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Performance Analysis of an Adaptive
Algorithm for Tracking Dominant Subspaces

Jean Pierre Delmas and Jean Fran¸cois Cardoso

Abstract—This paper provides a performance analysis of a
least mean square (LMS) dominant invariant subspace algorithm.
Based on an unconstrained minimization problem, this algorithm
is a stochastic gradient algorithm driving the columns of a
matrix WWW to an orthonormal basis of a dominant invariant
subspace of a correlation matrix. We consider the stochastic
algorithm governing the evolution of WWWWWWH to the projection
matrix onto this dominant invariant subspace and study its
asymptotic distribution. A closed-form expression of its asymp-
totic covariance is given in the case of independent observations
and is further analyzed to provide some insights into the behavior
of this LMS type algorithm. In particular, it is shown that even
though the algorithm does not constrainWWW to have orthonormal
columns, there is deviation from orthonormality of the first
order. We also give a closed-form expression of the asymptotic
covariance of DOA’s estimated by the MUSIC algorithm applied
to the adaptive estimate of the projector. It is found that the
asymptotic distributions have a structure that is very similar
to those describing batch estimation techniques because both
algorithms are obtained from the minimization of the same
criterion. Finally, the accuracy of the asymptotic analysis is
checked by numerical simulations and is found to be valid not
only for a “small” step size but in a very large domain.

Index Terms—Adaptive/batch MUSIC, asymptotic perform-
ance analysis, subspace tracking.

I. INTRODUCTION

Subspace Tracking

OVER THE PAST decade, adaptive estimation of sub-
spaces of covariance matrices has been applied success-

fully to high-resolution spectral analysis in signal processing
and principal component analysis in data compression and
feature extraction. The interest for these methods (a tool of
growing importance in many fields of signal processing) has
recently been renewed by the subspace approach used in blind
identification of multichannel FIR filters [1]. Numerous solu-
tions have been proposed to recursively updating subspaces
of covariance matrices (see, for example, the references in
[2] and [3]), but there are relatively few performance analy-
ses concerning stochastic gradient algorithms derived from
constrained or unconstrained optimization problems. Among
them, Larimore and Calvert [4] presented a convergence study
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of the Thompson algorithm, whereas Yang and Kaveh [5]
made an analysis of convergence rate and stability of their
constrained gradient search procedure resorting to the classical
independence assumption. Studies of convergence with the
help of the associated ordinary differential equation (ODE)
were carried out by many authors from Oja and Karhunen [6].
Evaluation of the performance by providing the asymptotic
distributions of the estimated eigenvectors were proposed in
[7]–[9]. It is the purpose of this paper to provide a thorough
study of the behavior of an LMS-type approximation algorithm
presented by Yang in [2].

Algorithm Under Study

For a given covariance matrix , denote as
the eigenvalues of and corresponding

eigenvectors. The-dimensional dominant invariant subspace
of is the span of , and it is well defined if, as
assumed throughout the paper, Denote as the
orthogonal projector onto this subspace. We then have

(1)

where we have defined , and
Defining the rank-one projection matrices onto

each eigenvector, we can also write

(2)

Subspace tracking consists of recursively updating, at time
, an (approximately) orthonormal basis of this subspace on

reception of sample of a stationary process with covariance
,1where is supposed to be a zero-mean complex

circular Gaussian random vector.
There are several interesting algorithms described in Yang’s

paper [2] based on the unconstrained minimization of the
objective function

(3)

with respect to the matrix In this contribution, we
consider the stochastic gradient algorithm for the minimization

1Complex-valued quantities are implicitly assumed here. Most of the paper
deals with the complex case, but the real case is also considered in Section III-
A.
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of This yields the following algorithm, where
is a step size:

(4)

(5)

Baldi and Hornik [10] have shown (in the real case) that the
stationary points of are , where

is any -dimensional eigenvector basis of, and is an
arbitrary orthogonal matrix. All these points are saddle

points except when In this case,
attains the global minimum. These results are restated

in [2] in the complex case, and subsequent work in this subject
has been carried out by Xu [11]. In stationary situations and
if the step size satisfies the conditions and

, the study of the convergence of algorithm (4)
is intimately connected to the associated ordinary differential
equation (ODE)

(6)

Therefore, we can conjecture that the stochastic algorithm (4)
converges almost surely to

Projector Tracking: A difficulty arises in the study of the
behavior of because the set forms a continuumof
attractors; the column vectors of do not, in general, tend
to the eigenvectors , and we have no proof of
convergence of to a particular orthonormal basis of their
span.2 Therefore, the approach followed in this paper is to
study the trajectory of matrix

(7)

whose dynamic is governed by the stochastic equation

(8)

(9)

(10)

obtained by combining (4), (5), and (7). In the following, we
are interested in first-order asymptotic effects. We derive the
asymptotic variance of around for a small fixed value

of the step size. At first order (in , this covariance is
proportional to and is not affected by the term in (8);
therefore, this term can be neglected. A remarkable feature
of (8) is that the field actually depends only on and
not on This fortunate circumstance makes it possible to
study the evolution of without determining the evolution
of the underlying matrix The characteristics of are
indeed the most interesting since they completely characterize
the estimated subspace.

2We note that in the particular case,r = 1 andxxxt real, (6) admits only two
asymptotically stable points. Under some additional technical assumptions, a
result of [14] asserts that each solution of (6) converges to one of the points
f�vvv1;+vvv1g, and consequently,WWW t converges almost surely to one of these
points.

Outline of the Paper:This paper is organized as follows. In
Section II, after presenting a brief review of a general Gaussian
approximation result, we obtain in closed form the asymptotic
covariance of for the case where is a white complex
circular Gaussian sequence. Several lemmas are included,
the proofs of which are reported at the end of the paper.
In Section III, we extend this result to real signals, and we
compare the asymptotic performance of the algorithm with the
performance of the PAST algorithm [2] and of batch algorithm
for subspace estimation. We also investigate the performance
of direction-of-arrival (DOA) estimation based on the adap-
tive subspace algorithm. Section IV presents some simulation
results and investigates the validity of the asymptotic approach.

II. A SYMPTOTIC PERFORMANCE ANALYSIS

A. A Short Review of a General Gaussian Approximation Result

In this section, we evaluate the asymptotic performance of
algorithm (4). For this purpose, we will use the following
result [12, th. 2, p. 108]). Let

(11)

be a constant step-size recursive stochastic algorithm. Suppose
that the real parameter converges almost surely to the
asymptotically stable point in the corresponding decreasing
step-size algorithm. Then, in a real stationary situation, we
have when and (where denotes the
convergence in distribution)

(12)

where is the unique symmetric solution of the continuous
Lyapunov equation

(13)

and where and are, respectively, the derivative of the
mean field and the covariance of the field

(14)

(15)

Thus, behaves asymptotically, for “large enough” and
“small enough,” like an unbiased Gaussian estimator of
with covariance matrix In cases where a closed form for
the EVD of is available ( for ),
we have

(16)

Further, if is symmetric, the eigenvectors can
be chosen orthonormal, and (16) yields

(17)
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Further, if and share the same set of eigenvectors, i.e., if
we have for , the above reduces to

(18)

The main objective of this paper is to give an explicit form
of the asymptotic covariance matrix for the algorithm (4). This
requires solving the Lyapunov equation (13) in closed form.
This turns out to be analytically tractable because we shall
exhibit a basis where matrices and are both diagonal;
therefore will become available in closed form via (18).

B. A Short Review of an Asymptotic Property of M Estimates

In this subsection, we recall the asymptotic distribution of
M estimates [13, Th. 1, p. 312], which we shall use to evaluate
the asymptotic distribution in the case of batch estimation. If

is a sequence of independent identically distributed zero
mean random vectors and if is an isolated solution of

(19)

with , and if is sufficiently smooth, the
following convergence in distribution result holds when
tends to :

(20)

where is defined in (14), and
Further, if and (symmetric)

share the same set of eigenvectors, i.e., if we have
and for , the matrix reduces

to

(21)

C. Local Characterization of the Field

According to previous section, we need to characterize two
local properties of the field : the mean value of its
derivative and its covariance, both evaluated at point
To proceed, it will be convenient to define the following set
of orthonormal Hermitian matrices [the inner product under

consideration is )]:

(22)

With this definition, a first-order approximation of the mean
field in the neighborhood of is given by the following
lemma.

Lemma 1: For

(23)

with

(24)

To characterize the covariance of the field at point, we use
the Vec operator, which turns a matrix into a
vector by stacking successive columns one below another. It
will be used in conjunction with the Kronecker product
as3 the block matrix whose block element is We
have the classic properties (see, for example, in the real case
[16, Appendix A])

Vec Vec (25)

(26)

(27)

Define, then, the following two matrices:

(28)

The covariance of the field at point is given by the
following lemma.

Lemma 2: For a circular complex vector

Cov Vec (29)

The eigenstructure of this covariance matrix is characterized
as follows.

Lemma 3: For

cov Vec Vec Vec

with

(30)

D. Real Parameterization

The Lyapunov equation (13) deals with a vectorof real
parameters. Herein, the parameterof interest is an
rank- complex Hermitian matrix. To adapt the results recalled
in Section II-A to our needs, matrix should be parameterized
by a vector of real parameters. Counting degrees of freedom
shows that the set of rank- complex Hermitian matrices
is a -dimensional manifold. This section introduces
a parameterization of this manifold in a neighborhood of
by a vector of real parameters.

For an matrix and any pair of
indices, define

(31)

These arereal scalars if is Hermitian. Since
is an orthonormal basis for the linear space of

matrices, the scalars are the coordinates of

3This slightly unusual convention makes it easier to deal with complex
matrices.



3048 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 11, NOVEMBER 1998

on this basis. Thus, any matrix is parameterized by the
values of according to

(32)

Matrices close to are parameterized by small values of these
parameters. By definition, for any
pair The relevance of these parameters is shown by this
lemma.

Lemma 4: If is an rank- Hermitian matrix, then

(33)

where is the complement of , i.e.,

, or
In other words, a rank-Hermitian matrix lying less than

away from (i.e., ) has negligible (of order )
components in the direction of for Equation
(33) is more compactly expressed by using an
matrix

(34)

so that the vector defined by

Vec (35)

contains the values of for , and (33) reads,
after vectorization

Vec Vec (36)

Note that the particular ordering of the pairs in the setis
irrelevant in expressions like There are

pairs in , and this is exactly the dimension of
the manifold of rank- Hermitian matrices. This point,
together with (33), shows that the matrix set

in fact is abasisof the tangent plane to this manifold at
point It follows that in a neighborhood of , Hermitian
rank- matrices are uniquely determined by the (real) values of

This is the required real (local) reparameterization of a rank-
Hermitian matrix by a -dimensional vector . We

denote as the unique (for small enough ) Hermitian
matrix with rank such that Vec It is
not necessary to express explicitly . As it will occur, it is
sufficient to use the property derived from (36)

Vec Vec (37)

E. Solution of the Lyapunov Equation

We are now in position to solve the Lyapunov equation
in the new parameter defined in the previous subsection.
The stochastic equation governing the evolution of this vector
parameter is obtained by applying the transformation

Vec to the original (8).

(38)

where function appears to be

(39)

We need to evaluate the derivative matrix of
at point since we first consider only the case of
independent observations, the covariance matrixof
With these notations, the results of Section II-C are recycled as

Vec

Vec

Vec

where the above summations are over The first
equality uses definition (39) and the linearity of the Vec
operation, the second equality stems from property (36) of
the reparameterization, the third equality uses Lemma 1 and
the differentiability of , the fourth equality is by definitions
(34) and (40), and the last equality is due to the orthonormality
of the basis and allows us to conclude that

with

Diag (40)

We proceed with evaluating the covariance of the field at

Cov Cov Vec

Cov Vec

The first equality is by definition of , the second equality is
by the bilinearity of the Cov operator, the third equality is by
noting that Lemma 3 also reads CovVec

with defined by (41), and the last equality is due
to the orthonormality of the basis and allows us to
conclude that for independent observations

Cov with

Diag (41)

Thus, both and are diagonal matrices. In this case, the
Lyapunov equation (13) reduces to uncoupled scalar
equations. The solution then, trivially, is

(42)

According to (12), By (36),
we have Vec Vec We conclude
that for and

Vec Vec with

(43)

Expression (43) of the covariance matrix in the asymptotic
distribution of Vec may be written as an explicit sum

Vec Vec (44)
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Definitions (24) of and (30) of show that these
quantities are symmetric and that for
Using these facts and the easily established identity

Vec Vec Vec Vec

(45)

the expression (44) of the asymptotic covariance matrix of
is finally rewritten as

(46)

See Corollary 1 for an even simpler expression in the case
where , and is the projector onto the range
of a rank-deficient non-negative matrix

F. Analysis

Several simple MSE characterizations can be derived from
the regular structure of the covariance matrix as expressed
by (44) or (46). A word of caution is nonetheless necessary
because the convergence of Vec to a limiting
Gaussian distribution with covariance matrix does not
guarantee the convergence of its moments to those of the
limiting Gaussian distribution (or even that these limiting
moments exist). In the following sections, weassumethe
convergence of the first– and second-order moments, allowing
us to write

cov Vec (47)

The numerical experiments presented in Section IV show an
excellent prediction of various MSE quantities, conforting this
assumption.

According to (47), the MSE between and is given by
the trace of the covariance matrix in the asymptotic distribution
of The trace being invariant under orthonormal changes
of basis and Vec being an orthonormal
basis, we obtain from (44) or (46)

(48)

A finer picture is obtained by decomposing the error
into three terms

(49)

Using , this is easily seen to be an orthogonal
decomposition:

(50)

The relevance of this orthogonal decomposition stems from
this lemma (see proof in Appendix):

Lemma 5: Let be a rank- Hermitian matrix, and let
be the orthogonal projection matrix on the range space of
Then

(51)

(52)

(53)

Thanks to this lemma, each term can be given a simple
interpretation. The term represents the first order of the
deviation of from orthogonality since if was an orthogonal
projector, we would have Maybe more strikingly,
recalling that , we find that

since from (98) and (99),
, where

with is the unitary matrix of the
singular decomposition of According to
this lemma, the term represents the deviation between the
subspace of interest and the one estimated byFinally, the
last term is of order because has rank
(we already expressed this property in Lemma 4).

The above decomposition is purely geometric. Statistical
results are obtained by combining them with expressions (44)
or (46) of the asymptotic covariance matrix of In
doing so, massive simplifications occur due to orthogonality.
This is summarized by

Vec Vec

where denotes the Kronecker notation. if ,
and elsewhere. Many terms are canceled by these
orthogonality relations. The resulting asymptotic variances are

(54)

(55)

(56)

A very striking result is observed here: The deviation of
from orthonormality, as quantified by , has a stochastic
order lower than . This results from the fact that the
summation in (46) only is over pairs such that
This is a remarkable feature of this algorithm in that there
seems to be no price to pay for not constraining matrix
to have orthonormal columns, at least in the stationary setting
considered herein. What is then the order of the deviation from
orthonormality? This question cannot be answered by first-
order performance analysis, but the order can be determined
experimentally. We show in Section IV that the MSE of
orthonormality is, in first approximation, proportional to

A frequently encountered situation is when the observation
vector is the superposition of a signal with a rank-deficient
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covariance matrix corrupted by a spatially incoherent addi-
tive noise with covariance matrix so that
The projector of interest is , which is the projector onto the
range of (this space is usually called thesignal subspace)
or, equivalently, the projector onto its ortho-complement:
the noise subspace. In this situation, this corollary follows.

Corollary 1: If with rank and
is the projector onto the range of, then (46) of becomes

with

In addition, Tr Tr
The proof uses a decomposition of as

giving and as well as
the property Tr Tr Tr The corollary
follows by elementary algebra.

III. FURTHER INVESTIGATIONS

A. The Real Case

To address the case of real signals, only slight modifications
are needed. We outline below the differences with the complex
case. Regarding the parameterization of, an appropriate
orthonormal basis for the real symmetric matrices is

(57)

A lemma similar to Lemma 4 holds, replacing with

and Keeping thesame
definitions for and , the results of Lemmas 1 and 3
become

(58)

Cov Vec Vec

Vec (59)

Using the same arguments as in the real case, with the only
difference ([16], p. 57) that

Cov Vec (60)

where is an block matrix, acting as a permutation
operator, i.e., Vec Vec for any vectors and
, the asymptotic covariance matrix for is

Vec Vec (61)

which is the real counterpart of (44). is finally written as

(62)

Because of the similarity between the asymptotic covariance
matrices for in the real case (62) and in the complex case
(46), similar conclusions can be drawn. In particular, (55)
holds.

B. Comparisons with Other Estimation Techniques

PAST Algorithm: Expression (62) can be compared with
those derived from the asymptotic distribution of the real
PAST estimator given by Yang in [9]. As this PAST algorithm
converges to (where is an arbitrary
orthogonal matrix), Yang considers the covariance of the

limiting distribution of The block
matrix reads

(63)

Applying a continuity theorem (e.g., [19, Th. 6.2a, p.
386]) to the differentiable mapping

gives Vec Vec
with

(64)

where with the forgetting factor of the RLS-type
PAST algorithm. The relations (62) and (64) are very similar,
except for the multiplicative term Further comparison of
these covariance matrices is questionable because the step size

cannot be compared. In our algorithm,has the dimension
of the inverse of the power of , and in the PAST algorithm,

has no dimension.
Batch Estimation Technique:Consider the minimization of

the sample version of the Yang/Xu criterion (3)

(65)

Let be a minimizer of (65). Because all the properties
derived from the minimization of (3) also hold in case (65)
is minimized (just replace by ,
the corresponding estimate of the projectorhas a common

value denoted by and coincides with the
standart batch estimator. Therefore, since is solution of

with defined in (5), is a
solution of

(66)

with defined in (9). Applying the results on M-estimates
recalled in Subsection II-B and using the common set of
eigenvectors Vec of and and the associated
eigenvalues (24), (30), we obtain

Vec Vec (67)

with

(68)
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Comparison: The covariance matrices of the asymp-
totic distribution of the projection matrix estimated by our
LMS algorithm and by the standard batch estimation tech-
nique have the same structure [see (18) and (21)] because
these estimations derive from the same criterion [see (3)
and (65)]. The matrices share the same eigenbasis
in the complex case and in the real case. Only the
associated eigenvalues are distinct for our
LMS algorithm and for the standard batch
estimation. The covariance matrix associated with the
real PAST algorithm shares the same eigenbasisbut with
eigenvalues , as shown in the table at the bottom
of the page.

C. Application to DOA Tracking

By continuity, the behavior of any differentiable function of
the projection matrix can be obtained. In this section, the
behavior of the DOA’s estimated by the MUSIC algorithm
[21] applied from is derived. Recall first the standard
narrowband array data model

(69)

where and are mutually uncorrelated zero-mean circular
Gaussian stationary processes. Matrix is partitioned into

column vectors as In addition, we
assume a spatially white noise and not
fully correlated sources so that is full rank.
The MUSIC estimates of the DOA’s are
determined as thedeepest minima of the localization function
of

(70)

with Therefore, each DOA estimate
of based on an estimate of is the solution of

Tr (71)

where The first-order perturbation of
is easily found by a Taylor expansion of (71). This is

Vec Vec with

Tr
(72)

If the derivative matrix is nonzero, a continuity theorem
(e.g., [19, Th. 6.2.a, p. 386]) gives the convergence in distri-
bution of , namely,

when and with and asymptotic
covariance matrix given component-wise by

Vec Vec

Tr (73)

where last equation uses Corollary 1. Next, using
Tr

, where , and
from Lemma 6, Cov

reads

Cov

Re

(74)

so that in particular

Var

(75)

where and are given by

and

(76)

Comparison with Batch Estimation:We note that (74) is
quite close to the expression (3.12, [22]) of the covariance
of the DOA’s estimated by a batch MUSIC algorithm based
on independent snapshots as given by

Cov Re

(77)

where Re denotes “the real part of.” To gain a better insight
into the result (74), we now specialize to a simple case and
present some properties.

Consider the case of a single source impinging on any array.
If we denote by the power of the signal source with
steering vector normalized by , (75) gives

Var (78)

that we can compare with the batch MUSIC estimation

Var (79)

where denotes the SNR For example, the geo-
metrical factor is given for a linear uniform array of

sensors by The results (78) and
(79) are directly induced by the expressions of the asymp-
totic covariance (46) and (68) issued from the minimization
of the same criterion. Therefore, the ratio

obtained for
the estimated projection matrices gives the ratio for

Algorithm LMS algorithm batch estimation PAST algorithm

Eigenvalues
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the variances of the estimated DOA by MUSIC algorithms
because and Regarding the speed of
convergence of the adaptive MUSIC algorithm, we note that
the product [step size eigenvalues of the derivative of the
mean field ] must be fixed to fix the
convergence speed. This suggests that the step sizeof the
adaptive algorithm must be normalized by to keep a fixed
convergence speed (see also Section IV).

Equipowered Sources:In the case of equipowered and
uncorrelated sources (with normalized steering vectors), the

variances Var are equal and given by (78)
obtained for a single source. The influence of other sources
manifests itself only in the geometrical factors In batch
MUSIC estimation, the variances cannot be reduced to the
form (79).

For example, for sources impinging on a linear
uniform array, the increasing variance of the DOA estimates
when the sources get closer is due only to the geometrical
factors From the closed-form expressions of and
given in [23], it is straightforward to see that the are a
decreasing function of the DOA separation in the
neighborhood of and tend to 0 when
tends to 0.

From (75), we have after some algebraic manipulations

Var (80)

By symmetry, however, since does not depend on
, we can deduce from

that Relation (78)
is readily deduced.

For high SNR, for so that (74)
becomes

Cov Re (81)

and in batch MUSIC estimation, thanks to
for , (77) gives

Cov Re (82)

In particular, the diagonal elements of (81) and (82), respec-
tively, read

Var and Var (83)

Thus, in striking difference to batch MUSIC, the variances in
adaptive MUSIC are identical to those predicted for a single
source in a high SNR situation. Furthermore, theand DOA
estimates are uncorrelated in adaptive MUSIC [respectively,
in batch MUSIC] if and only if Re
[respectively, Re This holds in particular
for orthogonal steering vectors [respectively, for uncorrelated
sources].

IV. SIMULATIONS RESULTS

We now examine the accuracy of (48) of the mean square
error of the projection matrix and of (75) and (78) of the mis-
adjustment of the DOA’s estimated by the MUSIC algorithm
and “small terms” exhibited in Section II-F.

In the first experiment, we consider the case of the
projection matrix on the eigenspace spanned by the first
two eigenvectors of a covariance matrix derived
from independent observations whose covariance matrix
is that of an AR(1) model of parameter Fig. 1 shows
the learning curve averaged (over 100 independent runs) of
the square error for and
It tends to a value in perfect agreement with the theoretical
values predicted by (48). This figure also shows the evolution
of “small terms,” i.e., terms with scale , as predicted
by (47) and (54)–(56). We plot the quantities

, and
, whose significance has been discussed in

Section II-F. Fig. 2 shows the ratio of the estimated mean
square error to the theoretical asymptotic
mean square error as a function of Our present
asymptotic analysis is seen to be valid over a large range of

, and the domain of “stability” is
for which this ratio stays near 1. Fig. 3 shows that the

deviation from orthonormality is
proportional to in the domain of validity of the mean square
error (48) because with

Fig. 4 shows, in the same way, that the square
norm of the bias is proportional to in
the domain of “stability.” Furthermore, its contribution to the
MSE proves that Tr
in the domain of “stability.”

The third experiment presents the case of one source im-
pinging on a linear uniform array of sensors. After each
subspace update, we apply the MUSIC algorithm. Fig. 5
shows the learning curve of the mean square error of the
DOA averaging 400 independent runs of independent
observations We used the normalized step size

with We see that
for and , the algorithms have about the same
convergence speed. As for the mean square error, it agrees
with (78), which gives Var
The convergence time in Fig. 5) can be compared
with the observation time necessary to get the same batch
MSE as the sequential asymptotic MSE; expressions (78) and
(79) give the observation time

Finally, we present the case of two uncorrelated and
equipowered sources impinging on a linear uniform array
of four sensors with After each subspace
update, we apply the MUSIC algorithm. Fig. 6 shows the
learning curve of the DOA averaging 400 independent
runs of independent observations for

; then, The mean square error
agrees with (78), and the convergence speed is seen to
decrease when the angle separation decreases. This agrees
with the eigenvalues of the derivative of the mean field (24);
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Fig. 1. Learning curves of the mean square errorEjjPPP t � ���jj2
Fro

. (1) Deviation from orthogonalityEjjWWWH
t WWW t � IIIr jj2Fro. (2) Square of bias

jjE(PPP t) � ���jj2
Fro

. (3) VariancesEjjPPP 1;tjj2Fro. (4) EjjPPP 2;tjj2Fro. (5) EjjPPP 3;tjj2Fro (6) averaging 100 independent runs compared with
 Tr (CCCP ) (7)
for independent observationsxxxt, a1 = 0:3, and 
 = 0:005:

Fig. 2. Ratio of the estimated mean square errorEjjPPP t � ���jj2
Fro

by averaging 400 independent runs to the theoretical asymptotic mean square error

 Tr (CCCP ) as a function of
 for independent observationsxxxt and a1 = 0:3:

some of them are equal to Since tends
to when the separation angle tends to zero, the eigenvalues

also tend to zero, which implies slower convergence
near the stationary point.

V. CONCLUSION

We have analyzed the performance of an LMS-type al-
gorithm for tracking dominant invariant subspaces. Because
this algorithm and others in its class do not converge to the
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Fig. 3. Deviation from orthogonalityd2(
)
def
= EjjWWWH

t WWW t � IIIrjj2Fro at “convergence” estimated by averaging 100 independent runs as a function of

 in log–log scales.

Fig. 4. Mean square errorEjjPPP t����jj2
Fro

. (1) Square of biasjjE(PPP t)����jj2
Fro

(2) estimated by averaging 100 independent runs and theoretical asymptotic
mean square error
 Tr (CCCP ) (0) as a function of
 in log–log scales.

dominant eigenvectors but only to a rotated version, it is
necessary to develop a particular methodology. The asymptotic
covariance of the estimated associated projection matrix is
given in closed form and is further analyzed to provide insights

into the behavior of this LMS-type algorithm. In particular, it
has been compared with the performance of batch estimation,
which is derived from the same criterion and of Yang’s PAST
algorithm. The accuracy of the asymptotic analysis appears to
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Fig. 5. Learning curves of the mean square error of the DOA�1 for one source estimated by MUSIC algorithm, where
 = (
0=n�21) with

0 = 0:003; �2

1
= 1; �1 = 10 for n = 3 andn = 6 compared with the theoretical asymptotic mean square error.

be very good even for large step sizes, as shown by numerical
experiments.

VI. PROOFS

Proof of Lemma 1:The field in definition (9) being linear
in its second argument, the mean field at any pointis

(84)

Using the identities , , and

a substitution in (84) yields after simplifi-
cation

(85)

where is defined in (24). The lemma follows by using the
symmetry

Proof of Lemma 2:At point and using ,
definition (9) of the field reduces to

(86)

which, by vectorization and using definition (28), also reads

Vec Vec (87)

For a circular complex Gaussian vector, we have ([15], p.
336)

Cov Vec (88)

Combining (87) and (88) establishes the lemma
Cov Vec Cov Vec

Proof of Lemma 3:For any pair , by simple
substitution, we find

Vec Vec (89)

Vec Vec (90)

by using the properties and
and the identity

(since The eigenvectors of CovVec
follow by recalling that and combining (29), (89),
and (90)

Cov Vec Vec Vec (91)

where the scalars are defined in the lemma. Using
, symmetrization of (91) finishes the proof. Q.E.D.

Proof of Lemma 4:The proof uses the more general
Lemma 5. Indeed, we have

and, by (53), Thus,
for Q.E.D.

Proof of Lemma 5:Denote as the eigenvalue
decomposition of , and recall that denotes the orthogonal
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Fig. 6. Learning curves of the mean square error of the DOA�1 for two equipowered sources(�i = �0 � �) estimated by MUSIC algorithm, where

 = 0:003; �2

1
= 1; �i = 10 for � = 0:15 beamwidth and� = 0:30 beamwidth compared with the theoretical asymptotic mean square error.

projector onto the range of ; thus, , and we can
write

(92)

The main difficulty is that this EVD is not differentiable at
point because the eigenvalues of are degenerate.
However, results (see [17, Th. 5.4, p. 111]) are available for
the perturbation of the projector and of the eigenvalues.
This is

(93)

(94)

Based on this, we derive two preliminary results:
Tr Tr , where the
last equality results from (93), and It follows that

(95)

Then, (53) is established by the sequence

(96)

where we have used (95) and (94). Then, from (93)

(97)

which establishes (52). Finally, property (51) is established as

(98)

(99)

by using (92), (50), (97), and (96). This completes the proof
of the lemma.
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