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CRB-Based Design of Linear Antenna Arrays for
Near-Field Source Localization
Houcem Gazzah and Jean Pierre Delmas, Senior Member, IEEE

Abstract—This paper is devoted to the Cramer Rao bound
(CRB) on the angle and range of a narrow-band near-field source
localized by means of an arbitrary linear array using the exact
expression of the time delay parameter. First, we prove that the
conditional and unconditional CRBs are proportional for an arbi-
trary parametrization of the steering vector (that may include, but
is not limited to, the source DOA, range or polarization). Then,
a Taylor expansion of the CRB is conducted to obtain accurate
nonmatrix closed-form expressions of the CRB on angle and
range. In contrast to the existing expressions, our expressions are
simple, interpretable and more general because the sensors are
only constrained to be placed along some axis. Our analysis leads
to the characterization and design of a class of centro-symmetric
linear arrays with improved near-field angle and range estimation
capabilities.

Index Terms—Cramer Rao bounds, linear antenna arrays,
direction-of-arrival and range estimation, near-field source
localization.

I. INTRODUCTION

U NIFORM LINEAR ARRAYS (ULA) are the most com-
monly used type of linear antenna arrays because they are

ambiguity-free and allow for fast estimation algorithms, when
we look for the direction of arrival (DOA) of far-field sources.
However, when the source is located in the antenna near-field,
a change of the signal model occurs as a new parameter is to be
taken into consideration: the source-to-antenna distance. Fast
algorithms are no longer applicable, and, more seriously, the
new (range) parameter affects DOA estimation accuracy, and,
for some applications, is itself a parameter of interest that needs
to be estimated. In this context, we prove that the ULA config-
uration is not the best one anymore. Alternative (other than uni-
form) ways of placing the sensors are shown to improve range
estimation accuracy.
To motivate our design, we adopt as a performance measure

the algorithm-independent CRBwhich constitutes theminimum
achievable variance on the estimated source parameters, here
DOA and range of the near-field source. Despite the huge lit-
erature about DOA estimation [1], research has been mostly
dedicated to far-field sources. In fact, when the source is in the
array far-field, the (planar) waveform reaches two sensors with
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a time difference that is proportional to the spacing between the
two sensors. Hence, it is possible to obtain simple and inter-
pretable nonmatrix expressions for the CRB (see, e.g., [2]). In
contrast, when the source is in the antenna near-field, the time
delay expression is more intricate and only approximate non-
matrix expressions of this CRB have been obtained. Based on
an approximate propagation model, early near-field CRBs ex-
pressions have been obtained using second-order Taylor expan-
sion of the time delay parameter [3], [4]. Only lately has the
exact time delay formula been used [5], but only to calculate
the near-field CRB of the ULA.
We start by underlying a fact about the so-called conditional

and unconditional CRBs. Often, they have been considered as
independent (e.g., recent papers [6] and [5] conclude by “exten-
sion of this work for stochastic sources is under consideration”).
In this paper, we show that they are, actually, proportional, an
issue previously overlooked. Then, we develop accurate non-
matrix expressions of the CRB on both DOA and range, using
linear arrays of arbitrarily spaced sensors. They are more gen-
eral than those of [5] because we do not assume uniform linear
arrays (neither punctured nor sparse) where intersensor spac-
ings1 are multiples of a fixed minimum distance [9]. They are
also more compact than those from [4], [5], and [10] if applied to
the special case of ULA, and so thanks to a different coordinate
system that implies a different definition of DOA and range.
The obtained CRB expressions allow for a rich interpretation

of the array estimation capabilities when the source is in the
antenna near-field. For instance, they highlight the interest
of a class of centro-symmetric linear arrays made of pairs of
sensors symmetrically located along the two sides of the linear
antenna array. Attractive features of such centro-symmetric
linear arrays include lower DOA and range CRBs and faster
convergence to the lower far-field DOA CRB. Also, we show
that within centro-symmetric linear arrays, ULA is not the
best choice. Centro-symmetric linear arrays are designed that
achieve identical DOA CRB as the ULA but significantly lower
range CRB (by as much as 50%). For instance, a geometric
parameter is identified that controls the near-field estimation
performance of the centro-symmetric linear array.
The paper is organized as follows. Section II formulates the

problem and specifies the data model. Section III is dedicated
to new expressions of the CRB. First, assuming an arbitrary
parametrization of the steering vector, we prove that the con-
ditional and unconditional CRBs are proportional. Then, we
focus on DOA and range estimation of near-field sources. Using

1Constraints on the array positions, often adopted to limit array ambiguities
[7], may, at the same time, affect estimation performance [8].
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Fig. 1. Source in the near-field of the arbitrary linear array.

Taylor expansion, new expressions of the CRB are derived, and
numerically validated. The important class of centro-symmetric
arrays is studied in details in Section IV where better-than-ULA
arrays are obtained. The paper is concluded in Section V.

II. DATA MODEL

As depicted in Fig. 1, we consider a linear antenna array made
of sensors . They are located along a straight line
at coordinates , respectively. Without loss of gen-
erality, we assume the array centroid to be at the origin of
this axis. Opportunistically, this choice allows for more compact
expressions of the CRB, compared to [4], [5]. A narrow-band
signal , with wavelength , is emitted towards the antenna
array by a source located at a range from the origin and
forming an angle with the axis orthogonal to the array. The
snapshot collected by sensor at time index is

where and represent, respectively, the source signal
collected at the origin and the ambient additive noise collected
by sensor . Amplitude may depend on both and , while
phase , defined as , can be rewritten
as

with . Based on snap-
shots , estimates of both the range
and the DOA are obtained by means of a variety of algorithms,
among which a few are capable of achieving the stochastic CRB
[11].
Estimation accuracy is evaluated in terms of the CRB, under

the usual statistical assumptions about and : 1)
and are independent; 2) are inde-
pendent, zero-mean, circular andGaussian distributed with vari-
ance ; and 3) are assumed to be either deter-
ministic unknown parameters (the so-called conditional or de-
terministic model), or independent zero-mean circular Gaussian
distributed with variance (the so-called unconditional or sto-
chastic model).

III. EXPRESSIONS OF THE CRB

A. A General Result About the CRB

We prove that the stochastic and deterministic CRBs are
equal, up to a multiplicative constant, in the specific case of a
single source.
To introduce the two types of CRBs, we consider a more gen-

eral signal model with an arbitrary number of sources (with
) and an arbitrary parametrization of

the steering vectors related to array geometry or polar-
ization, defined by

where and denote the gain and the phase of the -th
sensor associated with the -th source, w.r.t. the origin O.
includes in particular possible power profiles and/or directional
gains.
General compact expressions of the CRB, concentrated on the

parameters of the steering vectors alone, have been derived
for these two models of sources (see e.g., [12]) for one param-
eter per source. The expression of the stochastic CRB has been
extended for several parameters per source in ([13], Appendix
D), and following the proof given in [12], the expression of the
deterministic CRB can be also extended to several parameters
per source. These expressions are given respectively by

(1)

(2)

There, with

and . With

, we define as
in (1) and as

in (2). Also, and

. Symbols and
represent the Kronecker product, the Hadamard product and
the matrix of 1 s, respectively.
Specialized to a single source for which

where
for the deterministic model of the source, it is straightforward
to see that

(3)

where

(4)

with and where

is independent from
the source and sensors positions for constant modulus steering
vectors, only.
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Thanks to (3), we will only consider the stochastic source
model for which the elements of matrix in (4) are proved to
be equal to

where and are derivatives of and w.r.t. ,
respectively.
Should the gain be the same for all sensors, denoted then

as , the general expression above can be greatly sim-
plified. After some algebraic manipulations, the following can
be proved:

(5)

where now . In
this case, the CRB, denoted as , is related to the
CRB associated with an array of isotropic sensors (for which

). In fact, if the latter is denoted as , then we
can prove the following

(6)

Apart from these two quite related cases, it is not trivial to
study antenna arrays made of nonisotropic differently-oriented
sensors. This is especially relevant for the near-field region be-
cause different sensors shouldn’t experience the same gain as a
result of them seeing the source from different angles and being
located at different distances from the source.

B. Taylor Expansion of the Near-Field Matrix

In the addressed problem, and . As
often assumed in the CRB literature, we consider a unitary
modulus gain2. Hence, (5) holds and , simplified to

, is independent from the source
and sensors positions. The following Taylor expansion of
matrix in (5) is proved in Appendix A:

(7)

2This condition, stronger than , corresponds to omnidirectional
sensors.

(8)

while is shown in (9) at the bottom of this page. There

and

are array geometry dependent constants, with,
in particular, .

C. Taylor Expansion of the Near-Field CRB

From the expression (7) of matrix , we see that the most
significant term is equal to zero if and only if . This can
be interpreted as a necessary (and, in practice, sufficient) condi-
tion on the array geometry to ensure a decoupling between the
DOA and range estimates to the second-order in . This special,
yet important case, will be studied in details in Section IV. For
the moment, we give results about the general case of antenna
arrays for which is not necessarily zero.
Starting from matrix as it appears in (7)–(9), and following

steps summarized in Appendix B, the next expressions of the
CRB on the DOA and range are obtained:

(10)

(11)

where
and

. Both depend on and ,
but not on , contrarily to CRBs obtained in the next section.

D. The Case of Centro-Symmetric Arrays

Note that if (resp., if ), the expres-
sion (10) [resp., (11)] is still valid. However, the term in in
(10) of [resp., in (11) of ] vanishes. This sce-
nario is far from being marginal, as it notably includes the ULA.
Specific results are developed to cover such arrays. We will dis-
cuss, in particular, the so-called centro-symmetric arrays, ones
for which if a sensor is placed at some position , then another
one is placed at coordinate .
Under the condition (resp., ), (resp.
) disappears from (10) [resp., from (11)] and so disappears .

The Taylor expansion has to be pushed one step further to unveil

(9)
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its dependence on , i.e., on range . In fact, enforcing
in (7)–(9) leads to

(12)

(13)

while is shown in (14) at the bottom of this page. The above
matrix is inverted while, this time, keeping track of terms in
(more details in Appendix C). At the end, we prove that, for
antenna arrays with , we have

(15)

While, for antenna arrays that satisfy both and ,
we have

(16)

where

.

E. Numerical Validation

Let us, first, highlight similarities between the obtained CRBs

(10), (11), (15) and (16). For this purpose we define
and , which also have

the advantage of not depending on the noise and signal power,
nor on the signal wavelength. They are purely geometrical func-
tions of the only sensors and source positions.
For arbitrary linear arrays, (10) and (11) can be rewritten

using the unique expression

Expressions of constants and can be easily found and
depend only on the array sensor positions. For centro-symmetric
arrays (more explicitly, for arrays satisfying for and

for ), unified expressions can be found as well.
Indeed, (15) and (16) are rewritten as a unique expression

Fig. 2. Validation of the DOA and range CRBs for an increasing
source-to-array distance. The array is made of 6 sensors. In (a), they are
placed at and ,
forming a noncentro-symmetric array. In (b), they form a ULA. The source is
placed, in (a), with ; and, in (b), with .

where constants and can be easily verified
to depend only on the array sensors positions. We intend to val-
idate every single coefficient in the Taylor expansions in (10),
(11), (15), and (16).
First, for arbitrary linear arrays, for ,

we define and
. All converge to

1 when converges to infinity. This is
verified in Fig. 2(a) where results are given for a nonuniform
linear array. Positions of the sensors have been chosen
arbitrarily and happen to verify and .

(14)
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Second, for centro-symmetric arrays, for ,

we introduce and

, which,
also, converge to 1 when converges to
infinity. This is confirmed by the numerical evaluations for the
6 sensors ULA, reported in Fig. 2(b).

IV. ANALYSIS OF CENTRO-SYMMETRIC ARRAYS

A. Relations Between Far-Field and Near-Field DOA
Performances

CRB expressions (10)–(11) as opposed to CRB expres-
sions (15)–(16) suggest that there are two classes of antenna
arrays with different geometrical properties and estimation
performance. In particular, we are interested in the so-called
centro-symmetric arrays because they have a better far-field
estimation performance. To highlight this fact, we connect our
near-field DOA CRB (10) and (15) to the stochastic far-field
DOA CRB. The latter is given, for arbitrary linear arrays, by
[[9], rel. (5)]

(17)

Normalized to the above, our near-field DOA CRBs (10) and
(15) lead to, respectively

(18)

(19)

From (19), we see that arrays for which (e.g.,
for centro-symmetric arrays) do achieve when
the source-to-array distance tends to infinity. At the same
time, estimation of and are decoupled in matrix to the
second-order in . In contrast, noncentro-symmetric arrays in
(18), for which , verify
because (see Section IV-C). This unexpected
behavior is explained by the coupling between and in to
the second-order in [see (7)]. More precisely, in the former
case, the square of tends to zero more rapidly than
when tends to , in contrast to the latter case for which the
square of and the term tend to zero with the same
speed. Consequently, from a practical point of view, as far as
only the DOA parameter is considered, the far-field model of
propagation, although approximative, may be preferable to the
exact near-field model for noncentro-symmetric arrays with

.
If we take the range into consideration, the domain of validity

of our approximations is larger for centro-symmetric arrays than
for arbitrary arrays, as a result of a convergence in com-
pared to . Furthermore, when comparing (15) and (16) to
(10) and (11), we realize that, for centro-symmetric arrays, the

Fig. 3. Approximative and exact ratios for 4-sensors
ULA and MHRLA and a source at . Approximate ratios are cal-
culated using (18) for the (noncentro-symmetric) MHRLA, and (19) for the
(centro-symmetric) ULA.

CRBs are symmetric w.r.t. positive/negative . However, for ar-
bitrary arrays, they are not.
To illustrate the different behavior of centro-symmetric and

noncentro-symmetric arrays in the near-field region, we test in
Fig. 3 antenna arrays of sensors forming either: 1) a ULA
with a constant intersensors spacing and for which
; or 2) a minimum hole and redundancy linear array (MHRLA)
with interspacings [14] and for which . Thanks
to a larger aperture, the MHRLA exhibits a lower far-field CRB,
for instance, . However,
due to the coupling of and in matrix of the MHRLA, we
have for this array. Further-
more, this figure confirms that the domain of validity of our ap-
proximations is much larger for centro-symmetric arrays than
for noncentro-symmetric arrays.
Finally, notice that because we fix the time reference at the

centroid of the array (and not at the left-end as in [5]), we ob-
tain simple and much easier to interpret closed-form CRB ex-
pressions that contrast with the intricate expressions [see [5],
(10)–(11)] that are valid for the only ULA. In particular, we
note the monotone behavior of w.r.t. and the sym-
metry of and w.r.t. positive/negative with a
minimum for . Also notice that, due to the change of time
reference, our definition of the couple is different from
the one in [5] (it is, actually, significantly different if the source
is in the very near-field region).

B. Conditions of Centro-Symmetry

By centro-symmetric, we mean that the array is made of pairs
of sensors placed at opposite coordinates, i.e., if a sensor is
placed at , then another one is placed at . A sensor may
be placed at the origin and, then, is odd. We find that an array
is centro-symmetric if

for all i odd and less or equal to
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This is proved by induction (see details in Appendix D)
thanks to the Newton–Girard formula ([15], pp. 69–74) that
allows one to calculate the different in an iterative manner.

C. Key Geometric Parameters for Near-Field Performance

The rewriting of (10)–(16) allows us to point out two geo-
metric parameters that shape the near-field accuracy of antenna
arrays. They are the unit-less

which remain unchanged if either a sensor is added/removed
at/from the origin, or, more importantly, if sensor coordinates
are scaled by the same constant.3 Before showing where and
appear in the CRB expressions and how they impact them, we
highlight some of their intrinsic properties. First, we prove in
Appendix E that

(20)

Very interesting is the fact that there is (almost) a one-to-one
correspondence between and . In fact, we prove in
Appendix F that: 1) for and if , we
have

(21)

and 2) for and if , we have

(22)

For larger , the two functions [especially ] provide good
approximations of the exact , as validated by Fig. 4.

D. CRB in Terms of and

The two CRBs in (15) and (16) can now be rewritten as
follows:

(23)

(24)

It becomes clear that while the array far-field (DOA estima-
tion) performance is determined by only [which concurs with
(17)], and play a role in the (DOA and range estimation)
near-field performance.
If is fixed (which has no impact on and ), and if we

consider the most significant terms4 of, respectively, (24) and

3This property is useful to conduct an affordable systematic search of linear
arrays under the nonrestrictive condition .
4The first term is the most significant term in (24), for all configurations where

, which covers a large domain of practical situations.

Fig. 4. Systematic search for centro-symmetrical arrays of sensors
verifying . Parameters and are reported as ‘ ’ dots, and so in com-
parison with and .

(23), then it becomes clear that the array estimation performance
is controlled by through, respectively, 1) (an
increasing function of ); and 2) function defined as

The behavior of , illustrated in Figs. 5 and 6, suggests
that, for DOA estimation, an antenna with loosely close to

ensures limited degradation in all look directions. Values of
close to, but lower than, are preferred however, because

they also lead to better estimation of the range parameter.

E. Comparison with ULA

The present analysis shows that, if the source is in the near-
field of the linear antenna array, then placing the sensors at a
regular spacing will not ensure the best performance. For in-
stance, we prove in Appendix G that, in the case of the ULA,
tends to (and converges to ) if the number of sensors
increases to infinity, which, by the way, leads to the following
refinements of (23) and (24):

where denotes the spacing between two consecutive sensors.
From the discussion in Section IV-D, a (centro-symmetric)

linear antenna with such a value of has near-optimum per-
formance for DOA estimation but not for range estimation. To
better illustrate the impact of on the estimation performance
(of both DOA and range), we compare the 6-sensors ULA (with
sensors placed at , and ) against a
non-ULA array of 6 sensors located at and

. Both arrays exhibit the same (and, hence,
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Fig. 5. Near-field DOA estimation performance [expressed by and
] as function of the geometry of the centro-symmetric array (expressed

by parameter ). (a) , (b) .

Fig. 6. Near-field DOA estimation performance [expressed by ] as func-
tion of the geometry of the centro-symmetric array (expressed by parameter ),
for different look directions.

have identical far-field DOA estimation CRBs). However, is
equal to 0.5776 for the ULA and to 0.4 for the non-ULA. In
Fig. 7, we report the ratios
and , calculated using the
exact CRB expressions and the approximate CRB expressions
in (23) and (24). There, we can see that while we obtain similar
DOA performance, the non-ULA array has better range estima-

Fig. 7. DOA and range CRBs of the non-ULA normalized to that
of the equivalent ULA . Both arrays are made of sensors
and are such that .

Fig. 8. Centro-symmetric non-ULA versus ULA: Compared range estimation
performance of far-field sources.

tion capabilities. Hence, within the family of centro-symmetric
linear arrays characterized by a given size and a given value of
, all verify ,

from (23). However, from (24), the -dependent function

can be seen as an indicator of improvement (over the ULA)
whenever it is lower than one. For instance, if

The above ratio is illustrated in Fig. 8 for the domain5 [0.3, 0.7]
of outside which DOA near-field performance degrades se-
verely (as clear from Fig. 6). It can be seen from Fig. 8 that the
(far-field) range CRB can be reduced by a much as 50% by an-
tenna arrays with a moderately lower than that of the ULA.

V. CONCLUSION

Assuming no constraints other than sensors deployed along
a straight line, and using the exact expression of the time delay

5In fact, extreme values of (i.e., 0 and 1) are achieved by impractically
colocalized sensors, either at the origin, or at the same distance (and on both
sides) from the origin.
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parameter; accurate, simple and interpretable closed-form CRB
expressions have been obtained for both angle and range param-
eters of a near-field narrow-band source.
They show the exact geometric condition for the antenna

array to have an attractive behavior in its near-field: better pre-
cision and faster convergence to a lower far-field DOA CRB.
Such a class of centro-symmetric arrays includes, but is not re-
stricted to, ULAs. Furthermore, it is proved that appropriately
designed centro-symmetric non-ULA can largely improve the
range estimates without deteriorating the DOA estimates under
near-field conditions. Because they potentially have better es-
timation performance, non-ULAs geometries may be adopted
when array ambiguity can be tolerated or counter-measures can
be deployed [7]. Hence, our analysis gives a deeper insight into
the array near-field performance and shows that more flexibility
is available for array design.

APPENDIX

A. Taylor Expansion of : Proof of (7), (8) and (9)

The main steps of the proof are as follows. First, note that
with , we have

These sums appear to involve either or , whose Taylor
expansions are obtained subsequently

The above expansions are used to obtain Taylor expansion of
the different sums appearing in the right hand side of (5). After
tedious manipulations, (7), (8), and (9) are obtained in similar
fashions.

B. Taylor Expansion of the CRB for Arbitrary Arrays: Proof
of (10) and (11)

First, note that by replacing by in the terms
(7)–(9), matrix form shown in the equation at the bottom of
this page, where for e.g., . This allows one
to obtain, after straightforward algebraic manipulations

By replacing the different terms by their respective values,
and after simple but tedious manipulations, we ultimately prove
(10) and (11).
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C. Taylor Expansion of the CRB for Centro-Symmetric Arrays:
Proof of (15) and (16)

We use the same approach as in Section B. On one hand, for
, we rewrite (12)–(14) as (25) shown at the bottom of

this page, leading to

If we further impose , (25) further simplifies to

which eventually leads to

Replacing the different terms by their values, (15) and (16)
are proved after tedious manipulations.

D. Proof of the Condition of Centro-Symmetry of Section IV-B

We consider real numbers and form the polyno-

mial
. The coefficients , given

by , are known to be

linked to defined as by means of
the Newton-Girard formula ([15], pp. 69–74)

(26)

where by definition . Let
be all the odd integers . Let’s assume

that . We will prove that
. We proceed by induc-

tion to show that for . This is
already verified for because . Let’s as-
sume for some ,
and let’s prove that . From (26), we have

is necessarily zero. In fact, is odd, so that if is odd, then
is even and vice versa, for . Also,

and both are and whenever one is odd,
the corresponding and coefficients are zero. Hence, for

, we have necessarily ; and so is

. Finally, is either
if is even or if is odd.
In the first (resp. second) case, zeros of , i.e., ,
are of the form (resp. ).

E. Proof of Inequalities (20)

For arbitrarily chosen and
, we have which

implies that , the so-called

Tchebychev’s sum inequality. If we let , we

obtain i.e., . If we let and ,
we obtain i.e., .

F. Proof of (21) and (22)

By virtue of (26), we have
and

. If (if , only if
, because this is sufficient to have a centro-sym-

metric array and automatically implies ), and after proper
replacement, we obtain which can
be transformed into .
By definition, for so that the following becomes
obvious

G. and for Large-Sized ULAs

Consider a ULA centered at the origin and made of sensors
spaced by . The proof is given for odd (extension
to even can be conducted in a similar way). Using the identi-
ties of for and 6, we obtain

which directly implies

(25)
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