as well as SMC algorithms, in-

cluding particle filters (PF) and auxiliary particle filters (APF)

(see e.g. [2] [3]). However SMC methods can fail when the

dimension of the state-space increases, so that one needs to

significantly increase the number of particles. This problem

can somehow be attenuated when the state can be decomposed

into a linear component and a nonlinear one. It is then of

interest to use the marginalized particle filter (MPF) solutions,

which roughly speaking estimate the nonlinear part of the state

by PF, and then given that non linear part estimate the linear

one via Kalman filtering (KF) [4] [5].

The (more recent) multi-target filtering problem consists in

estimating random states of an unknown number of targets

from a set of observations which are either due to detected

targets or are false alarms measurements. Early solutions in-

clude the Joint Probabilistic Data Association (JPDA) filter [6]

and the Multiple Hypothesis Tracking (MHT) filter [7], which

both include a matching mechanism that aims at optimizing the

association between observations and targets. An alternative

class of solutions, based on Random Finite Sets (RFS), has

also been proposed [8] [9] [10]. RFS-based solutions consider

the set of targets and that of observations as RFS, i.e. as sets of

random variables with random and time-varying cardinal. RFS

techniques avoid the intensive computational cost of the asso-

ciation mechanism required in the classical solutions.Among

RFS-based solutions, the Bayesian multi target filter (MTF) is
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a direct generalization of the Bayesian single target filter, in

the sense that it propagates over time the so-called posterior

multi-target density (mtd), which is a real and positive function

that generalizes the probability density function (pdf). Because

the MTF is not computable, Mahler proposed to propagate a

first order moment of the posterior mtd, the so-called PHD

or intensity, a positive density function which operates in the

single target state space domain and which enables the number

of targets as well as the state of each target to be estimated.

In general, the PHD cannot be computed exactly. In practice,

two implementations of the PHD filter, with variants, are

popular. The Gaussian mixture (GM) implementation [11]

assumes that the PHD is a GM, but requires that each target

(when it is detected) and associated measurement follow

a linear and Gaussian model; if not, an approximation of

the GM implementation based on local linearizations or the

Unscented Transformation (UT) [11] can be used provided

the non linearities of the model are not too severe; the SMC

implementation [12] [13] approximates the PHD by a set of

random weighted particles and does require any assumption

on the target dynamics.

Now, multiple object filtering SMC-based solutions inherit

the same problems as their single object filtering counterparts.

In particular, the specific difficulties of high dimensional

problems get worse in multi target scenarios since one needs

to estimate the number of targets in addition to the states. As

in the single object case, this major drawback of SMC based

multi object filtering solutions can be attenuated in some spe-

cific situations and indeed MPF solutions have recently been

adapted to multi-target filtering, with an approach based on

data-association [14] in the sense that the SMC part only acts

on the data-association step and not on the estimation of states,

and another on the Bayesian MTF for Gaussian models with

partially linear substructure [15]. On the other hand, even when

small dimensional problems are involved, SMC methods may

fail, particularly if the particles are sampled without taking into

account the available measurements. Among the class of SMC

methods, the APF is an alternative technique to the classical

Importance Sampling (IS) one. Roughly speaking, in the APF

implementation, particles are first selected according to the

recent observations before being propagated contrary to the

IS one where particles are directly propagated. In the RFS

context, a general APF implementation of the PHD filter has

been proposed [16].

This paper further adapts the MPF idea, but now to the

PHD filter which presents good results in highly cluttered

environments [17] [11], avoids a data-association step and

and has the advantage of being more tractable than the
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Bayesian MTF. The adaptation of marginalization to PHD

filter approximation proceeds as follows:

• We first derive the general marginalized PHD (M-PHD)

filter, which can be used in Gaussian and partially linear

models. We propose two implementations of our M-PHD

filter: the first is a “bootstrap one” which holds for a

general class of Gaussian and partially linear models;

the second is an auxiliary implementation which guides

the particles to regions where targets are likely to be

present, but which is computationally efficient under

certain additional assumptions and approximations. Our

approach improves the PHD filter approximation, and so

that of the number of targets and of their state, without

increasing the number of particles.

• We next consider linear and Gaussian jump Markov state-

space systems (JMSS) in the context of multi-object

filtering. For such models the PHD is a GM with a

number of components which increases exponentially as

measurements are acquired. This increase is due uncer-

tainty in the origin of the measurements and in the mode.

In [18] the number of mixture components is managed by

mixture reduction techniques such as pruning or merging.

On the other hand, the SMC implementation proposed

in [19] samples particles in augmented dimension (state

and mode). We adapt our M-PHD algorithm to lin-

ear/Gaussian JMSS so that only the mode governing the

jumps is sampled and inference over the kinematic state.

Bootstrap and auxiliary implementations are proposed for

these models.

• We finally adapt our M-PHD filter to Gaussian JMSS

with partially linear and partially non-linear substructures.

Following [20], an efficient importance distribution for

the auxiliary implementation is proposed for such models.

This paper improves the preliminary work appearing in [20]

and [21] by the extension to JMSS and the inclusion of a

more detailed performance analysis, including comparisons

with the auxiliary PF of [16], consideration of the effect of

clutter density and results for maneuvering targets.

The paper is organized as follows. In Section II we first

recall the multi-target filtering problem in terms of RFS, then

we briefly describe available implementations of the PHD

filter. In Section III we derive a new implementation of the

PHD filter which takes into account the linearity of some of

the components of the state vector of a target. In Section

IV we adapt our implementation to linear, or partially linear,

Gaussian JMSS models. In Section V we finally compare the

performances and complexity of our approach to the classical

SMC implementation in a number of range-bearing scenarios.

II. MULTI-TARGET FILTERING

A. RFS description of the model and the MTF

In a standard multi object tracking problem the number of

targets and their parameters are unknown at a given time k. It

is thus convenient to represent the set of targets and of mea-

surements by RFS (i.e. a set of random vectors with random

cardinality) Xk = {xk,1, · · · ,xk,n}, Zk = {zk,1, · · · , zk,q}
where n and q are random integers and xk,i (resp. zk,i)

∈ R
m (resp. R

p) for all k and i. The transition pdf of a

target between times k − 1 and k is fk|k−1(xk|xk−1) and

the likelihood of a measurement z with a state xk at time k
is gk(z|xk). A direct application of the RFS theory consists

in propagating the conditional mtd p(Xk|Z0:k). However, the

MTF involves equations which are not computable. Therefore,

SMC implementations have been proposed (see e.g. [12] [15]),

but remain computationally intensive, above all when the

number of targets is large.

B. The PHD

To cope with this issue, Mahler introduced the PHD as a

first order moment v(x), where x ∈ R
m, of a mtd f(X) or

of an RFS X . A PHD is a real and positive function which

has the following property: let S ⊂ R
m, then

∫

S

v(x) dx =

∫
|X ∩ S|f(X) δX = E(|X ∩ S|), (1)

where
∫
δX denotes the set integral and |X ∩ S| is the

cardinality of the set of targets which belong to region S.

So the integral of the PHD v(x) over region S is the expected

number of objects in this region.

In this framework, the multi-target filtering problem can be

seen as the propagation of PHD vk(x), defined as the first

order moment of mtd p(Xk|Z0:k). The so-called PHD filter,

which is a set of equations which propagate recursively the

PHD, can be derived under the following hypotheses [10]:

the targets evolve and generate measurements independently

of one another; the clutter is independent of measurements

due to detected targets; and the clutter and the predicted-target

processes are Poisson. Also, let us set some notations: ps,k(x)
is the probability that a target with state x at time k − 1 still

exists at time k; pd,k(x) is the probability that a target with

state x is detected at time k; κk is the intensity of clutter

measurements at time k; and γk is the intensity of birth targets

at time k. The propagation of the PHD vk(x) of the posterior

mtd p(Xk|Z0:k) is then the succession of a prediction step and

of an updating step [10] (we assume without loss of generality

that there is no spawning):

vk|k−1(x) =

∫
ps,k(ξ)fk|k−1(x|ξ)vk−1(ξ)dξ + γk(x), (2)

vk(x) = [1− pd,k(x)] vk|k−1(x)+
∑

z∈Zk

pd,k(x)gk(z|x)vk|k−1(x)

κk(z) +
∫
pd,k(ξ)gk(z|ξ)vk|k−1(ξ) dξ

. (3)

1) Implementation of the PHD Filter: Eqs. (2) and (3) are

not computable; several suboptimal algorithms have thus been

proposed in the literature.

The GM implementation [11] assumes that the model is

linear and Gaussian, that the probabilities of detection pd,k and

of survival ps,k are constant, and that vk−1(x) and γk−1(x)
are GM. Briefly, since fk|k−1(x|xk−1) is a linear and Gaussian

pdf, the predicted PHD is a new GM. Further injecting this

new mixture in (3) still provides a GM. When the model is

Gaussian but non-linear, alternatives based on the UT or on

the EKF and other approximations have been proposed in [22].
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The SMC implementation [12] [23] approximates PHD

vk−1 by the discrete and random mixture v̂k−1(x) =∑Lk−1

i=1 w
(i)
k−1δx(i)

k−1

(x) where δx denotes the Dirac mass at

point x. Plugging it in (2) we get a continuous approxi-

mation ṽk|k−1 of vk|k−1 for which we can derive a new

discrete approximation of vk|k−1(x) by using IS, v̂k|k−1(x) =∑Lk

i=1 w
(i)
k|k−1δx(i)

k

(x), and finally inject it in (3). We get

the discrete approximation v̂k of vk given by v̂k(x) =∑Lk

i=1 w
(i)
k δ

x
(i)
k

(x) where

w
(i)
k = (1− pd,k(x

(i)
k ))w

(i)
k|k−1+

∑

z∈Zk

pd,k(x
(i)
k )gk(z|x

(i)
k )w

(i)
k|k−1

κ(z) +
∑Lk|k−1

i=1 pd,k(x
(i)
k )gk(z|x

(i)
k )w

(i)
k|k−1

. (4)

Variants of the algorithm based on APF have also been

proposed [16], and a Gaussian Particle algorithm which prop-

agates a GM has been proposed in [24]. From now on we only

focus on the SMC implementation of the PHD filter.

2) Analysis of the SMC PHD Filter: The SMC implementa-

tion of the PHD filter suffers from the same drawbacks as those

of single object SMC filtering algorithms. The critical term in

(4) is pd,k(x
(i)
k )gk(z|x

(i)
k )w

(i)
k|k−1, since it will determine the

total mass
∫
vk(xk)dxk which is an estimator of the number

of targets. This term depends on the likelihood gk(z|x
(i)
k ). If

all particles have a weak likelihood with all measurements,

even if some measurements are due to the presence of targets,

then this estimator of the number of targets will be close to

0. Such a phenomenon occurs when we do not succeed in

concentrating particles in regions of high likelihood, and this

task is all the more demanding when the dimension of the

particles gets high. Moreover it will be difficult to produce

an accurate estimator of the state of a target, if few particles

contribute to the mass of a region S where a target is probably

present. To cope with this issue without increasing the number

of particles, some solutions can be thought of.

First, one can try to sample particles according to an

importance distribution which would guide particles toward

high likelihood regions, as in single object filtering. However

this is a challenging point when we use IS in multi-object

filtering, since we do not know which measurement is due

to which detected target. An auxiliary implementation can

address this problem by first selecting randomly measurements

which are probably due to the presence of targets [16].

Next, one can avoid the dispersion of particles by using ran-

dom samples only when necessary, i.e. for some components

of the state vector.

As we show in this paper, these two solutions are not incom-

patible, and we will actually combine them. More precisely,

we examine a class of models for which the GM and SMC

approaches can be combined. For this class of models, it is

possible to use the classical SMC approach, but by taking into

account the specificities of the model one can improve both

the estimation of states of the targets and that of the number

of targets, without increasing the number of particles. We first

address the dimensional reduction problem; next we derive a

bootstrap and an APF implementation of our M-PHD filter.

III. AN M-PHD FILTER

A. A brief review of MPF in single object filtering

Assume that the state vector xk of a target can be divided

into a linear component xl
k (with dimension ml) and a non

linear one xn
k (with dimension mn) (i.e., xl

k follows a linear

dynamics and xn
k a non linear one), and that the relations

between these components between k and k + 1 and the

associated measurement zk are given by:

xn
k+1 = fnk (x

n
k ) + Fn

k (x
n
k )x

l
k + un

k , (5)

xl
k+1 = f lk(x

n
k ) + Fl

k(x
n
k )x

l
k + ul

k, (6)

zk+1 = hk(x
n
k+1) +Hk(x

n
k+1)x

l
k+1 + vk, (7)

in which fnk (.) is a function from R
mn to R

mn , Fn
k (.) is a

mn ×ml matrix which depends on the components of vector

xn
k and which acts on vector xl

k (functions f lk(.), hk(.), F
l
k(.)

and Hk(.) are defined similarly), and


un
k

ul
k

vk


 ∼ N


.;



0

0

0


 ;




Qn
k (Qnl

k )T 0
(Qnl

k ) Ql
k 0

0 0 Rk




 , (8)

where [un
1 ,u

l
1], · · · , [u

k
1 ,u

k
1 ] and v1, · · · ,vk are independent.

A probabilistic representation of this model is given by the

transition and the likelihood pdf (N (x;m;P) is the Gaussian

pdf with mean m and covariance matrix P taken at point x):

fk+1|k(xk+1|xk) =

N

(
xk+1;

[
fnk (x

n
k )

f lk(x
n
k )

]
+

[
Fn

k (x
n
k )

Fl
k(x

n
k )

]
xl
k;

[
Qn

k (Qnl
k )T

(Qnl
k ) Ql

k

])
,

(9)

gk+1(z|xk+1)=N (z;hk(x
n
k+1)+Hk(x

n
k+1)x

l
k+1;Rk). (10)

1) MPF implementation: Let us now recall MPF [5] [4]

[25] in model (5)-(7). Remember that the goal consists in

approximating the posterior density p(xk|z0:k). MPF is based

on the factorization

p(xl
k,x

n
0:k|z0:k) = p(xl

k|x
n
0:k, z0:k)︸ ︷︷ ︸
KF

× p(xn
0:k|z0:k)︸ ︷︷ ︸

PF

. (11)

The second factor p(xn
0:k|z0:k) is approximated by PF, but

since system (5)-(7) becomes a classical state-space model

once xn
k is fixed, the first factor p(xl

k|x
n
0:k, z0:k) can be

computed exactly via KF. This idea is popular and its interest

is enlightened by the Rao-Blackwell (RB) theorem applied to

sequential filtering: assume that one needs to estimate Θ =∫
f(x1, x2)p(x1, x2)dx1dx2, in a context where it is possible

to calculate
∫
f(x1, x2)p(x2|x1)dx2 exactly. Consider the IS

based estimators Θ̂1 (resp. Θ̂2) of Θ obtained by sampling

(xi
1, x

i
2)

i.i.d
∼ q(x1, x2) = q(x1)q(x2|x1) (resp. xi

1
i.i.d
∼ q(x1)):

Θ̂1 =
1

N

N∑

i=1

f(xi
1, x

i
2)p(x

i
1, x

i
2)

q(xi
1, x

i
2)

, (12)

Θ̂2 =
1

N

N∑

i=1

∫
f(xi

1, x2)p(x
i
1)

q(xi
1)

p(x2|x
i
1)dx2. (13)

Then Θ̂1 and Θ̂2 are unbiased, but the RB equality reads

var(Θ̂1) = var(Θ̂2) +
1

N
E

[
var

(
f(x1

1, x
1
2)p(x

1
1, x

1
2)

q(x1
1, x

1
2)

|x1
2

)]
.
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So var(Θ̂1) ≥ var(Θ̂2), and thus Θ̂2 is preferable to Θ̂1.

Remark 1 In the sequential filtering context we look for

calculating a moment of a function of interest f given by∫
f(x1,0:n,x2,0:n)p(x1,0:n,x2,0:n|z0:n)dx1,0:ndx2,0:n, but the

normalizing constant of p(x1,0:n,x2,0:n|z0:n) is unknown. So

we have to resort to Bayesian (or normalized) IS [2] and

the previous analysis does not hold any longer. Nevertheless,

the result still holds when the number of particles tends to

infinity [25]. Also, some contributions take into account the

resampling step which creates dependency among particles and

compare both estimators asymptotically [26].

2) IS vs APF: Next, even in a MPF implementation, we

need to sample particles. So let us briefly describe two well-

known techniques. Let us assume that we need to compute

Θ =
∫
f(x)π(x)dx where π(x) =

∑N
i=1 τ

i(x)pi(x). Note

that π(x) is not necessarily a pdf since
∫
π(x)dx can differ

from 1. A classical IS technique draws N samples xi ∼
qi(x), where qi(x) is a given pdf, and computes Θ̂IS =∑N

i=1 w
i(xi)f(xi) were wi(xi) = τ i(xi)pi(x

i)/qi(x
i). An

alternative consists in considering IS in an augmented di-

mension which is also known as the auxiliary implementation

[27]. More precisely, we consider an importance distribution

q(k,x). We first select an index ji ∼ q(k) and we sample

xi ∼ q(x|ji). An estimator of Θ is given by Θ̂APF =∑N
i=1 w

i(xi)f(xi) where wi(xi) = τ j
i

(xi)pji(x
i)/q(ji,xi).

One of the advantages of the APF implementation is that it

is possible to select a number N ′ 6= N of samples. Next,

the first step is actually a resampling one which can be

beneficial or detrimental according to parameters pi, τ
i and

f . A comparison between both methods when the optimal

importance distributions are chosen has been studied in several

contributions, see e.g. [28] and [29].

B. Extension to multi-object filtering : the M-PHD filter

We now address PHD-based multi-object filtering algo-

rithms. Remember from section II-B that the expected number

of targets at time k is given by
∫
Rm vk(x)dx, where vk(x) is

the a posteriori filtering PHD (i.e., the PHD of the posterior

mtd p(Xk|Z0:k)), and that looking for states boils down to

finding regions S ⊂ R
m such that

∫
S
vk(x)dx is high.

Estimating
∫
S
vk(x)dx over any region S (or over R

m) is

thus essential in the PHD-based approach, since in practice

the integral is not directly computable.

The aim of this section is to extend the MPF idea from

the single to the multi object context, in the case where (5)-

(7) now describe the dynamics of one single target between

instants k and k+1, and the link between the state of a detected

target and the associated measurement. We will show that in

such a model, under some additional assumptions, the PHD

can be integrated with respect first to the non linear part of the

state, and next the linear one, and the second integral can be

computed exactly from a PF approximation of the first one:
∫

vk(x)dx =

∫ [∫
vk(x

n,xl)dxn

︸ ︷︷ ︸
PF implementation

]
dxl =

∫
ṽk(x

l)dxl

︸ ︷︷ ︸
Computable

.

Let us first give some conditions under which it will be

possible to develop an M-PHD filter. We assume that

A.1 The probabilities of survival ps,k(x) = ps,k(x
n) and of

detection pd,k(x) = pd,k(x
n) depend only on the non-

linear component of the state vector;

A.2 Let pi,k+1(x) be given pdfs, for 1 ≤ i ≤ Nγk+1
. We

assume that γk(xk+1) is a mixture (subscript “2” is used

for birth components)

γk+1(x) =

Nγk+1∑

i=1

w
2,(i)
k+1|kpi,k+1(x

n)×

N (xl;m
2,l,(i)
k+1|k(x

n);P
2,l,(i)
k+1|k). (14)

Note that γk+1 is not necessarily a GM, which by contrast

is an hypothesis required in the GM implementation of

the PHD filter.

The key idea of our approach is to assume that at time k and

for a given value xl the PHD is approximated by a discrete

measure which support is given by a set Ak = {x
n,(i)
k }Lk

i=1

(one can have x
n,(i)
k = x

n,(j)
k for i 6= j) and for a given

element of Ak, the PHD is approximated by a GM. In other

words, we assume that an approximation of the PHD at time k
is a mixture with the following form, hereafter denoted normal

discrete (ND):

v̂k(x) =

Lk∑

i=1

w
(i)
k N (xl;m

l,(i)
k ;P

l,(i)
k )δ

x
n,(i)
k

(xn), (15)

with x = (xl,xn). So we now look for deriving an ND

approximation of the PHD at time k + 1; starting from an

ND approximation v̂k(x) of vk(x), we derive a continuous

approximation ṽk+1|k(x) of vk+1|k(x).

1) Prediction: Let F
l,(i)
k

∆
= Fl

k(x
n,(i)
k ), F

n,(i)
k

∆
=

Fn
k (x

n,(i)
k ), f

l,(i)
k

∆
= f lk(x

n,(i)
k ), f

n,(i)
k

∆
= fnk (x

n,(i)
k ) and

p
(i)
s,k+1

∆
= ps,k+1(x

n,(i)
k ). Let v̂k in (15) be an ND approxima-

tion of PHD vk. Plugging (15) into (2) yields the following

approximation ṽk+1|k of the predicted PHD vk+1|k:

ṽk+1|k(x) = ṽ1k+1|k(x) + ṽ2k+1|k(x), (16)

ṽ1k+1|k(x) =

Lk∑

i=1

w
1,(i)
k+1|kN (xl;m

1,l,(i)
k+1|k(x

n);P
1,l,(i)
k+1|k)×

N (xn;m
1,n,(i)
k+1|k ;P

1,n,(i)
k+1|k ), (17)

ṽ2k+1|k(x) = γk+1(x), (18)

where

w
1,(i)
k+1|k = p

(i)
s,k+1w

(i)
k , (19)

m
1,n,(i)
k+1|k = f

n,(i)
k + F

n,(i)
k m

l,(i)
k , (20)

P
1,n,(i)
k+1|k = Qn

k + F
n,(i)
k P

l,(i)
k F

n,(i)
k

T
, (21)

m
1,l,(i)
k+1|k(x

n) = A
(i)
k m̃

l,(i)
k+1|k(x

n) + f
l,(i)
k + Q̃n

k (x
n − f

n,(i)
k ),

(22)

P
1,l,(i)
k+1|k = Ql

k − (Q̃n
k )

−1(Qnl
k )T +A

(i)
k P̃

l,(i)
k+1|kA

(i)
k

T
,

(23)
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where m̃
l,(i)
k+1|k(x

n), P̃
l,(i)
k+1|k and A

(i)
k are defined by

m̃
l,(i)
k+1|k(x

n) = m
l,(i)
k + K̃

l,(i)
k+1|k

[
xn − f

n,(i)
k − F

n,(i)
k m

l,(i)
k

]
,

(24)

P̃
l,(i)
k+1|k =

[
I− K̃

l,(i)
k+1|kF

n,(i)
k

]
P

l,(i)
k , (25)

A
(i)
k = F

l,(i)
k − (Q̃n

k )
−1

F
n,(i)
k , (26)

K̃
l,(i)
k+1|k = P

l,(i)
k (F

n,(i)
k )T (P

n,(i)
k+1|k)

−1, (27)

Q̃n
k = Qnl

k (Qn
k )

−1. (28)

Next, we look for an approximation of posterior PHD vk+1.

2) Update : Let us set Z ′
k+1 = {θ} ∪ Zk+1 where θ

corresponds to a null measurement. Plugging (16) in (3), we

get the following approximation of vk+1:

ṽk+1(x) = ṽ1k+1(x) + ṽ2k+1(x), (29)

where

ṽ1k+1(x) =

Lk∑

i=1

N (xn;m
1,n,(i)
k+1|k ;P

1,n,(i)
k+1|k )×

∑

z∈Z′
k+1

Φ
1,(i)
k+1 (x

n,xl, z), (30)

ṽ2k+1(x) =

Nγk+1∑

i=1

pi,k+1(x
n)

∑

z∈Z′
k+1

Φ
2,(i)
k+1 (x

n,xl, z),

(31)

Φ
j,(i)
k+1(x

n,xl, z) = N (xl;m
j,l,(i)
k+1 (z,xn);P

j,l,(i)
k+1 (z,xn))×

w
j,(i)
k+1(z,x

n) for j = 1, 2, (32)

with, for j = 1, 2, and z ∈ Z ′
k+1,

w
j,(i)
k+1(z,x

n) =





(1− pd,k+1(x
n))w

j,(i)
k+1|k, z = θ,

pd,k+1(x
n)q

j,(i)
k+1(z,x

n)w
j,(i)
k+1|k

κ(z) + B̃1(z) + B̃2(z)
, z ∈ Zk+1,

(33)

m
j,l,(i)
k+1 (z,xn)=

{
m

j,l,(i)
k+1|k(x

n), z = θ,

m
j,l,(i)
k+1|k(x

n) +K
j,(i)
k+1(x

n)z̃
(i)
k+1(x

n), z ∈ Zk+1,

(34)

P
j,l,(i)
k+1 (z,xn)=




P

j,l,(i)
k+1|k, z = θ,[
I−K

j,(i)
k+1(x

n)Hk(x
n)
]
P

j,l,(i)
k+1|k, z ∈ Zk+1,

(35)

where

q
j,(i)
k+1(z,x

n) = N (z;hk(x
n) +Hk(x

n)m
j,l,(i)
k+1|k(x

n);S
j,(i)
k+1(x

n)),

(36)

K
j,(i)
k+1(x

n) = P
j,l,(i)
k+1|kHk(x

n)
T
(S

j,(i)
k+1(x

n))−1, (37)

z̃
j,(i)
k+1(x

n) = z−Hk(x
n)m

j,l,(i)
k+1|k(x

n)− hk(x
n), (38)

S
j,(i)
k+1(x

n) = Hk(x
n)P

j,l,(i)
k+1|k(Hk(x

n))T +Rk, (39)

B̃1(z)=

Lk∑

i=1

∫
w

1,(i)
k+1|kpd,k+1(x

n)q
1,(i)
k+1 (z,x

n)dxn×

N (xn;m
1,n,(i)
k+1|k ;P

1,n,(i)
k+1|k ), (40)

B̃2(z)=

Nγk+1∑

i=1

∫
w

2,(i)
k+1|kpd,k+1(x

n)q
2,(i)
k+1 (z,x

n)pi,k+1(x
n)dxn.

(41)

Remark 2 The derivation of the predicted and posterior ap-

proximations of the PHD holds under assumption A.1 above.

However, these results can be extended easily to the case where

ps,k(x) and pd,k(x) are now mixtures (see e.g. [11]):

ps,k(x) = w
(0)
s,kps,0,k(x

n)+

Ns,k∑

i=1

w
(i)
s,kps,i,k(x

n)N (xl;m
l,(i)
s,k (xn);P

l,(i)
s,k ), (42)

pd,k(x) = w
(0)
d,kpd,0,k(x

n)+

Nd,k∑

i=1

w
(i)
d,kpd,i,k(x

n)N (xl;m
l,(i)
d,k (xn);P

l,(i)
d,k ) (43)

such that 0 ≤ ps,k(x) ≤ 1 and 0 ≤ pd,k(x) ≤ 1.

Now, let us focus on the computation of
∫
ṽk+1(x)dx.

Remark that
∫
ṽk+1(x)dx

l is computable since∫
Φ

j,(i)
k+1(x

n,xl, z)dxl reduces to w
j,(i)
k+1(z,x

n). So the

challenge is now to compute
∫
[
∫
ṽk+1(x)dx

l]dxn; two

implementations are proposed.

C. A marginal Bootstrap Implementation

This implementation relies on the observation that it is

possible to derive respectively a discrete approximation of

ṽ1k+1(x) (this term is due to persistent targets) and of ṽ2k+1(x)
(this term is due to birth targets) as a function of xn by using

the IS mechanism recalled in paragraph III-A2. In addition,

pdf N (xn;m
1,n,(i)
k+1|k ;P

1,n,(i)
k+1|k ) and pi,k+1 are available and can

be used for sampling a new set of particles.

1) ND approximation of ṽ1k+1|k: We first draw samples

for persistent targets. An ND approximation of ṽ1k+1 with Lk

components is given by

v̂1k+1(x
n,xl) =

Lk∑

i=1

∑

z∈Z′
k+1

Φ
1,(i)
k+1 (x

1,n,(i)
k+1 ,xl, z)δ

x
1,n,(i)
k+1

(xn),

(44)

where x
1,n,(i)
k+1 ∼ N (xn;m

1,n,(i)
k+1|k ;P

1,n,(i)
k+1|k ) for 1 ≤ i ≤ Lk.

2) ND approximation of ṽ2k+1: Next, we draw samples for

birth targets. It may be unreliable to draw only Nγk+1
particles

if Nγk+1
is small. So let us derive an ND approximation of

ṽ2k+1 by using a set of L2
k+1 = K × Nγk+1

particles. For

i = 1, . . . , L2
k+1, let ji = ⌈i/K⌉. A ND approximation of

ṽ2k+1 is given by

v̂2k+1(x
n,xl) =

1

K

L2
k+1∑

i=1

∑

z∈Z′
k+1

Φ
2,(ji)
k+1 (x

2,n,(i)
k+1 ,xl, z)δ

x
2,n,(i)
k+1

(xn), (45)
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where x
2,n,(i)
n+1 ∼ pji,k+1(x

n).
3) Implementation issues: Let Lk+1|k = Lk+L2

k+1 denote

the total number of samples drawn for persistent and birth

targets. By gathering the ND approximations of v̂1k+1 and of

v̂2k+1, an ND approximation of the PHD at time k+1 is given

by

v̂k+1(x
n,xl)=

Lk+1|k∑

i=1

∑

z∈Z′
k+1

Φ
(i)
k+1(x

n,(i)
k+1 ,x

l, z)δ
x
n,(i)
k+1

(xn). (46)

Following (32), we can write Φ
(i)
k+1(x

n,(i)
k+1 ,x

l, z) =

w
(i)
k+1(z,x

n,(i)
k+1 )N (xl;m

l,(i)
k+1(z,x

n,(i)
k+1 );P

l,(i)
k+1(z,x

n,(i)
k+1 )),

where w
(i)
k+1(z,x

n,(i)
k+1 ), i = 1, . . . , Lk+1|k, z ∈ Z ′

k+1 are the

sample weights.

Our final approximation v̂k+1(x
n,xl) is a ND mixture with

Lk+1|k(1+|Zk+1|) components. This indicates an exponential

increase in the number of components with time. Following

[12], resampling according to the weights w
(i)
k+1(z,x

n,(i)
k+1 ) is

performed to reduce the number of components to a number

Lk+1 which is proportional to the estimated number of targets.

If the measurements do not depend on the linear part xl of

the state the ND approximation of the PHD can be written as

v̂k+1(x
n,xl) =

Lk+1|k∑

i=1

w
(i)
k+1(x

n)×

N (xl;m
l,(i)
k+1(x

n,(i)
k+1 );P

l,(i)
k+1(x

n,(i)
k+1 ))δxn,(i)

k+1

(xn). (47)

where m
l,(i)
k+1(x

n,(i)
k+1 ) = m

l,(i)
k+1(z,x

n,(i)
k+1 ),

P
l,(i)
k+1(x

n,(i)
k+1 ) = P

l,(i)
k+1(z,x

n,(i)
k+1 ) and w

(i)
k+1(x

n,(i)) =∑
z∈Z′

k+1
w

(i)
k+1(z,x

n,(i)
k+1 ). In this case the number of

components in the ND mixture is given by the number

Lk+1|k of sampled particles. Resampling may still be

required to remove unlikely particles and to produce a sample

size proportional to the estimated number of targets.

It can be seen from (33) that computation of the sample

weights w
(i)
k+1(z,x

n,(i)
k+1 ) requires B̃j(z) of (40) and (41). These

quantities can be approximated by using the sampled particles:

B̂1(z)=

Lk∑

i=1

w
1,(i)
k+1|kpd,k+1(x

1,n,(i)
k+1 )q

1,(i)
k+1 (z,x

1,n,(i)
k+1 ), (48)

B̂2(z)=
1

K

L2
k+1∑

i=1

w
2,(i)
k+1|kpd,k+1(x

2,n,(i)
k+1 )q

2,(i)
k+1 (z,x

2,n,(i)
k+1 ). (49)

D. A marginal APF Implementation

Even if our previous implementation relies on particles only

for the nonlinear part of the state vector, it may be inefficient

because the importance distributions with which we sampled

the particles did not take into account available measurements

Zk+1. The main risk is that new particles are in regions where

targets are not present. To address this problem, we derive

an APF implementation which guides particles into promising

regions. To achieve this, an efficient importance distribution

should be chosen to sample the new set of particles. So in

order to propose a practical and efficient implementation, we

now assume that the following hypotheses are satisfied:

A’1 probability of detection pd,k+1(x
n) = pd,k+1 is constant;

A’2 birth intensity γk+1 in (14) is a GM, i.e. pi,k+1(x
n) =

N (xn;m
2,n,(i)
k+1|k ;P

2,n,(i)
k+1|k ) in (14).

It is possible to rewrite ṽk+1(x) in a more direct form in which

we do not distinguish persistent and birth targets. Setting

Lk+1|k = Lk +Nγk+1
, ṽk+1 reads

ṽk+1(x)=

Lk+1|k∑

i=1

∑

z∈Z′
k+1

N (xn;m
n,(i)
k+1|k;P

n,(i)
k+1|k)Φ

(i)
k+1(x

n,xl, z),

where m
n,(i)
k+1|k, P

n,(i)
k+1|k, Φ

(i)
k+1(x

n,xl, z) are respectively equal

to m
j,n,(i)
k+1|k , P

j,n,(i)
k+1|k , Φ

j,(i)
k+1(x

n,xl, z) where j = 1 if 1 ≤ i ≤
Lk and j = 2 if Lk + 1 ≤ i ≤ Lk+1|k. Marginalizing out the

linear part xl of the state gives

ṽk+1(x
n)=

Lk+1|k∑

i=1

∑

z∈Z′
k+1

N (xn;m
n,(i)
k+1|k;P

n,(i)
k+1|k)w

(i)
k+1(z,x

n);

where w
(i)
k+1(z,x

n)= w
1,(i)
k+1 (z,x

n) for i = 1, . . . , Lk and

w
(i)
k+1(z,x

n)=w
2,(i−Lk)
k+1 (z,xn) for i=Lk+1,. . . ,Lk+Nγk+1

.

The goal is to sample Lk+1 samples according to ṽk+1(x
n).

As recalled in paragraph III-A2 one can now use an APF im-

plementation to that end. Due to the form of ṽk+1(x
n) which

can be seen as a mixture of mixtures, an APF implementation

relies on two auxiliary variables: one for a component due

to a persistent or a birth target (see point III-D1 below) and

the other for measurement z (see point III-D2 below). So for

1≤ j ≤ Lk+1, we will randomly choose a component index

ij ∈ {1, · · · , Lk+1|k}, a measurement zj ∈ Z ′
k+1, and finally

a new particle x
n,(j)
k+1 . The auxiliary variables and the final

samples are independently and identically drawn according to

an importance distribution q(z, i,xn). The weight associated

to a particle is computed from

w(z, i,xn) =
N (xn;m

n,(i)
k+1|k;P

n,(i)
k+1|k)w

(i)
k+1(z,x

n)

q(z, i,xn)
. (50)

Next, it is well-known that the importance distribution

q(z, i,xn) has to be chosen carefully. The optimal importance

distribution (i.e. that which minimizes the conditional variance

of weights) is

qopt(z, i,xn) ∝ N (xn;m
n,(i)
k+1|k;P

n,(i)
k+1|k)w

(i)
k+1(z,x

n). (51)

However, it is not computable here. Indeed, remember that

the dependence of w
(i)
k+1(z,x

n) in xn is due to the term

q
(i)
k+1(z,x

n) in (36); because h(xn) and H(xn) are not

linear in xn,
∫
N (xn;m

n,(i)
k+1|k;P

n,(i)
k+1|k)q

(i)
k+1(z,x

n)dxn is not

computable so the optimal distribution is not either. So we

need to derive an importance distribution which approximates

the optimal one; it relies on the approximations

p(i)(z)≈

∫
q
(i)
k+1(z,x

n)N (xn;m
n,(i)
k+1|k;P

n,(i)
k+1|k) dxn (52)

p(i)(xn|z)
∼
∝ q

(i)
k+1(z,x

n)N (xn;m
n,(i)
k+1|k;P

n,(i)
k+1|k) (53)

where
∼
∝ means “is approximately proportional to”. It is well

known that Gaussian approximations, p(i)(z) and p(i)(xn|z),
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to the predictive likelihood and the optimal sampling density

can be obtained by linearizing h(.) and H(.) or by applying

the UT [16] [30] [31]. These approximations are accurate if the

supports of the prior and the likelihood overlap. This occurs,

for instance, if the prior is informative as in the case of a

persisting target. However, if there is little overlap between

the prior and the likelihood then both the UT and linearization

perform poorly. This generally happens for birth targets which

initially have a large amount of uncertainty in their position

and velocity. To avoid this problem we use progressive correc-

tion (PC) to find the Gaussian approximations in (52) and (53).

PC was originally proposed for Monte Carlo approximation

[32] but can also be used more generally [33]. A brief review

is given in the appendix. We next explain step by step how to

draw a sample (ij , zj ,x
n,(j)
k+1 ) ∼ q(i)× q(z|i)× q(xn|i, z).

1) Selection of old components: The first step is to select

an index i ∈ {1, . . . , Lk+1|k} which governs how the state

vector is sampled. If i ∈ {1, . . . , Lk}, then we have selected a

persisting target with the state to be drawn conditional on the

ith sample x
n,(i)
k at time k. If i ∈ {Lk + 1, . . . , Lk +Nγk+1

}
then the state is drawn from the (i− Lk)th birth density. For

z ∈ Z ′
k+1, define

q̃(z|i) =

{
1− pd,k+1, z = θ,

pd,k+1p
(i)(z)/[κ(z) + B̂(z)], z ∈ Zk+1,

(54)

where B̂(z) is an approximation of B̃1(z) + B̃2(z). The

computation of B̂(z) is discussed below. The sampling density

for the component index is

q(i) = w
(i)
k+1|k

∑

z∈Z′
k+1

q̃(z|i)/Ck+1, (55)

Ck+1 =

Lk+1|k∑

i=1

w
(i)
k+1|k

∑

z∈Z′
k+1

q̃(z|i) (56)

If approximation (70) is accurate, then sampling from (55)

will produce components corresponding to persisting or birth

particles as suggested by the measurements. This has the

potential to greatly improve efficiency compared to blind

sampling using the prior, particularly in the initiation of new

targets.

2) Selection of a measurement: The next step is to select a

measurement with which to associate the selected component

index. This can be achieved by selecting z ∈ Z ′
k+1 from

q(z|i) = q̃(z|i)

/
∑

y∈Z′
k+1

q̃(y|i) (57)

3) Sampling the state: Finally, we extend, or initiate for

the case of a birth component, the i-th trajectory, which is

associated to measurement z by sampling from

q(xn|i, z)=

{
N (xn;m

n,(ij)
k+1|k;P

n,(ij)
k+1|k), z = θ,

p(i)(xn|z), z ∈ Zk+1.
(58)

4) Computation of weights: Let ij , zj ,x
n,(j)
k+1 , j =

1, . . . , Lk+1 denote the jth sampled component index, mea-

surement and particle. According to (50), the expression of

weights is given by

w
(j)
k+1 =




Ck+1/Lk+1, zj = θ,

Ck+1

Lk+1

q
(ij)
k+1(z

j ,x
n,(j)
k+1 )N (x

n,(j)
k+1 ;m

n,(i)
k+1|k;P

n,(i)
k+1|k)

p(ij)(zj)p(ij)(x
n,(j)
k+1 |zj)

, zj ∈ Zk+1.

(59)

It can be seen from (59) that if (52) and (53) are accurate

then the weights will be approximately uniform with w
(j)
k+1 ≈

Ck+1/Lk+1. Finally, a ND approximation of posterior PHD

vk+1 can be found as

v̂k+1(x) =

Lk+1∑

j=1

w
(j)
k+1×

N (xl;m
l,(ij)
k+1 (zj ,x

n,(j)
k+1 );P

l,(ij)
k+1 (zj ,x

n,(j)
k+1 ))δ

x
n,(j)
k+1

(xn). (60)

In a bootstrap filter the quantities B̃j(z) of (40)-(41) can

be computed using the particles drawn from the prior and

then used in the weight calculation. In the APF proposed here

these quantities are required before sampling is performed. We

propose a computationally efficient approximation using the

same sampling distributions used for the APF. In particular,

for i = 1, . . . , L′, we draw an index ji such that Pr(ji =

b) ∝ w
(b)
k+1|kp

(b)(z) and then sample x̃(i) ∼ pj
i

(xn|z). We

then obtain the approximation

B̂(z)=
B̂0(z)

L′

L′∑

i=1

N (x̃(i);m
n,(ji)
k+1|k;P

n,(ji)
k+1|k)q

(ji)
k+1(z, x̃

(i))

pji(z)pji(x̃(i)|z)
, (61)

where B̂0(z) = pd,k+1

∑Lk+1|k

i=1 w
(i)
k+1|kp

(i)(z). If the approx-

imations (52) and (53) is good then the terms in the sum (61)

will be close to unity and a small value can be chosen for the

sample size L′. Remark that in this case B̂(z) ≈ B̂0(z).

IV. OTHER APPLICATIONS OF THE M-PHD FILTER

We next focus on models where dependence on a discrete

MC {rk} is introduced: we now to consider the augmented

state (x, r) and look for computing the integral of PHD∑
r

∫
vk(x, r)dx. We explain how the M-PHD algorithm of

the previous section can be adapted to Gaussian and linear

(Section IV-A) or partially linear (Section IV-B) JMSS.

A. Linear and Gaussian JMSS

Let

fk+1|k(x
l, r|xl

k, rk) = p(r|rk)N (xl;Fk(r)x
l
k;Qk(r)), (62)

gk(z|x
l
k+1, rk+1) = N (z;Hk(rk+1)x

l
k+1;Rk(rk+1)). (63)

Let us also assume the following hypotheses:

A.3 The probabilities of survival ps,k+1(r) and of detection

pd,k+1(r) depend only on the mode;

A.4 The birth intensity is a mixture which reads

γk+1(x
l, r) =

Nγk+1∑

i=1

w
2,(i)
k+1|kpi,k+1(r)×

N (xl;m
2,l,(i)
k+1|k(r);P

2,l,(i)
k+1|k(r)). (64)
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The mode rk ∈ {1, . . . , d}, where d is the number of modes,

is a discrete MC characterized by the probability transition

p(rk|rk−1). In such models, the PHD vk(x, r) is a GM which

grows exponentially due to the measurements and the number

of modes. A GM implementation [18] has been proposed to

propagate vk(x, r) and relies on numerical approximations

such as pruning and merging to avoid the exponential growth.

Here, we propose an alternative which involves adapting the

M-PHD in order to avoid the growth of the mixture due to the

number d of different modes.

In such models, (2) and (3) still hold if we consider the

augmented state x = (xl, r). The role of the non linear

part of state vector x is now played by the MC {rk}; so

a marginalized implementation for these models appears as

a particular case of our previous M-PHD where we replace

xn by r. Therefore, we now look for propagating samples

which act on the discrete part r of the state vector and so for

propagating an ND implementation of the PHD,

v̂k(x, r) =

Lk∑

i=1

w
(i)
k N (x;m

(i)
k ;P

(i)
k )δ

r
(i)
k

(r). (65)

Starting from (65), the predicted and updated approximations

(16) and (29) hold up to some adaptations: dependence on

x
n,(i)
k and xn have to be replaced by r

(i)
k and r; so pdf

N (xn;m
1,n,(i)
k+1|k ;P

1,n,(i)
k+1|k ) in (16) is replaced by p(r|r

(i)
k );

m
1,l,(i)
k+1|k and P

1,l,(i)
k+1|k in (22) and (23) reduce to m

1,l,(i)
k+1|k =

F
l,(i)
k m

l,(i)
k , and P

1,l,(i)
k+1|k = F

l,(i)
k P

l,(i)
k F

l,(i)
k

T
+Q

l,(i)
k .

Based on this observation, our two implementations still

hold except that we draw samples {r
(i)
k+1}:

• the bootstrap implementation of Section III-C now relies

on distributions p(r|rik) to sample particles for persistent

targets and on pi,k+1(r) to sample particles for birth

targets;

• the APF implementation of Section III-D relies on an

importance distribution q(z, i, r); the optimal importance

distribution (51) is however computable contrary to the

previous case (since integrals on xn which were not

computable are now replaced by a sum on r).

B. Non-Linear and Gaussian JMSS, with linear substructure

Finally we adapt the marginalized PHD algorithm proposed

in Section III-B to a more general class of models. Let ξk =
(xn

k , rk+1) and ψk+1 = (xn
k+1, rk+1). Then,

fk+1|k(x|xk) = p(rk+1|rk)×

N

(
x;

[
fnk (ξk)
f lk(ξk)

]
+

[
Fn

k (ξk)
Fl

k(ξk)

]
xl
k;

[
Qn

k (rk+1) (Qnl
k (rk+1))

T

(Qnl
k (rk+1)) Ql

k(rk+1)

])
,

(66)

gk+1(z|xk+1) = N (z;hk(ψk+1) +Hk(ψk+1)x
l
k+1;Rk(rk+1)).

(67)

A.5 The probabilities of survival ps,k+1(x
n, r) and of de-

tection pd,k+1(x
n, r) depend only on the mode r and

nonlinear part of the kinematic state;

A.6 The birth intensity γk+1 reads

γk+1(x, r) =

Nγk+1∑

i=1

w
2,(i)
k+1|kpi,k+1(r)pi,k+1(x

n|r)×

N (x;m
2,l,(i)
k+1|k(r);P

2,l,(i)
k+1|k(r)). (68)

Again, the technique of Section III can be applied to derive

an ND approximation of the PHD in such models. The state

vector is now x = (xl,xn, r), with non linear part (xn, r); so

the goal now is to propagate samples {x
n,(i)
k , r

(i)
k }.

Starting from an ND approximation at time k

v̂k(x, r)=

Lk∑

i=1

w
(i)
k N (xl;m

l,(i)
k ;P

l,(i)
k )δ

x
n,(i)
k

,r
(i)
k

(xn, r), (69)

approximation (16)-(29) can be used with some modifications:

dependence on x
n,(i)
k and xn are respectively replaced by

(x
n,(i)
k , r

(i)
k ) and by (xn, r); the pdf N (xn;m

1,n,(i)
k+1|k ;P

1,n,(i)
k+1|k )

is replaced by p(r|r
(i)
k ) N (xn;m

1,n,(i)
k+1|k (r);P

1,n,(i)
k+1|k )(r)). So

the bootstrap and the APF implementations can be used to

propagate samples {x
n,(i)
k , r

(i)
k }:

• In the bootstrap implementation of Sections III-C1 and

III-C2, samples (x
n,(i)
k+1 r

(i)
k+1) are now obtained from

p(r|r
(i)
k ) N (xn;m

1,n,(i)
k+1|k (r);P

1,n,(i)
k+1|k (r)) for persistent

targets and from pi,k+1(r)pi,k+1(x
n|r) for birth targets.

• In the APF implementation, samples are obtained from

an importance density q(z, i, (xn, r)) which extends that

developed for non-manoeuvring targets in Section III-D.

For r = 1, . . . , d, we assume the availability of the

approximation

N (xn;m
n,(i)
k+1|k(r);P

n,(i)
k+1|k(r))q

(i)
k+1(z,x

n) ≈

p(i)(xn|r, z)p(i)(z|r) (70)

where m
n,(i)
k+1|k(r) and P

n,(i)
k+1|k(r) are the predicted mean

and covariance matrix under mode r, as shown in (20)

and (21). The approximation (70) can be found using

progressive correction as described in the appendix. We

define

q̃(z|i) =





1− pd,k+1, z = θ,

pd,k+1/[κ(z) + B̂(z)]

d∑

r=1

p(i)(z|r), z ∈ Zk+1,

(71)

The sampling densities for the component index and for

the measurements are given by q(i) and q(z|i) defined in

(55) and (57) except that we use (71) for the definition

of q̃(z|i). The mode is sampled from

q(r|i, z) ∝

{
p(r|r

(i)
k−1), z = θ,

p(r|r
(i)
k−1)p

(i)(z|r), z ∈ Zk+1.
(72)

Finally, the state is sampled from

q(xn|i, z) =

{
N (xn;m

n,(ij)
k+1|k(r);P

n,(ij)
k+1|k(r)), z = θ,

p(i)(xn|r, z), z ∈ Zk+1.
(73)

The sample weights are calculated as in (59) with obvious

adjustments for the mode.
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V. SIMULATIONS

Four algorithms are considered in the performance analysis.

The algorithms are as follows:

1) Bootstrap filter (BF). The BF is implemented as in [12].

In this implementation the number of particles used for

persisting targets depends on the estimated number of

existing targets. In particular, if the total sample size is

Lk and n̂k−1 is the estimated number of targets at time

k−1, then L1
k = min{Lk, n̂k−1 min{500, Lk/20}} par-

ticles are used for persisting targets and L2
k = Lk − L1

k

particles are used for birth targets. This ensures that the

total number of likelihood evaluations for each update

is n and allows comparison with the algorithms which

use a fixed sample size.

2) Marginal bootstrap filter (M-BF). This is a marginalized

bootstrap implementation developed in Sections III-C

and IV-B.

3) APF PHD filter. This is the algorithm of [16] with

some slight differences. First, birth targets are drawn

from a Gaussian mixture rather than a single Gaussian.

Second, progressive correction, rather than the less accu-

rate UT, is used to approximate the optimal importance

distribution. Third, the algorithm is extended to include

sampling of a manoeuvring mode for the manoeuvring

target example of Section V-C.

4) Marginalized APF (M-APF) implementation. This is the

implementation proposed in Sections III-D and IV-B.

Our approximation of B̂(z) relies on (61) with L′ =
100.

Both APF implementations use a fixed sample size at all times.

A. The Optimal Subpattern Assignment (OSPA) metric

The algorithms obtain target state estimates by applying the

k-means clustering algorithm to the collection of particles. The

number of clusters sought by k-means is the estimated number

of targets, i.e. ,the sum of the sample weights rounded to the

nearest integer. Errors arise in both the individual target state

estimates and in the estimated number of targets. These errors

can be measured by the OSPA metric, derived in [34]. Let X =
{x1, ..., xm} and Y = {y1, ..., yn} be two finite sets. Here, X
represents the estimated finite set of targets and Y represents

the true finite set of targets. For 1 ≤ p < +∞ and c > 0,

we denote d(c)(x, y) = min(c, ||x− y||) (||.|| is the Euclidean

norm) and Πn the set of permutations on {1, 2, ..., n}. The

OSPA metric is defined by:

d
c

p(X,Y )
∆
=

(
1

n

(
min
π∈Πn

m∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))1/p

if m ≤ n and d
c

p(X,Y )
∆
= d

c

p(Y,X) if m > n. The

parameter c determines the weighting of the penalties assigned

to cardinality and localization errors and p determines the

sensitivity of the localization error and cardinality error. In

our simulations, we take c = 100 and p = 2.

B. Range bearing tracking of constant velocity (CV) targets

In this scenario targets move with CV in the region

[−500, 500]2. The model used in the PHD filters is as follows.

The state vector is xk = [xk, yk, ẋk, ẏk]
′ where (xk, yk) is

target position in Cartesian coordinates and the dot notation

indicates differentiation with respect to time. The transition

pdf at time k due to a target with state xk−1 at time k − 1 is

f(xk|xk−1) = N (xk;Fxk−1,Q), (74)

F =

[
1 T
0 1

]
⊗ I2, Q = σ

[
T 3/3 T 2/2
T 2/2 T

]
⊗ I2, (75)

where ⊗ is the Kronecker product. The particular parameter

values are ps,k = 0.95, T = 1 and σ = 1/625. The birth

intensity is

γ(xk) = λb/c
2

c2∑

b=1

N (xk; x̄b,Ωb), (76)

where λb is the mean arrival rate of new targets, Ωb =
diag(3086, 3086, 36, 36) for b = 1, . . . , c2 and, for i, j =
1, . . . , c,

x̄i+(j−1)c =




−500 + 1000(i− 1/2)/(c− 1)
−500 + 1000(j − 1/2)/(c− 1)

0
0


 (77)

Note that the means form a regular c×c grid over [−500, 500]2

so that the birth intensity covers the region in which the targets

move. In the implementation λb = 1/4 and c = 6.

The targets are observed by a sensor placed at the ori-

gin. The sensor produces measurements of position in po-

lar coordinates. The measurement function is then h(x) =
[
√

x2 + y2, arctan(y/x)]′. The measurement noise has covari-

ance matrix R = diag(16, (π/180)2). Targets are detected

with probability pd,k = 0.9. Clutter is uniformly distributed

with density λc. Simulations are performed for clutter densities

of λc = 10−5 and λc = 4× 10−5. The former clutter density

produces an average of 10 clutter points in the surveillance

volume at each scan while the latter produces 40 clutter points.

The dynamical and measurement models satisfy (9) and (10)

with xn
k = [xk, yk]

′ and xl
k = [ẋk, ẏk]

′.

The scenario considered here is shown in Figure 1. In this

scenario the number of targets varies as shown in Figure 1(a).

The target trajectories are shown in Figure 1(b). In this figure

trajectories are plotted in red at the start of the surveillance

interval and gradually transform to blue at the end of the

surveillance interval. This colour coding allows times at which

targets are in proximity to be identified.

The algorithms are implemented with sample sizes between

100 and 10 000. Algorithm performance is measured using

the mean OSPA distance averaged over 200 realisations.

The time-averaged mean OSPA for each algorithm is

plotted against sample size in Figure 2. The results show

that marginalization produces significant benefits, particularly

when combined with measurement-directed sampling. These

benefits are evident for both clutter densities. It should be

kept in mind that in our implementations, for a given sample

size, the APF and M-APF have roughly three times the
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Fig. 1. Simulation scenario for CV targets: (a) Number of existing targets
plotted against time. (b) Target trajectories.

computational expense of the BF and M-BF. This increased

expense is clearly worthwhile as the BF and M-BF would

require far more than three times the sample size to produce

similar performance to the APF and M-APF.

C. Range bearing tracking of manoeuvring targets

We now consider a scenario in which targets perform

coordinated turn manoeuvres. The target state is xk =
[xk, yk, ẋk, ẏk, ωk]

′ where ωk is the turn rate. Target motion is

modelled by a jump Markov model with two motion models.

The first motion model (r = 1) is the CV model described in

Section V-B and given by (74) with

F = diag

([
1 T
0 1

]
⊗ I2, 0

)
, (78)

Q = diag

(
σ

[
T 3/3 T 2/2
T 2/2 T

]
⊗ I2, 0

)
. (79)

The second motion model (r = 2) is a coordinated turn model

for which the transition matrix and process noise covariance

matrix are

F(x) =
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Fig. 2. Mean OSPA plotted against sample size for CV target tracking with
the BF, M-BF, APF and M-APF. Results are shown for (a) λc = 10

−5 (b)
λc = 4× 10

−5.

diag







1 0 sin(ωT )ω −[1− cos(ωT )]/ω
0 1 [1− cos(ωT )]/ω sin(ωT )ω
0 0 cos(ωT ) − sin(ωT )
0 0 sin(ωT ) cos(ωT )


 , 1


 ,

(80)

Q = diag

(
σ

[
T 3/3 T 2/2
T 2/2 T

]
⊗ I2, β

)
. (81)

The coordinated turn motion model satisfies (66)-(67) with

xn
k = [xk, yk, ωk]

′ and xl
k = [ẋk, ẏk]

′. The particular param-

eter values are T = 1, σ = 1/625 and β = (5π/180)2.

The persistence probability is ps,k = 0.95. The transition

probabilities for the discrete mode parameter are p(rk =
1|rk−1 = 1) = 0.93 and p(rk = 2|rk−1 = 2) = 0.8.

The birth intensity is as shown in (76) with the turn rate

having all its mass concentrated at zero. The measurement

model is also identical to the CV scenario.

Target trajectories are constructed by simulating the mode

parameter using the same transition model assumed by the

filter. When rk = 1 CV motion is performed while a co-

ordinated turn is performed if rk = 2. The turn rate is held

constant throughout a coordinated turn manoeuvre at a random

value drawn from the mixture [N (5π/180, (2π/180)2) +
N (−5π/180, (2π/180)2)]/2. Only randomly generated trajec-

tories which remain in the region [−500, 500]2 are accepted.

The resulting scenario is shown in Figure 3. The number of
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targets varies as shown in Figure 3(a) and the target trajectories

are shown in Figure 3(b).
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Fig. 3. Simulation scenario for manoeuvring targets: (a) Number of existing
targets plotted against time. (b) Target trajectories.

The time-averaged mean OSPA for each algorithm is plot-

ted against sample size in Figure 4. The results are sim-

ilar in nature to those obtained for CV motion. Thus the

same comments regarding the impact of marginalization and

measurement-directed sampling apply for manoeuvring tar-

gets. As expected, the sample size required to reach an optimal

level of performance, i.e., the sample size for which further

increases in sample size produce no performance benefits,

is larger for manoeuvring targets than for CV targets. Thus,

for λ = 10−5, about 4000 particles are required for the M-

APF to achieve approximately optimal performance for the

manoeuvring target scenario while roughly 1500 particles are

required for CV target tracking. This increase in required

sample size is probably also partly due to the increased vari-

ability in target number for the manoeuvring target scenario, as

seen by comparing Figures 1(a) and 3(a). It may be expected

that tracking the target number is more difficult if it changes

frequently.

VI. CONCLUSION

In this paper, we proposed a family of M-PHD filters for

multi-target filtering. We first focused on models which present

both a linear and a non linear substructure. Two implemen-

tations of the M-PHD were developed: a bootstrap filter, the
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Fig. 4. Mean OSPA plotted against sample size for manoeuvring target
tracking with the BF, M-BF, APF and M-APF. Results are shown for (a)
λc = 10

−5 (b) λc = 4× 10
−5.

M-BF, which draws samples from the prior and an auxiliary

particle filter, the M-APF, which uses a measurement-directed

sampling density. It was then shown how these filters can

be used with Gaussian JMSS with linear or partially linear

substructures.

The M-BF and M-APF were applied to the problems of

tracking constant velocity targets and manoeuvring targets

using range-bearings measurements. The marginalised particle

filters exhibited significant improvement compared to their

non-marginalized counterparts, the BF and APF. Of the two

M-PHD implementations, the M-APF provided better perfor-

mance than the M-BF. Although the expense of drawing a

sample is greater for the M-APF, it offers better performance

for a given computational expense through the use of a much

smaller sample size.

APPENDIX

A BRIEF REVIEW OF PROGRESSIVE CORRECTION

As seen in (52) and (53), the measurement-directed propos-

als used in the APF require approximation of quantities of the

forms

ℓ̄(z) =

∫
g(z|x)π0(x) dx, (82)

π(x) ∝ g(z|x)π0(x), (83)
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where g(·|x) is the conditional measurement PDF and π0(·)
is a prior PDF. We are interested in cases where (82) and

(83) are not available in closed-form. The idea of PC is to

define correction factors γ1, . . . , γs such that 0 < γi ≤ 1 and∑s
i=1 γi = 1. For i = 1, . . . , s, let

πi(x) = g(z|x)Γiπ0(x)/ℓ̄(z), (84)

ℓ̄i(z) =

∫
g(z|x)Γiπ0(x) dx, (85)

where Γi =
∑i

a=1 γa. We then have, for i ≥ 1,

ℓ̄i(z) =

∫
g(z|x)γig(z|x)Γi−1π0(x) dx, (86)

= ℓ̄i−1(z)

∫
g(y|x)γiπi−1(x) dx, (87)

with ℓ̄0(z) = 1. It follows that

ℓ̄(z) = ℓ̄s(z) =

s∏

i=1

νi(z), (88)

νi(z) =

∫
g(z|x)γiπi−1(x) dx. (89)

The densities πi(·) are found recursively for i = 1, . . . , s
using

πi(x) ∝ g(z|x)γiπi−1(x). (90)

Although (88) and (90) cannot be evaluated in closed-form

they can be accurately approximated using standard techniques

such as linearisation or the UT. This can be seen by consid-

ering (90) for i = 1:

π1(x) ∝ g(z|x)γ1π0(x). (91)

Compared with the complete correction (83), the partial

correction (91) uses a broad likelihood which ensures large

overlap between the prior and the likelihood provided γ1 is

sufficiently small. This allows good approximations to π1(·)
and ν1(z) to be obtained using conventional methods such as

linearisation or the UT. The process can then be continued for

π2(·), ν2(z) and so on.
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