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Performance Analysis of an Adaptive
Algorithm for Tracking Dominant Subspaces

Jean Pierre Delmas and Jean le@a,Cardoso

Abstract—This paper provides a performance analysis of a of the Thompson algorithm, whereas Yang and Kaveh [5]
least mean square (LMS) dominant invariant subspace algorithm. made an analysis of convergence rate and stability of their
Based on an unconstrained minimization problem, this algorithm - nstrained gradient search procedure resorting to the classical

is a stochastic gradient algorithm driving the columns of a . . . .
matrix W to an orthonormal basis of a dominant invariant independence assumption. Studies of convergence with the

subspace of a correlation matrix. We consider the stochastic help of the associated ordinary differential equation (ODE)
algorithm governing the evolution of WW* to the projection were carried out by many authors from Oja and Karhunen [6].

matrix onto this dominant invariant subspace and study its Evaluation of the performance by providing the asymptotic
asymptotic distribution. A closed-form expression of its asymp- gistrihutions of the estimated eigenvectors were proposed in

totic covariance is given in the case of independent observations . . )
and is further analyzed to provide some insights into the behavior [7]-[9]. It is the purpose of this paper to provide a thorough

of this LMS type algorithm. In particular, it is shown that even  Study of the behavior of an LMS-type approximation algorithm
though the algorithm does not constrainW to have orthonormal presented by Yang in [2].

columns, there is deviation from orthonormality of the first
order. We also give a closed-form expression of the asymptotic .
covariance of DOA’s estimated by the MUSIC algorithm applied Algorithm Under Study

to the adaptive estimate of the projector. It is found that the For a givenn x n covariance matrixR, denote as\; >
asymptotic distributions have a structure that is very similar P

to those describing batch estimation techniques because both . = An the elgenvqlues OR andvl,. ) Un COlfrespondlng
algorithms are obtained from the minimization of the same e'ge”YeCtOfS- The-dimensional dom'n_am 'nva”a_m S“,bSpace
criterion. Finally, the accuracy of the asymptotic analysis is Of R is the span ofvy,---,v,, and it is well defined if, as
checked by numerical simulations and is found to be valid not assumed throughout the papes, > A,1. Denotell as the
only for a “small” step size but in a very large domain. orthogonal projector onto this subspace. We then have
Index Terms—Adaptive/batch MUSIC, asymptotic perform-
ance analysis, subspace tracking. Ru, = Avg Hvg =7ave 1<a<n (1)
where we have definedy = --- ==, =1, andm.y1 =--- =
. INTRODUCTION 7, = 0. Defining the rank-one projection matricés, onto

each eigenvector, we can also write
Subspace Tracking

VER THE PAST decade, adaptive estimation of sub- o, % v  R= Z Aadl,

spaces of covariance matrices has been applied success- a=1l,n
fully to high-resolution spectral analysis in signal processing I = Z wodl s = Z 1I,. (2)
and principal component analysis in data compression and a=1,n 1<a<r

feature extraction. The interest for these methods (a tool of ) . . ] )
growing importance in many fields of signal processing) haubspace trapkmg consists of recurS|_\/er updatmg, at time
recently been renewed by the subspace approach used in bfin@n (@pproximately) orthonormal basis of this subspace on
identification of multichannel FIR filters [1]. Numerous soluf€Ception of sample; of a stationary process with covariance
tions have been proposed to recursively updating subspades Exyx{’ 'wherex, is supposed to be a zero-mean complex

of covariance matrices (see, for example, the referencesCiffular Gaussian random vector. o ,
[2] and [3]), but there are relatively few performance analy- 1here are several interesting algorithms described in Yang's

ses concerning stochastic gradient algorithms derived frdtPer [2] based on the unconstrained minimization of the
constrained or unconstrained optimization problems. Amofiective function

them, Larimore and Calvert [4] presented a convergence study def H e
Jo(W) = Ellzr — WW 7z, |5, ©)
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of J,(W). This yields the following algorithm, whereg, >0 Outline of the Paper:This paper is organized as follows. In

is a step size: Section I, after presenting a brief review of a general Gaussian
approximation result, we obtain in closed form the asymptotic
Wi =Wi+ nh(We,x) (4)  covariance ofP, for the case where; is a white complex

h(tht)d;f(gxtx{f —:ct:chWth{—Wth{:ct:ch)Wt. circular Gaussian sequence. Several lemmas are included,
) the proofs of which are reported at the end of the paper.
In Section lll, we extend this result to real signals, and we
Baldi and Hornik [10] have shown (in the real case) that tHeompare the asymptotic performance of the algorithm with the
stationary points of/,(W) areW = {W|W = V .U}, where performance of the PAST algorithm [2] and of batch algorithm
V.. is anyr-dimensional eigenvector basis Bf andU is an for subspace estimation. We also investigate the performance

r x r arbitrary orthogonal matrix. All these points are saddigf direction-of-arrival (DOA) estimation based on the adap-
points except wherV, = Vs def [vi,---,v.]. In this case, tive subspace algorithm. Section IV presents some simulation

J.(W) attains the global minimum. These results are restat[eedsu“s and investigates the validity of the asymptotic approach.
in [2] in the complex case, and subsequent work in this subject

has been carried out by Xu [11]. In stationary situations and [l. ASYMPTOTIC PERFORMANCE ANALYSIS

if the step sizey, satisfies the conditions°; v, = +oc and

lim,; ...y = 0, the study of the convergence of algorithm (4A. A Short Review of a General Gaussian Approximation Result
is intimately connected to the associated ordinary differential In this section, we evaluate the asymptotic performance of

equation (ODE) algorithm (4). For this purpose, we will use the following

dW. result [12, th. 2, p. 108]). Let
o = EWe2)). (6)
Orv1 = 6 + (6, %) (11)
Therefore, we can conjecture that the stochastic algorithm gl) ) ) ) )
converges almost surely /s = {W|W = VsU}. e a constant step-size recursive stochastic algorithm. Suppose

Projector Tracking: A difficulty arises in the study of the that then x 1 real parametef; converges almost surely to the
behavior of W, because the setVs forms acontinuumof asymptotically stable poirtt, in the corresponding decreasing
attractors; the column vectors &, do not, in general, tend step-size algorithm. Then, in a real stationary situation, we
to the eigenvectorss,---,v,, and we have no proof of have whenvy - 0 a}nd_t — oo (where —, denotes the
convergence oW, to a particular orthonormal basis of theifconvergence in distribution)
span? Therefore, the approach followed in this paper is to 1
study the trajectory of matriy?, \/—,7(9t —6x) =2 N(0,C6) (12)

P, w.wh (7) whereCy is the unique symmetric solution of the continuous
Lyapunov equation

whose dynamic is governed by the stochastic equation

. , o DCcy+C,DY +I'=0 (13)
Pip1 =Py + v f(Pr. 23, ) + 9, 9(Pr, mix,) (8)
def _ _ _ _ and whereD and I" are, respectively, the derivative of the
J(P,M)=PQ2M - MP - PM) + (2M — MP - PM)P mean field and the covariance of the field
defl (9) defl ad) del 8(7)]
g(P,M)E (2M — MP — PM)P(2M — MP — PM) (10) D=E| 5,0, ) Dl = g (14)
0=0.. z
obtained by combining (4), (5), and (7). In the following, we def s
are interested in first-order asymptotic effects. We derive the r= t_z_: cov [$(6s, z¢), $(6s, %0)]- (15)

asymptotic variance of?, aroundil for a small fixed value
~ of the step size. At first order (in), this covariance is Thus, 8, behaves asymptotically, far“large enough” andy
proportional toy and is not affected by th@(~?) term in (8); “small enough,” like an unbiased Gaussian estimato®.of
therefore, this term can be neglected. A remarkable featwréh covariance matrix,C,. In cases where a closed form for
of (8) is that the fieldf actually depends only o, and the EVD of D is available P"m; = u;m;, for 1 < i <n),
not on W,. This fortunate circumstance makes it possible twe have
study the evolution of?; without determining the evolution

) . 2 T mTij
of the underlying matrixW,. The characteristics oP?; are m; Com; = ————. (16)
indeed the most interesting since they completely characterize Hi 1
the estimated subspace. Further, if D is symmetric, the eigenvectofs,, - -, m,, can

2\We note that in the particular case= 1 andz; real, (6) admits only two be chosen orthonormal, and (16) ylelds
asymptotically stable points. Under some additional technical assumptions, a
result of [14] asserts that each solution of (6) converges to one of the points C
{—wv1,+wv1}, and consequently¥’; converges almost surely to one of these ¢
points.

mimZTijmf
— oy i mmy (a7
1igen PTG



DELMAS AND CARDOSO: PERFORMANCE ANALYSIS OF AN ADAPTIVE ALGORITHM FOR TRACKING DOMINANT SUBSPACES 3047

Further, if I" and D share the same set of eigenvectors, i.e., if Lemma l:For1l < a,b < n

we havel'm; = v;m; for 1 < i < n, the above reduces to I )
Ef(II 4+ eH g, 2%, ) = cfigpH op + O(€7) (23)

n

V; .
C, = — mm?. 18) Wwith
’ ; _2“im " () def
= Hab = 2)\a(1—7ra)+2)\b(1—7rb)—()\a—i—)\b)(wa—l—m).
The main objective of this paper is to give an explicit form (24)

of the asymptotic covariance matrix for the algorithm (4). This

requires solving the Lyapunov equation (13) in closed forn&o characterize the covariance of the field at pdttwe use

This turns out to be analytically tractable because we sh vec operatgr, which t“F”SW g matrix into apg x 1
exhibit a basis where matrice® and I" are both diagonal; vector by stacking successive columns one below another. It
" will be used in conjunction with the Kronecker produtty B

thereforeC, will become available in closed form via (18).
¢ (18) as’ the block matrix whoséi, ) block element i} ;A We

) ] ] have the classic properties (see, for example, in the real case
B. A Short Review of an Asymptotic Property of M Estimatefy g Appendix A])

In this subsection, we recall the asymptotic distribution of

_ H
M estimates [13, Th. 1, p. 312], which we shall use to evaluate Vec(ABC) = (A ® C7) Vec(B) (25)
the asymptotic distribution in the case of batch estimation. If (Ae@B)(C®D)=AC®@BD (26)
xz; IS a sequence of independent identically distributed zero (Ao B)Y = A o BY. 27)

mean random vectors anddf is an isolated solution of
Define, then, the following two matrices:

1 defl

T
S (0,2 =0 19) o En-m o QE
=1
' The covariance of the field at poidt = II is given by the

with E(¢(6,,;)) = 0, and if ¢ is sufficiently smooth, the following lemma.
following convergence in distribution result holds whanh ~ Lemma 2:For a circular complex vectae

H-eom+mem-.  (28)

el

tends toco: Cov(Vec(f(IT,zz"))) = QRO R)Q”.  (29)
VT(0r —6,) — 2 N(0,Cy) (20) The eigenstructure of this covariance matrix is characterized
as follows.
where Cy = D™D D is defined in (14), and” = Lemma3:Forl < a,b < n

cov [p(0., 1), p(0.,x:)]. Further, if I" and D (symmetric)
share the same set of eigenvectors, i.e., if we hEwe, =

vim; and Dm; = p;m; for 1 <4 < n, the matrixCy reduces ith
to

cov(Vec(f(IT,zx")))Vec(H o) = vap Vec(H o)

Vay (10 — 1) A M. (30)
V;

Co=)> —mmj. 21 L
¢ ; Z?m i (21) D. Real Parameterization

The Lyapunov equation (13) deals with a vecfoof real

C. Local Characterization of the Field parameters. Herein, the paramef@rof interest is ann x n
According to previous section, we need to characterize tv{/%nk“r (;omplex Hermitian matrix. .TO adapt the results regalled

local properties of the fielgi(P, zz" ): the mean value of its In Section II-A to our needs, matriR should be parameterized

f by a vectord of real parameters. Counting degrees of freedom

derivative and its covariance, both evaluated at p#int 11. h that th  of Ko lex Hermiti i
To proceed, it will be convenient to define the following ser 10Ws that Ine Set ol>xn ranks compliex Hermitian matrices
ar(2n — r)-dimensional manifold. This section introduces

of orthonormal Hermitian matrices [the inner product unde¥ 2 ) . . .
. L IJef blr [ ! product u a parameterization of this manifold in a neighborhoodlbf
consideration i A, B) = Tr (A" B)]:

by ar(2n — r) x 1 vector @ of real parameters.
For ann x n matrix M and any pairl < a,b < n of

H _
Valq, - a=b indices, define
UV, vy,
— % a<b e
H,, = Vo (22) By (M) = Tr {H o, (M — IT)}. (31)
vavb — ‘U(ﬂ)a b . X . )
—i\/§ a>0b. These arereal scalars if M is Hermitian. Since{H |1 <

a,b < n} is an orthonormal basis for the linear spacewof n
With this definition, a first-order approximation of the meamatrices, the scalaré,,(M) are the coordinates ¥ — II

field in the ne'ghborhOOd ofl is given by the fOIIOW'ng 3This slightly unusual convention makes it easier to deal with complex
lemma. matrices.
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on this basis. Thus, any x » matrix is parameterized by theWe need to evaluate the derivative matdX of E¢(f,x)

values of6,,(M) according to at point & = 0 since we first consider only the case of
independent observations, the covariance mdtrof ¢(0, x).
M=1I+ Z O (M)H . (32)  With these notations, the results of Section II-C are recycled as
1<a,b<n
~ E¢(0,z)

Matrices close tdI are parameterized by small values of these

_ H H
parameters. By definitior},,(M) = O(||M — II||) for any = H" VecEf(P(0), zz™)

pair (a, b). The relevance of these parameters is shown by this = K VecEf (11 + ) baHa, + O(||6]?), :m:H)
lemma.
Lemma 4:If P is ann x n rank+ Hermitian matrix, then =H" Vec (Z OasptarHap) + O(||9||2))
P=I+ Y 6u4(P)Hu,+O(|P-H|?) (33 = HT(HALY) + O(||6]]*) = A6 + O(]6]]*)
(a,b)eln where the above summations are oYerb) € P,. The first

equality uses definition (39) and the linearity of the Vec
operation, the second equality stems from property (36) of
the reparameterization, the third equality uses Lemma 1 and
the differentiability of f, the fourth equality is by definitions
(34) and (40), and the last equality is due to the orthonormality
of the basis{H,,} and allows us to conclude that

where P, is the complement of (a,b)|r <a,b < n}, i.e.,
P fab)l<a<rorl<b<r)

In other words, a rank-Hermitian matrix lying less thaa
away fromII (i.e., ||P — II|| < €) has negligible (of ordet?)
components in the direction & ,;, for » < a,b < n. Equation
(33) is more compactly expressed by usingndnx r(2n — r)

matrix H - |
def D= %(:J) = A wih
H — ["',VeC(Hab),"'], (a,b) GPh (34) =0
AH (lIefDiag("'vﬂaba"')7 (a,b) € L. (40)

so that ther(2n — r) x 1 vector 8(P) defined by

def

o(P) < We proceed with evaluating the covariance of the fiel@ at0

H Vec(P — II) (35)
_ H i

contains the values d,,(P) for (a,b) € P, and (33) reads, Cov(¢(0,z)) _CCSI(H Vec(f (Il zz H)))

after vectorization =H",Cov(Vec(f(Il,zz")))H

Vec(P) = Vec(IT) + HO(P) + O(||P — H|?).  (36) =H"HA, = A,

The first equality is by definition of, the second equality is
by the bilinearity of the Cov operator, the third equality is by
noting that Lemma 3 also reads C¥ec(f(II,zx™)))H =
HA, with A, defined by (41), and the last equality is due

Note that the particular ordering of the pairs in the Bgtis
irrelevant in expressions like/d. There aren? — (n —7)2 =
r(2n — r) pairs in Py, and this is exactly the dimension of
the manifold ofn x n rank+ Hermitian matrices. This point, to the orthonormality of the basi§H,;} and allows us to

together with (33), shows that the matrix el ,;|(a,b) € conclude that for independent observations
PB,} in fact is abasisof the tangent plane to this manifold at

point I1. It follows that in a neighborhood aff, Hermitian FdéfCovw)(O 7)) = A, with
rank+ matrices are uniquely determined by the (real) values of def . ’
6. This is the required real (local) reparameterization of a rank- A, =Diag(---,vep, ), (a,b) € Fy. (41)

r Hermitian matrix by ar(2n — r)-dimensional vectof. We
denote asP(6) the unique (for small enough¥||) Hermitian
matrix with rankr such thatH Vec(P(6) — II) = 6. It is
not necessary to express explicif®(f). As it will occur, it is

Thus, bothI” and D are diagonal matrices. In this case, the
Lyapunov equation (13) reducest(2n — ) uncoupled scalar
equations. The solution then, trivially, is

sufficient to use the property derived from (36) Cy = _% AVAZLI. (42)
Vec(P(6)) = Vec(I) + H8 + O(||6]]*). (37)  According to (12),y7/26, —. N(0, -5 A,A7Y). By (36),

) ) we have Ve¢P,) = Vec(IT)+Hb; +O(||6;||*). We conclude

E. Solution of the Lyapunov Equation that for v — 0 andt — +oo

We are now in position to solve the Lyapunov equation

in the new parametef defined in the previous subsection. —(Vec(P;) — Vec(IT)) —, N(0,Cp) with

The stochastic equation governing the evolution of this vector 1

parameter is obtained by applying the transformatién— Cpr =HCHT = —§HAVA;1HH- (43)

6, = HY Vec(P; — II) to the original (8).
Expression (43) of the covariance matéi in the asymptotic
— 2
Or+1 = O + 101, 2:) + O(7;) (38)  gistribution of Ved P;) may be written as an explicit sum

where function¢ appears to be

Cr= Y —Vec(Hu)Vec(Hu)".  (44)

EEHH Ve (F(P(0), zz™)). (39) (apycp, et

(/)(9’:5) =



DELMAS AND CARDOSO: PERFORMANCE ANALYSIS OF AN ADAPTIVE ALGORITHM FOR TRACKING DOMINANT SUBSPACES 3049

Definitions (24) of u,, and (30) of v,, show that these Lemma 5:Let P be a ranks Hermitian matrix, and lef ]
guantities are symmetric and that, = 0 for 1 < a,b < r. be the orthogonal projection matrix on the range spacg.of

Using these facts and the easily established identity Then
Vec(H ;) Vec(H o)™ + Vec(Hy,) Vec(Hy, )" P =P - P+O(|P- 0| (51)
=1, ® I, + I, ® I1,, (45) Py =11 - 11 +O(||P— 1| (52)

— 2
the expression (44) of the asymptotic covariance matrik pof Py =0(||P - I|). (53)

is finally rewritten as Thanks to this lemma, each term can be given a simple

Ay interpretation. The ternP; represents the first order of the
Z m(ﬂa @1, + 11, ® I.,). (46) deviation of P from orthogonality since if? was an orthogonal
projector, we would have?? = P. Maybe more strikingly,
See Corollary 1 for an even simpler expression in the caggalling thatP = WW", we find that
where R = X + 21, and Il is the projector onto the range
of a rank-deficient non-negative matr.

Cp=

1<a<r<b<n

1P| = [[WHW — L[] + O(||P - 1)

_ since from (98) and (99)||P.||? = |[V(4 — L)VH|]? +
F. Analysis O(|P — H||?), where||V(A — I)V1|]? = ||[A— L|)? =
Several simple MSE characterizations can be derived frdtf/ (4 — I)U" || with U is the x r unitary matrix of the
the regular structure of the covariance ma@ix as expressed singular decomposition oW W = UAU". According to
by (44) or (46). A word of caution is nonetheless necessalfyis lemma, the ternP, represents the deviation between the
because the convergence(of\/7) Vec(P,—1II) to a limiting  subspace of interest and the one estimatedb¥rinally, the
Gaussian distribution with covariance matif%, does not last termPs is of orderO(||P — II||*) becauseP has rankr
guarantee the convergence of its moments to those of {M¢e already expressed this property in Lemma 4).
limiting Gaussian distribution (or even that these limiting The above decomposition is purely geometric. Statistical
moments exist). In the following sections, wassumethe results are obtained by combining them with expressions (44)
convergence of the first— and second-order moments, allowipig (46) of the asymptotic covariance matdXp of P;. In
us to write doing so, massive simplifications occur due to orthogonality.
This is summarized by
||E(Pt) - H”%‘ro :O(’Y)v

cov(Vec(P;)) =+Cp + o(7). (47) Vec(vouy) (Il . @ 1 4) Vec(v v )

= bcabeebapbay 1< abede f<n.

The numerical experiments presented in Section IV show an . o
. . . ) Wwhered; ; denotes the Kronecker notatiofy,; = 1 if ¢ = j,

excellent prediction of various MSE quantities, conforting this ’ ;
and é; ; = 0 elsewhere. Many terms are canceled by these

assumptpn. L orthogonality relations. The resulting asymptotic variances are
According to (47), the MSE betwedR, andII is given by
the trace of the covariange mgtrix in the asymptotic distribution E||Py 4|30 = EIWIW, — L] |30 + 0(7)
of P,. The trace being invariant under orthonormal changes —0(~) (54)
of basis and{Vec(H ,;)||1 < a,b < n} being an orthonormal y — y
basis, we obtain from (44) or (46) E||P2 |50 = E||P: — ||y + 0(7)
AaAp
Aods =y > L to(y)  (55)
D D T W LG 1otz te TN
E|[Ps 3o = o). (56)

A finer picture is obtained by decomposing the etdfyr—

. 1 A very striking result is observed here: The deviationVis§
into three terms

from orthonormality, as quantified byP, ||, has a stochastic
PP —mu, P, et + it pn order Iolvver.thanfyl/Q. This results.from the fact that the
N summatlon in (46) only is over pairs such that_g 7 <b.
Py = 1I-PII—. (49) This is a remarkable feature of this algorithm in that there
seems to be no price to pay for not constraining makix
Using I,, = IT + II'", this is easily seen to be an orthogonalo have orthonormal columns, at least in the stationary setting

defl def

decomposition: considered herein. What is then the order of the deviation from
orthonormality? This question cannot be answered by first-
P=0I+P, + P+ Ps, order performance analysis, but the order can be determined

|1P— | =||P]* + | P2||* + || P3| (50) experimentally. We show in Section IV that the MSE of

orthonormality is, in first approximation, proportional 48.
The relevance of this orthogonal decomposition stems fromA frequently encountered situation is when the observation
this lemma (see proof in Appendix): vectorz; is the superposition of a signal with a rank-deficient
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covariance matrixd; corrupted by a spatially incoherent addiB. Comparisons with Other Estimation Techniques

. N . S - ”
tive noise with covariance matria*I so thatk = X +o°1I. PAST Algorithm: Expression (62) can be compared with
The projector of interest i#, which is the projector onto the o6 gerived from the asymptotic distribution of the real
range of (this space is “S“i"y called trgnal subspade pagT estimator given by Yang in [9]. As this PAST algorithm
or, equivalently, the projectaf - onto its ortho-complement: converges toW, = V,.U (whereU is anr x r arbitrary

the noise subspacdn this situation, this corollary follows. orthogonal matrix), Yang considers the covariatg of the
Corollary 1: If R = X421 with rank(X) = r <n andIl ’ def /

. e . - . = del T . .
is the projector onto the range 2f, then (46) ofC» becomes limiting distribution of W, = W,U". The nr x nr block

matrix C';, reads
Cpr=I'eoIIt+HO!teI with

(0 1<i#j<r
o2l 4+ ot X% 52 A - -
r=——"—_"= —__5#R Cidis =4 a T | <i—i<q (63)
5 5 (Cy )iy a>7j2()\i_)\a)vava 1<i=45<7

In addition, T(Cp) = o2(n — ) Tr(E¥ R). _ o
The proof uses a decomposition Bfas ¥ = 3", _ p,II, APPlying a continuity theorem (e.g,, [19, Th. 6.2a, p.
givINg Ay = pura + o2 and 5% = X, p=LI, as well as 386]) to the differentiable mappin®% = (wy, -, w,) —
S oty T T _ INE S T P = %i_ wywl gives (1/,/7)(Vec(P,) — Vec(Il)) —¢
the property T(Il— ® I") = Tr(IlI-)Tr(I"). The corollary L

follows by elementary algebra. N(0,Cp) with
Ap
ll. FURTHER INVESTIGATIONS Cr= Y m(IJF K)
( a b)
1<a<r<b<n
A. The Real Case I, + 11, @ 1) (64)

To address the case of real signals, only slight modificatiom;mre,y def 1\ with \ the forgetting factor of the RLS-type

are needed. We outline below the differences with the complgi g aigorithm. The relations (62) and (64) are very similar,
case. Regarding the parameterizationf&f, an appropriaté eycent for the multiplicative term,. Further comparison of

orthonormal basis for the real symmetric matrices is these covariance matrices is questionable because the step size

v,vL a=1"0 ~ cannot be compared. In our algorithmhas the dimension
Sab { vy + vl b (57)  of the inverse of the power af,, and in the PAST algorithm,
V2 @< ~ has no dimension.
A lemma similar to Lemma 4 holds, replacing, with Batch Estimation TechniqueConsider the minimization of
P, ((a,b)|1 < a < b < nanda < r}. Keeping thesame the sample version of the Yang/Xu criterion (3)
definitions for uq, and vy, the results of Lemmas 1 and 3 T
become Ty (W)t % S llae — WW . (65)
Ef(Il + ¢Sqy, xx)) t=1
= g Sap + O(?), 1<a<b<n (58) Let Wy be a minimizer of (65). Because all the properties
Cov(Vec(f(I,zz")))Vec(Sq) derived from the minimization of (3) also hold in case (65)

is minimized (just replacel(zz) by (1/7) XL zzll),
the corresponding estimate of the projectbrhas a common
Using the same arguments as in the real case, with the ogBjue denoted byP; def WrWZE and coincides with the

= 2, Vec(Sa), 1<a<b<n. (59)

difference ([16], p. 57) that standart batch estimator. Therefore, sie- is solution of
COV(VeC(xxT)) —R®R+(RORK (60) (1/|T-) E?:?/L(W,xt) = 0 with i defined in (5),Pr is a
solution o

where K is ann? x n? block matrix, acting as a permutation
operator, i.e.K Vec(zy®) = Vec(yz!) for any vectorse and
y, the asymptotic covariance matrix f@? is

Cr= Y % Vec(S.)Vec(Sw)'  (61)

a

1 T
T S fPaal’)=0 (66)
t=1

with f defined in (9). Applying the results on M-estimates

(av)ers recalled in Subsection 1I-B and using the common set of
which is the real counterpart of (440ip is finally written as eigenvectors Ve€H ,;)1<aq1<» Of D andI” and the associated
Ao\ eigenvalues (24), (30), we obtain
Cr= 3 s agid+E
L <aSripan 2Aa = M) VT(Vec(Pr) — Vec(IT)) — N'(0,Cp)  (67)
(I, @I, + I, ®11,). 62 _
(oo Iy + I, @ I1,) (62) with

Because of the similarity between the asymptotic covariance A
matrices forP; in the real case (62) and in the complex case Cp = /\“—)b\Q(IIa o, +1I,®11,).
(46), similar conclusions can be drawn. In particular, (55) 1§a§r<b§n( a =)

holds. (68)
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Comparison: The covariance matrice€p of the asymp- where last equation uses Corollary 1. Next, using
totic distribution of the projection matrix estimated by ouflr I-M"(6) = 2¢'H ()¢ (0), M'(6) = e(f)e™ () +
LMS algorithm and by the standard batch estimation tech«g)ef(9), where ¢/(6) < (de(6)/d6), and I' =

nique have the same structure [see (18) and (21)] becayse/2) v, ., (A, /(A — 02)) I, from Lemma 6,(Cové); ;
these estimations derive from the same criterion [see (@ads

and (65)]. The matrice€;» share the same eigenbadk,,
in the complex case and,, in the real case. Only the (Cov)i ; =v(Cs)i; +o(v)

associated eigenvalues are distingth; /2(\, — Ay) for our v L .

LMS algorithm andA A\, /(A\, — A\y)? for the standard batch = 200 X, — 02 Refa; ;(e” (0i)va)
estimation. The covariance matri&p associated with the " a=1

real PAST algorithm shares the same eigenb&isisbut with (v, e(0;))] +o(7) (74)
eigenvalues\,/2(\, — \), as shown in the table at the bottom50 that in particular

of the page.

Varf; =v(Cs);,i + o(7)

C. Application to DOA Trackin 2
B pRicato cHing . . . = L > Aa0 sle (0:)val* + o()  (75)
y continuity, the behavior of any differentiable function of 20 Ag— 0
the projection matrix’, can be obtained. In this section, the )
behavior of the DOA’s estimated by the MUSIC algorithn{Vhere«; and«; ; are given by
[21] applied from P, is derived. Recall first the standard a‘difze,H(e‘)HJ_e,(e‘) and
narrowband array data model e ¢ ¢
i 2eH (0,) 11 € (6). (76)
Ty = E(@)St =+ g (69)
. Comparison with Batch EstimationWe note that (74) is
wheres, andn, are mutually uncorrelated zero-mean C'rCUIaﬁiuite close to the expression (3.12, [22]) of the covariance
Gaussian stationary processes. Mal{©) is partitioned into of the DOA's estimated by a batch MUSIC algorithm based

def .
column vectors a#(®) = [e(61),---,e(6,)]. In addition, we on 7" independent snapshats as given by
assume a spatially white noisB(n;nl’) = o2I,, and not

fully correlated sources so th®, = E(s;s/’) is full rank. (Cové); ; ~ 2 5 Ago”? Re[a (e (8;)va)
The MUSIC estimates of the DOA'§y,k = 1,---,r are 7 Tagay 4= (A — 02)? “

determined as thedeepest minima of the localization function (wHe(,))] 77)
of 6 @

I _ where Rd ) denotes “the real part of.” To gain a better insight
e (O)(Ln = Pr)e(0) = Tr (I — P )M(9)) (70) into the result (74), we now specialize to a simple case and

with M(6) “éfe(e)e”(e). Therefore, each DOA estimaté, pr%sent.dsorrt]ﬁ propert:ces.. | N
of 6, based on an estimat of I7 is the solution of onsider the case of a single source impinging on any array.

If we denote byo?, the power of the signal source with

Tr (I, — P)M'(6;)) =0 (71) steering vector normalized by (|e(6)]? = n), (75) gives
~ 2

where M’ (6) %' (dM/d6). The first-order perturbation of;, Varf, ~ 2L <1 + L) 1 (78)

is easily found by a Taylor expansion of (71). This is 20, np1/) p1
b, =6, +VeC(Dk)H Vec(P — IT) + o(||P — H]||) with that we can compare with the batch MUSIC estimation

M (8, 11 1 1

= (72) varf; ~ T—(l + —)— (79)
Tr{Il-M"(6:)} Qi np1/ p1

If the derivative matrixDy, is nonzero, a continuity theoremwhere p; denotes the SNR:{/o?. For example, the geo-
(e.g., [19, Th. 6.2.a, p. 386]) gives the convergence in distfetrical factor«, is given for a linear uniform array of
bution of ©, = (61,---,6,);, namely,y~/2(®, — ©) —, n sensors bya; = (n(n” — 1)/6). The results (78) and
N(0,Cy) when~y — 0 andt — +oco with and asymptotic (79) are directly induced by the expressions of the asymp-

covariance matr>Cy given component-wise by totic covariance (46) and (68) issued from the minimization
- of the same criterion. Therefore, the ratio\,\,/2(\, —
(Co)i,; =Vec(D;)" Cp Vec(D;) 2o))/ Aaro/Ta — Xo)?) = (¥T(A\a — Ay)/2) obtained for
=Tr (DiHLDjFJr DiFDjHL). (73) the estimated projection matrices gives the ratitno? /2 for

Algorithm ’ LMS algorithm ‘ batch estimation’ PAST algorithm ‘
)\a)\b )\a)\b )\b
2(Aa — \p) (Ao — A2 2(Aa — \p)

Eigenvalues
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the variances of the estimated DOA by MUSIC algorithms IV. SIMULATIONS RESULTS

_ 2 2 _ 2 H
because\, = noi + o and\, = o°. Regarding the speed of  \ye how examine the accuracy of (48) of the mean square
convergence of the adaptive MUSIC algorithm, we note th@Fror of the projection matrix and of (75) and (78) of the mis-

the product [step sizec eigenvalues of the derivative of the, i isyment of the DOA's estimated by the MUSIC algorithm
mean field= y(\, — X\s) = yno?] must be fixed to fix the and “small terms” exhibited in Section II-E.

cgnvgrgenlce saeed. Thiz sugges'i.s tzat t?e sliepystﬁ?hed In the first experiment, we consider the case of the
adaptive algorithm must be normalized byy to keep a fixe projection matrixP,; on the eigenspace spanned by the first

cogvergence sdpged (se? atlﬁo Sectlonf !V)' . 4 and two eigenvectors of & x 3 covariance matrixR derived
quipowered sourcesin he case ol equipowered and g, independent observations whose covariance matrix
uncorrelated sources (with normalized steering vectors), €ihat of an AR(1) model of parameter. Fig. 1 shows
1- .

r variances Vap;,i = 1,---,r are equal and given by (78) .o oarning curve averaged (over 100 independent runs) of
obtained for a single source. The influence of other sources

. . . . e square errof|P; — II||%,_ for a; = 0.3 and~ = 0.005.
manifests itself only in the geometrical factasig. In batch q P v o K °

MUSIC estimation, the variances cannot be reduced to tHetenOIS to ".’l value in perfegt qgreement with the theoretl_cal
form (79). values predicted by (48). This figure also shows the evolution

Lo . of “small terms,” i.e., terms with scale(v), as predicted
For example, forr = 2 sources impinging on a linear

uniform array, the increasing variance of the DOA estimatb |2(47)E|{’|1;9H(5W;")_(5?'||2we ET;;);[ ‘ﬂ? q‘fEﬁrlﬂ“ﬁf(Pth‘d
when the sources get closer is due only to the geometriﬁ‘|;;§;||2 twhct)s; s7}ng1ri?i7c:ancel7thgrs()7 beer?jt d?goc’ussed in
factors ;. From the closed-form expressions of and vs 2tlFrer - 7 . .

given in [23], it is straightforward to see that te;} are a Section II-F. Fig. 2 shows the ratio of the estimated mean

decreasing function of the DOA separatif#h — 61| in the square errorE||Py — [, to the theoretical asymptotic

neighborhood of, — 6, = 0 and tend to 0 whendy — 6 | mean square erro_yT_r (Cp) as a funct_lon ofy. Our present
tends to O. asymptotic analysis is seen to be valid over a large range of

From (75), we have after some algebraic manipulations 7 (v<0.01), and the domain of “stability” isy <0.065
for which this ratio stays near 1. Fig. 3 shows that the
def

Varg; ~ yo? e(8:)]2 + 02 z’: le® (6:)va|? (80) deviation from 02rt-honormalityil2(fy) = -E.||Wf{Wt—I,,||%m is
200 ~ Ag — 02 proportional toy“ in the domain of validity of the mean square
error (48) becauseog,, d?(v) = log;oc + 2log;,y With
By symmetry, however, sinde” (6;)v,|* does not depend on . ~ 1.210-2. Fig. 4 shows, in the same way, that the square
i, we can deduce from norm of the biag|E(P,) — I||2,.,, is proportional toy? in
v the domain of “stability.” Furthermore, its contribution to the
<a§f’ Ze(ek)eH(ek)> Vo =(Ao— 0., a=1---,r MSEE|P,— |2, proves thatt||P,— H|_ ~~Tr(Cp)
k=1 in the domain of “stability.”
that ro2|e” (6;)v4|> = Ao — 02,a = 1,---,r. Relation (78) The third experiment presents the case of one source im-

is readily deduced. pinging on a linear uniform array of sensors. After each
For high SNR\, — 02 ~ \, for a = 1,- .-, so that (74) Subspace update, we apply the MUSIC algorithm. Fig. 5
becomes shows the learning curve of the mean square error of the
9 DOA ¢, averaging 400 independent runs of independent
(Cov),; ; ~ 2 Refo ;e (6;)e(6;)] (81) observationsz,. We used the normalized step size =
iy 7 (vo/no?) with o = 0.003,07 = 1,p1 = 10. We see that
and in batch MUSIC estimation, thanks (O,o2/(A, — for n = 3 andn = 6, the algorithms have about the same
o)) = (62 /(Ng —02)) for a=1,---,r, (77) gives convergence speed. As for the mean square error, it agrees
002 with (78), which gives Vaé, ~ (3va?/n?) = (3v0/n3p1).
(Cové); ; =~ o Re[a;*j(R;l)i,j]. (82) The convergence timgr” ~ 1000 in Fig. 5) can be compared
Qx4 ’ with the observation tim&” necessary to get the same batch
In particular, the diagonal elements of (81) and (82), respe¥SE as the sequential asymptotic MSE; expressions (78) and
tively, read (79) give the observation tim& = (2/yno?) = (2/%)
5 5 ~ 667.
Varé; ~ 27 |e(6;)> and Varg; ~ 20 (R7');;. (83)  Finally, we present the case of two uncorrelated and

20t; Ta; 7 equipowered sources impinging on a linear uniform array
Thus, in striking difference to batch MUSIC, the variances iaf four sensors withy; = 10, 8; = 8y + 6. After each subspace
adaptive MUSIC are identical to those predicted for a singlgpdate, we apply the MUSIC algorithm. Fig. 6 shows the
source in a high SNR situation. Furthermore, ifendj DOA  learning curve of the DOAd; averaging 400 independent
estimates are uncorrelated in adaptive MUSIC [respectivelyns of independent observations for v = 0.003,§ =
in batch MUSIC] if and only if Réa; ;e (6:)e(6;)] = 0 0.15(27/4); then, § = 0.30(2r/4). The mean square error
[respectively, R@oz;f’j(R;l)i,j] = 0]. This holds in particular agrees with (78), and the convergence speed is seen to
for orthogonal steering vectors [respectively, for uncorrelatefibcrease when the angle separation decreases. This agrees
sources]. with the eigenvalues of the derivative of the mean field (24);
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Fig. 1. Learning curves of the mean square erfgf{ P, — II||3,,. (1) Deviation from orthogonalityE||W W, — I.||3,,- (2) Square of bias
[|E(Py) — H||3,,. (3) VariancesE||P1 ||3,,. (4) E||P2.:|%,..- 5) E||Ps.||3,, (6) averaging 100 independent runs compared wiffr (C'») (7)
M ) |4

for independent observations;, «;

1.25

1.2

1.1
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0.95

107

107
step size

-1

Fig. 2. Ratio of the estimated mean square efdfP: — HHE‘ro by averaging 400 independent runs to the theoretical asymptotic mean square error
~Tr(Cp) as a function ofy for independent observationss and a; = 0.3.

some of them are equal th, — 0%, a = 1,2. Since X, tends
to o2 when the separation angle tends to zero, the eigenvalue¥ve have analyzed the performance of an LMS-type al-
Ao — o2 also tend to zero, which implies slower convergenagorithm for tracking dominant invariant subspaces. Because
this algorithm and others in its class do not converge to the

near the stationary point.

V. CONCLUSION
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Fig. 3. Deviation from orthogonalityi?(v) def E|\WHW, — I,||%., at “convergence” estimated by averaging 100 independent runs as a function of

~ in log—log scales.

mean square error, square of bias

107 107 107

step size

Fig. 4. Mean square errdt|| P, —II||%,. (1) Square of bia§ E(P,) — II||%, (2) estimated by averaging 100 independent runs and theoretical asymptotic
mean square erroy Tr(Cp) (0) as a function ofy in log—log scales.

dominant eigenvectors but only to a rotated version, it iato the behavior of this LMS-type algorithm. In particular, it
necessary to develop a particular methodology. The asymptdigs been compared with the performance of batch estimation,
covariance of the estimated associated projection matrixvigich is derived from the same criterion and of Yang’'s PAST
given in closed form and is further analyzed to provide insightdgorithm. The accuracy of the asymptotic analysis appears to
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Fig. 5. Learning curves of the mean square error of the D@Afor one source estimated by MUSIC algorithm, wheye = (yo/no%) with
70 = 0.003,62 = 1,p1 = 10 for n = 3 andn = 6 compared with the theoretical asymptotic mean square error.

be very good even for large step sizes, as shown by numeri€almbining (87) and (88) establishes the lemma
experiments. Cov(Vec(f(IT,zz™))) = QCov(Vec(zz))Q¥ =
QR R)Q". Q.E.D.

Proof of Lemma 3:For any pairl < a,b < n, by simple
substitution, we find

VI. PROOFS

Proof of Lemma 1:The field f in definition (9) being linear
in its second argument, the mean field at any pdtns

Ef(P’It:c{{) :f(P,E(:L'f:L'f{)) = f(P,R)
=P(2R — RP — PR)
+ (2R — RP — PR)P. (84)
Using the identitiedI? = IT, IIR = RIT = ITRII, and

(R® R)Vec(v,ul') = Ao\ Vec(vav]) (89)
QVec(v,wf!) = (1, — m)* Vec(vvfl)  (90)

by using the propertiesRv,vi’R = M M\w,v) and
HvavfIIJ‘ = m(l — mvwil and the identity
To(1=—m) +m(1—7g) = 7o +m, —2mamy, = 72 77 — 27,
(sincer, = 72). The eigenvectors of Cawec(f(II,zz")))
follow by recalling thatQ = Q” and combining (29), (89),
a substitutionP = II + ev,vf! in (84) yields after simplifi- and (90)

cation

Ef(II + cv vl xxl) = cpiapvavll + O(?) (85)

Hvavf = Wavavf vavfﬂ = vaavf

Rvavf = )\avavf vavaR = )\bvavf

Cov(Vec(f(II,xx"))) Vec(vv]') = va, Vec(vav)’) (91)

wherey,,, is defined in (24). The lemma follows by using the
symmetryjiqy = fisa. Q.E.D where the scalars,; are defined in the lemma. Using, =

Proof of Lemma 2:At point P = I and usingllII = II, ., Symmetrization of (91) finishes the proof. Q.E.D.
definition (9) of the field reduces to Proof of Lemma 4:The proof uses the more general
FUT,52") = T2z 1T + Mz IT- (86) Lemma 5. Indeed, we have
Y 0P = [[IH(P - I

r<a,b<n

which, by vectorization and using definition (28), also reads

Vec(f(I,zz™)) = Q Vec(zz™). (87)

and, by (53),II'*(P — INII* = O(||P — H|?). Thus,

Bay(P) = O(||P — II||?) for r < a,b < n. Q.E.D.
Proof of Lemma 5:DenoteP = VAV as the eigenvalue

(88) decomposition of?, and recall thafl denotes the orthogonal

For a circular complex Gaussian vector we have ([15], p.
336)

Cov(Vec(zz)) = R® R.
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Fig. 6. Learning curves of the mean square error of the DIQAfor two equipowered source®; = 6y £ 6) estimated by MUSIC algorithm, where
v = 0.003,02 =1, p, = 10 for 6 = 0.15 beamwidth and> = 0.30 beamwidth compared with the theoretical asymptotic mean square error.

projector onto the range dP; thus,II = VV*#, and we can
write

P=vAVve =vvH L v(A-1)VH

=[+V(A-1)VT, (92)

The main difficulty is that this EVD is not differentiable at

point P = II because the eigenvalues Hf are degenerate.

However, results (see [17, Th. 5.4, p. 111]) are available for

the perturbation of the project®V* and of the eigenvalues.
This is
Vvvi =@+ (P - mit + (P -1min
+Oo(|P— M)
A=I.+O(|P - I|)).

(93)
(94)

Based on this, we derive two preliminary resultgl - v||> =
Trivvent = T+ = o(||P - 1))?), where the
last equality results from (93), anllII = 0. It follows that

v = o(|p - ). (95)

Then, (53) is established by the sequence

def

P I PI+ = vavi it = o(|P - I|)?) (96)

where we have used (95) and (94). Then, from (93)

def
Py, =

HOPI* + 0PI = (P — INITH
+ (P -IHI1

=II - I +O(|P - I|]*) (97)

which establishes (52). Finally, property (51) is established as
PP-pP=vavi? _vavt v - AV
=V({(A-I,)+(A-L))V"
=VA-1) )V ro(P-0P
=P — I+ 0(|P - 1|]?)
=T+ Py + Py + Ps)

— (I + P2+ O(||P - H|]*) + O(|\P - H]|*)
=P, +O(|P - 1| (99)

by using (92), (50), (97), and (96). This completes the proof
of the lemma.

(98)
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