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Based on the results corresponding to these perturbations, we can
conclude that, for the case 2 < ¥ < p the Householder based
critical points are saddle points.

e Case 2: 2 < ¥ = p: We will show that this case also corresponds
to saddle points, except ¥ = p = 4, which is a global maximum:
— We first consider perturbation of the form G. = Ge'™* where

Ay = inn", wheren = \/Z[—v5 o7 0]". We note that
for this choice v'"5 = 0. Therefore, we can write

G.=Ge™ = (I-2vw)((e" = Dy +1)
=I—2vv+ (e — L™

The cost value corresponding to G« can be written as
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The first derivative of the cost function j(€) is equivalent to
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and the second derivative can be written as
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The second derivative term evaluated at € = 0 is equal to
d;{ () le=o = % Therefore, the corresponding pertur-
bation will increase the cost function’s value, for p > 2 and
p # 4.

— We know from the previous case that if we perturb the elements
of the v vector (all non-zero in this case), by increasing one el-
ement’s magnitude square by € while decreasing one element’s
magnitude square by e, it will cause a decrease in the cost func-
tions value.

Combining these two facts, we conclude that, for the case 2 <

p = ¢ and p # 4, the corresponding Householder based critical

points are saddle points. |
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Direction Finding Antenna Arrays for the
Randomly Located Source

Houcem Gazzah and Jean-Pierre Delmas

Abstract—We consider the problem of sensor placement for estimating
the direction of arrival of a narrow-band source randomly located in the
far-field of a planar antenna array. Performance is evaluated by means of
the expectation of the conditional Cramer Rao bound, normalized to that
of the uniform circular array. Two cost functions are obtained, relative to
azimuth and elevation, respectively. They depend on the array geometry
as well as the distribution of the source azimuth. A class of uniform an-
tenna arrays is investigated. It is adapted to the particular probabilistic
distribution of the azimuth, while ensuring protection against array ambi-
guities. Using an exhaustive search procedure, we either seek the same re-
duction of both cost functions, or rather focus on one in particular. In the
first approach, we achieve a reduction of almost 36% of both, regardless
of the source azimuth distribution. In the second approach, we can obtain
larger reductions for the targeted parameter. In both cases, optimal arrays
are close to the V shape, for which performance analysis is conducted and
closed-form expressions are obtained.

Index Terms—Cramer-Rao bounds, direction of arrival estimation,
planar arrays.

1. INTRODUCTION

Direction of Arrival (DOA) is a topic of the utmost importance in sta-
tistical signal processing. A set of sensors collect signal snapshots to es-
timate the source DOA. Estimation accuracy depends on the sensor po-
sitions, in a way that has remained largely unquantified [1], [2], mainly
because of the complexity of the Cramer Rao Bound (CRB), even in
the single source case [3]. Because of the intricate original expression
of the CRB [3], early attempts to achieve array optimization were con-
ducted mostly using heuristic techniques [4], [5]. A recent simplifica-
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tion of the CRB of the planar antenna array shows a convenient sinu-
soidal dependency on the source azimuth [6], as long as the array ge-
ometry is concerned. Other parameters are eliminated by normalizing
to the uniform circular array (UCA).

Estimation accuracy increases if sensors are allowed to occupy a
larger region [4], at the expense of increased array ambiguities [7].
These occur when two (first-order ambiguity) or more (higher-order
ambiguity) steering vectors at different look directions are linearly de-
pendent [8]. A robust manner to avoid ambiguities is to impose a reg-
ular (half-wavelength) spacing between adjacent sensors, because then
the matrix of steering vectors is less likely to be close to singularity [7].
Global optimization of the array geometry, now function of a set of an-
gular parameters, can be achieved by exhaustive search, an approach
followed in [9], [10] to design optimal arrays for a source with a fixed
DOA. The main outcome was a set of optimal isotropic arrays whose
CRBs for azimuth and elevation, just like for the UCA, do not depend
on the actual source azimuth. However, their CRBs are 29% lower than
their UCA counterparts.

In wireless cellular systems, for example, the DOA distribution
around the base station is sought after in order to improve the network
design, performance, and services [11]. The incorporation of such a
knowledge into the array optimization procedure is expected to further
improve DOA estimation accuracy. The application of the theory
of Bayesian estimation to this situation leads to the expected CRB
(ECRB) as a performance measure. Normalization to the ECRB of
the UCA results in two cost functions (relative to the azimuth and
elevation angles) that depend only on the array geometry and on
the Probability Density Function (PDF) of the source azimuth. By
taking the DOA distribution into consideration, we obtain arrays with
better estimation capabilities. We also prove that optimal (minimizing
the CRB) isotropic arrays are not optimal (i.e., do not minimize the
ECRB) even in the case of a uniformly distributed DOA, contrary to
claims in [4, Sec. V] and [12, Sec. V].

Two optimization approaches are proposed, depending on whether
the two DOA angles are treated equally, or whether one is prioritized
over the other. In the first approach, numerical examples show a re-
duction, w.r.t. the UCA, of the ECRB of 36% on both azimuth and
elevation angles. This performance is achieved by arrays that are not
isotropic, an improvement w.r.t. [9], [10] where optimal isotropic ar-
rays achieve a 29% reduction. In the second approach, the emphasis is
put on one DOA angle in particular (the azimuth angle for example)
and the associated ECRB can be further reduced.

The exhaustive search procedure is computation-consuming for
large array sizes. Also, optimal arrays have systematically shown a
V-like structure. V arrays have already been shown to be near-optimal
for CRB-based geometry optimization [9], [10]. This motivates a
detailed analysis of the performance of V arrays and their subsequent
optimization. Interestingly, for large-sized V arrays, the normalized
(w.r.t. the UCA) ECRB is shown to be independent of the array size.
Analytical expressions are obtained that determine the shape, the
orientation and the DOA estimation accuracy of the optimal V array in
the presence of a source with a known arbitrary azimuth distribution.

We denote by E[] the expectation operator. In Section II, we intro-
duce the observation model and recall previous results. In Section III,
we develop a Bayesian CRB based criterion and apply it to uniform
arrays. Section IV presents a detailed study of V arrays. Finally, a con-
clusion is given in Section V.

II. DATA MODEL AND PERFORMANCE CRITERIA

We consider an antenna array made of M identical and omni-direc-
tional sensors in the (x, y) plane. The position of the m-th sensor is
given by Yo = pum exp(jédm ) where p,, is the distance to the origin
and ¢, is the angle to [0, ). A far-field source is emitting a narrow-
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band signal s(¢) with wavelength A. The DOA is specified by azimuth
® and elevation O, so that the snapshot collected by sensor m at time
index t is z,, (t) = exp [2j7rp:\“ sin(©) cos(P — (f’)m)] s(t) + 1w (t),
where n., (t) represents the ambient additive noise collected by sensor
m. Snapshots x(t1),- -+, x(tn), where x(t) 2 [21(t)---zn(t)]",
are used to estimate the source DOA, i.e., parameters ¢ and ©, using
a variety of algorithms.

Under the assumptions of (i) circular, Gaussian, zero-mean and
mutually independent source and noise signals with respective
power o2 and o2 ; (ii) independent and identically distributed source
snapshots and (iii) independence of noise samples collected from
different sensors and/or at different time indexes; the (concentrated)
CRB [3, rel.(39)] has been greatly simplified (under no additional
assumptions) [6] to obtain, in particular, Cse = ——3 (O)B (®) and
Coo = mB (® + %), where A is a constant that depends on
the array size, the observatlon SNR and the number of snapshots.

Only B(®) = 2 {50"'3&5_1 el‘qpl(‘zqu)) } depends on the array geometry
through
M o 12 1l 2
S é ‘ m m . 1
’ m=1 A[ Z >\ ' ( )

1>

M M 2
sy () - ( v) o

m=1 m=1

This simple sinusoidal form allows one to analyze the impact of the
array geometry on DOA estimation and to optimize such a geometry
[9]. Of particular interest are arrays (like the UCA for example) for
which S is zero and, as a consequence, B(®) is a constant. We refer to
them as isotropic arrays because, for a given elevation angle, the CRBs
on azimuth and elevation do not depend on the actual azimuth angle.
Non-trivial optimal isotropic antenna arrays obtained in [10] achieve a
CRB that is 29% (for large-sized arrays) lower than that of the UCA,
and so for both azimuth and elevation angles. In this paper, we do not
require arrays to be isotropic and thus S| is not necessarily equal to
Zero.

In practice, there are situations where a priori knowledge is
available about the DOA parameters with (®, ©) following some
known joint distribution. We adopt a Bayesian approach by
using [13 p- 6] the expectation Of the conditional CRBs (ECRB)
Css = Eg o(Coae) and Coo = Eg. ,0(Cop) as criteria to min-
imize. The ECRB was also used in [4] as a cost function, but only
the azimuth DOA angle was considered therein. Advantageously,
these cost functions inherit the convenient structure of the CRB.
If we assume the azimuth and elevation angles to be indepen-

dently distributed, we have Coo = AE[ ]E[B(@)] and

Coo = AE [ | E[B (24 3)].

Because the above expressions have separate terms in & and ©,
where only the ®-dependent term is function of the array geometry,
the use of a reference antenna renders the criterion (and any subse-
quent optimization) independent of the source elevation. The UCA, our
reference antenna has M sensors spaced by d and verifies Buca 2
B(®) = e }I;dz . If we denote by pa(x) £ Elexp(j®x)] the
characteristic functlon relative to the random parameter &, we straight-
forwardly obtain

1
sin2(0©)

_ Coa __ L S+ R[Si1pa(—2)] 3)
Coaluca  Buca ek

_ Coo _ 1 So—R[Sipa(-2)] @)
Coeoluca  Buca — 1512 '

Obviously, in the case of a randomly (not only uniformly, as assumed
in [14]) distributed azimuth angle, an isotropic array (one for which
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51 equals zero) exhibits the same normalized ECRB for azimuth and
elevation that, furthermore, does not depend on the source probabilistic
distribution. However, the opposite is not true: The normalized ECRBs
can be independent of ¢ without the array being necessarily isotropic.
In fact, the normalized ECRBs do not depend on the azimuth if

R[St 00 (—2)] = 0. (5)

Except when the array is isotropic (i.e., S = 0), we can rewrite the
above as

E [cos(2®)] cos [arg(S1)] + E [sin(2®)] sin [arg(S1)] = 0.  (6)
This relationship between the probabilistic distribution of the az-

imuth and the array geometry ensures that the two normalized ECRBs
are identical, reducing (3) and (4) to a unique performance measure

1 So

C=—"- " _
Buca S22 — 512

@)

Condition (5) is satisfied when the antenna is isotropic and/or
when the distribution is uniform over [—m,w), but also if
po(—2) = Elexp(2j®)] = 0, which is not only the case of the
uniform distribution.

III. OPTIMIZATION OF UNIFORM ARRAYS

The design of antenna arrays is made difficult by the requirement
that the array be ambiguity-free. Formally, rank ambiguity occurs when
steering vectors corresponding to different look directions are linearly
dependent [8], and a number of sufficient conditions have been devel-
oped to prevent this from taking place. We have chosen to implement
the weakest condition [8, Th. 9] because it only involves spacings be-
tween sensors, while other conditions involve orientation (angular) pa-
rameters as well [15]-[17]. The condition [8, Th. 9] applies to a set
of three arbitrarily chosen sensors. It ensures that two steering vectors
(associated with two different look directions) are not colinear. How-
ever, this does not prevent them from nearly being so. In fact, the def-
inition of ambiguity is sometimes extended to include cases where the
matrix of steering vectors is close to singular [18]. This is particularly
severe for non uniform arrays, for which the inter-sensor spacing is not
constant [7]. The problem is intractable even in the simplest case of
linear arrays [18]. By imposing a constant inter-sensors spacing, our
approach is sub-optimal in the strict sense, but is robust from the ambi-
guity point-of-view. It is also interesting from the analytical and com-
putational points-of-view, as we obtain expressions in terms of bounded
parameters, which are amenable to global optimization by systematic
search.

We assume sensors to be placed at a constant spacing d along acurve
originating at the origin, following the relationship v», = Ym—1 +
d exp(jim—1). The normalized sensor coordinates T are function
only of the M — 1 angular parameters ¢, - - -, ¥'as—1, eachin [—m, 7).
Thanks to this structure, the optimization problem is rendered indepen-
dent of the actual spacing d. In fact, if we introduce the followmﬁg d-in-

dependent parameters that describe the array geometry: Ty = 5550 =
2 2
Zﬁf:l %’73‘ - ﬁ 21,\7/'11:1 % and Tl é ?Sl - Zﬁle dgl -
2
;7 (Zﬁle 7(’," ) then (3) and (4) can be updated as follows
_ Cos  _ 1To +R[Tiva(-2)] @)
Caaluvca B —|Tu|?
Coo _ 1Ty - R[Tipa(=2)] ©)
Ceoluca B - |Tl?
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where B £ LMTI() does not depend on d either. The above (8) and

(9) form two cost functions that depend on the probabilistic distribution
of the azimuth via & (—2) and on the array geometry via Ty and 17,

i.e. via ¢1 AN L/’,m/f_1 .

A. Unprioritized Approach

By unprioritized, we mean that both azimuth and elevation are of
equal importance and the same level of enhancement (w.r.t. the UCA) is
required, i.e. (8) and (9) should be the same. This yields to the condition
(5) and that (8) and (9) reduce to (7). On one hand, we minimize (7),
which is a function of Sy and | |, that remain unchanged if the antenna
array is rotated. On the other hand, and independently from (7), we have
to respect the constraint (6), which is a function of the argument of S .
In fact, minimizing (7) and then using the constraint in (6) for fixing the
orientation gives the same solution obtained from minimizing (3) and
(4) under the constraint in (6). Optimizing the cost function (7) helps
determine the shape of the optimal array, while solving the constraint
(6) helps fix its orientation. These two independent steps are detailed
now.

The minimization of the cost function C in (7) is equivalent to max-
imizing

T\ |?

T —
0 T

10)

This is to be compared to optimal isotropic arrays obtained in [10]
where the above was maximized under the constraint of T equal to
zero. By relaxing this constraint, we are able to obtain non-isotropic
arrays that outperform any isotropic array from the Bayesian point-of-
view, i.e., in terms of the ECRB.

Notice that (i) arrays that are obtained one from the other by
axis-symmetry w.r.t. the z-axis and (ii) arrays that are rotated versions
of each other, have identical To and |T%|. Hence, the second sensor
can be fixed with # = d (i.e., ¥y = 0) while the third sensor can
be constrained to be in the positive y semi-plane (i.e., positive 12).
For m > 2, ¢, spans the interval [—m, 7). If we adopt a step

dy (fixed to dyp = in our calculations), the so-implemented
M=—2
candidate

I
50
.
dip

exhaustive grid—search involves testing oM -3 (
-, ¥nr—1, among which we pick the tuple with the largest

tuples um
Ty — M

Optlm%.l arrays obtained for M less than or equal to 9 exhibit a con-
cave geometry. Hence, in order to reduce the complexity burden (ex-
ponential in M), we impose, for M larger than 9, that the array has a
concave geometry, i.e. ¥, > ¥m,—1 for m > 2. While this signifi-
cantly limits the search area, it may possibly lead to suboptimal solu-
tions. Except when M = 4 (the optimal array is the UCA), the so-com-
puted optimal arrays are not isotropic (i.e., they have a non-zero 7).
As the number of sensors increases, the ECRB of the optimal array is
reduced by 36% compared to the UCA, and by 10% compared to op-
timal isotropic arrays obtained in [9], as can be seen in Table I.

For an arbitrary distribution of the azimuth and a predetermined
number of sensors M, the array obtained using the above procedure
has the appropriate shape but needs to be oriented in order to satisfy
(6). The normalized ECRB for the optimal array, however, is what is
reported in Table I. If T' 1‘ is relative to the array obtained by maximizing
(10) and 77 is relative to the optimal array, then we have T = T 17 2T
Consequently, the rotation is simply given by T = M
where the argument of 7' is obtained by solving (6) rewritten as
E[cos(2®)] cos[arg(T1)] + E[sin(2®)] sinfarg(T)] = 0.



6066

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012

TABLE I
NORMALIZED ECRBS OF OPTIMAL ARRAYS [MAXIMIZING T — % LE. (10)] AND OF OPTIMAL ISOTROPIC ARRAYS (MAXIMIZING To UNDER 77 = 0 [9])
Normalized ECRBC || M =4 | M =5 | M =6 | M=7 | M=8 | M=9 | M=10 | M =11 | M =12
Optimal array 0.7306 | 0.7039 | 0.6805 | 0.6689 0.6597 0.6540 0.6494 0.6461
Optimal isotropic array 1 0.8075 | 0.8005 | 0.7617 | 0.7566 0.7441 0.7398 0.7331 0.7302
B. Prioritized Approach 08
In the general case, we have two potentially distinct normalized 08I — i
ECRBs (8) and (9), relative to the azimuth and elevation angles. We : [ [
suggest the following ad-hoc criterion:
04— -
. Csa . ~ _
Min=——— subjectto Co,e < Co0luca. (11)
Casluca 02 -
where all parameters ¢1, -+, v¢n/—1 are allowed to span the interval o
[, 7). The rationale behind this criterion is that, in many practical
situations, the azimuth angle is more important than the elevation angle.
The objective here is to find an array that minimizes the MSE on the “0.2r-
azimuth angle while not deteriorating, w.r.t. the UCA, the MSE on the
elevation angle. —0.41=~
We illustrate this optimizatign procedure for an azimuth distribution
Zi:1 3%;\/; exp —((D;?g”) ] corresponding to three equally prob- —06
able look directions at £2; = 0°, 2, = 90° and 23 = 200°, known
with an uncertainty of &1 = 02 = ¢3 = 10°. The optimal array is —082

shown in Fig. 1, along with the source azimuth PDF (in polar coordi-
nates). The normalized ECRBs on azimuth and elevation angles [i.e.,
(8) and (9), respectively] are equal to 67.47% and 73.31%, respectively.
With reference to the UCA, not only do we obtain a significant reduc-
tion of the MSE on the azimuth angle, but also a significant reduction of
the MSE on the elevation angle, even though this is not the objective of
the optimization procedure. In order to compare results with the unpri-
oritized approach, notice that the optimal array [the 6-sensors array in
Table I, rotated to satisfy (6), i.e., to ensure tan[arg(S1)] = —1.1920]
delivers a normalized ECRB equal to 70.39% (see Table I) for both az-
imuth and elevation angles.

IV. OPTIMIZATION OF V-SHAPED ARRAYS

The optimization problems in Section III have been solved numeri-
cally, but not analytically. While this has been useful to define a proce-
dure to adapt the array geometry to the probabilistic distribution of the
azimuth, we remain short of physical insight into this inter-dependency.
Interestingly, optimal arrays computed in Section III-A (where we have
assumed a concave geometry for M > 9) and Section III-B show a
V-like geometry. This concurs with [10], where V arrays were shown
to be near-optimal in estimating the DOA of a fixed source and sug-
gests that performance analysis of V arrays is meaningful to evaluate
the potential of ECRB-optimized arrays. We revisit the developments
in Section III in the case of a V-shaped array. The V array geometry is
function of only two parameters and, more interestingly, the analysis
can be made independent of the array size } when M is large enough.

Fig. 1. Optimal placement of 6 sensors (marked by “x’ dots) to fit a particular
PDF of the azimuth angle (marked by solid line). The curve is a polar represen-
tation of the prior distribution of the azimuth angle [For a point M of the curve,
distance O M represents the PDF at the azimuth angle & = [Oz, OM)].

For simplicity, we assume odd M (even M leads to the same asymp-
totic expressions [10]). Sensor 1 is placed at the origin. Sensors 2k
(resp. 2k + 1), k=1,---, MQ_] , form a branch at an angle A (resp.
Az) from the x-axis. We assume A; and As to be both in [0, 27).
Following similar steps as in [6], [9], [10], we obtain the following ap-
proximations for large M
T, ~ 5 —3cos(A1 — As)

96
N 5cos(Ar —Ag)—3
a 96

M?

T1 exp [1 (A1 + Ay)] M2, (12)

The above expressions in M > suggest that the analysis for large 3
may be applicable to practical V arrays (a comparable analysis in [6,
Sec. V] has shown to be accurate for M as low as 5). Notice that for
large M, B ~ % After tedious manipulations, (8) and (9) are shown
to be independent of M [see (13)-(14) at the bottom of the page].

We can see from the expression of 77 in (12) that the V array is
isotropic iff the angle between the two branches is equal to A, — A; =
arccos (g), ie. Ay — Ay = 53.13°, in accordance with [9]. Then, the
right-hand side in (13) and (14) becomes equal to =55 = 76%, i.e., a

reduction of the ECRB (and also of the CRB) of 24% compared to the

Coo 3 5=3cos(A1 = Az) +[Feos(Ar = Ay) = 3] R[exp [j(As + A2)] pa(~2)] (13)
Caaluca — 27 sin?(Ay — Ay)
Coo 3 5= 3cos(A1 = Ag) — [5cos(Ar = Ag) — 3] Rexp [[(A1 + As)] pa(=2)] (14)

C(—)(—)|U(JA 2m?

sin?(Az — Ay)
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UCA, on both the azimuth and elevation DOA, and so regardless of the
actual distribution of the DOA of the randomly located source.

A. Unprioritized Approach

‘We now refer to the analysis in Section III and impose that the nor-
malized ECRBs on the azimuth and elevation are identical. By com-
paring (13) and (14), this is true when the V antenna is isotropic [i.e.,
As — Ay = arccos (%)] and/or R[exp[j(A1 + A2)]pa(—2)] = 0.
Given the expression of T in (12), arg(Ti) = Ay + As, so that the
condition (6) for non-isotropic V shaped arrays translates into

E [cos(2®)] cos(A1 + Az) + E[sin(2®)] sin(A; + Az) = 0. (15)

to C =
- A, =
70.52°. This optimal V array is not

The performance measure (7), then equal
3, 2=8cos(81=82)  reaches a minimum when A
272 sin2(Aj;—Ay) 2
arccos (%), ie, Ay — A =
isotropic and achieves

~ 27
C = — =0.6839.

472

(16)

This is significantly lower than for the isotropic V array (for which
equals 76%) and quite close to optimal arrays obtained in Section III-A
(for which C' approaches 64%).

B. Prioritized Approach

We study the following two functions r1 (A, Ag) andr—_ (A, Az)
corresponding to the right-hand side of (13) and (14), i.e. the normal-
ized ECRBs on azimuth and elevation, respectively (see the equation
at the bottom of the page).

We set e = 1 (resp. — 1) if we are interested in minimizing the ECRB
(normalized w.rt. the UCA) on the azimuth angle ® (resp. elevation
angle ©). We also define

a £ [pe(2)]. (17)
We prove that the minimum of r.(A, As) is given by
i A3 (3=5a)? e, 3
=y e B
24
=, if a,:?. (19)
QT s}

It is met at 7. (AT, A}) =
three conditions are satisfied

mina,,a, 7(Ar, Az) iff the following

4/T—aZ43a-5

cos (Ai _ A;) S (20)
cos (A{ + A;) ZGM 21)
sin (A"l' 4 A;) - em (22)

At the same time, the other cost function takes on

- (alal)= 3 5a-3 <5a+3+M)
23

2] 71672 /1—a2 3a—5+4/1—aZ2

Notice that conditions (20)—(22) do not define a unique V array. For

—a243a—"
(#v1-e430-5) ] and A, be the

. . A A
instance, if we let Az = arccos { —
(5a0—3)
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Fig. 2. Normalized ECRBs achieved by the optimal V array, as a function of
parameter <. Solid (dash-dotted) line refers to the normalized ECRB for the
angle of interest (resp. on the other angle), i.e. (18) [resp. (23)].

angle in [0,27) whose cosine and sine are given by the right-hand
side in (21), (22), respectively; and if we define A5 £ (24723) apq
Ag Al W, then, we can prove that there are, in fact, two dis-
tinct V arrays solutions of our optimization problem. They are given
by (A1, A) equal to (A5, Ag) and (A5 + m, Ag + 7).

We first study (18) that expresses the minimum normalized ECRB
achievable by a V array, relative to our parameter of interest (azimuth ®
if e = 1 or elevation © if ¢ = —1). This minimum normalized ECRB
is actually independent of the parameter of interest. It is presented by
the solid line in Fig. 2 and is observed to decrease with «, ranging from
68% for av = 0 (the unprioritized approach in Section IV-A) to 15.2%
for « = 1 (the case of a deterministic prior, for example).

The V array that minimizes the normalized ECRB for the DOA angle
of interest does not minimize the normalized ECRB for the other DOA
angle, except when o« = (), i.e., when array and source fit the condi-
tion (5) of the unprioritized approach. The ECRB (normalized w.r.t.
the UCA) on the DOA angle other than the angle of interest is pre-
sented by the dashed line in Fig. 2. Interestingly, it is inferior to 1 when
a is less than 0.59. For such a distribution, the minimization of the
normalized ECRB for a given angle (say for example azimuth) is not
obtained at the expense of the normalized ECRB for the other angle
(here, the elevation) in the sense that the latter is always less than 1,
i.e., not degraded w.r.t. the UCA. For the typical case of an azimuth
distributed as a Gaussian random variable with standard deviation &,
03 (—2) = exp(—20?) and this situation takes place for o larger then
58.85°.

The V array is characterized by its shape (the angle A, —A; between
the two branches) and its orientation (angle Ay). The first parameter
Ay — Ay is the same, whether we intend to minimize the normalized
azimuth ECRB or the normalized elevation ECRB, as a result of (20)
being independent of e. For a fixed optimal V array (i.e., a fixed Ay —
A1), there are 4 possible optimal orientations (i.e., A1). Two of them
(rotation one of the other by 180°) minimize the MSE of the azimuth

re(ArAg) & 57

3 5—3cos(A1 — Ag) + €e[dcos(Ay — Ag) — 3] R[exp [j(A1 + Ag)] :,ﬁq)(—Q)]-

SiIl2 (AQ — Al)



6068

angle. The other two (also, rotation one of the other by 180°) minimize
the MSE of the elevation angle.

V. CONCLUSION

Using elements from Bayesian estimation theory, we propose CRB-
based antenna array DOA estimation performance criteria that take into
account the availability of some prior information about the source
(azimuth) angle. We define array geometry optimization problems in
order to achieve improvement w.r.t. the commonly used UCA, and
solve them by exhaustive search. Optimal arrays are obtained that min-
imize the normalized ECRB following two alternative strategies: (i)
the two DOA parameters (azimuth and elevation) are declared of equal
importance and the same reduction is required for both or, instead,
(i1) emphasis is put on one of the angles. The constraint (i) leads to
(large-sized) arrays that reduce the ECRB by 36% compared to simi-
larly sized and spaced UCA, and so regardless of the available DOA
prior information. By relaxing this constraint, approach (ii) leads to ar-
rays with much lower normalized ECRB for one of the DOA angles.
In all circumstances, optimal antenna arrays obtained here significantly
outperform arrays in [10] and outperform UCAs even further, from the
MSE point-of-view. The attractiveness of this analysis is further in-
creased by the fact that optimal performance can be closely approached
by V shaped arrays whose shape, orientation and performance are given
analytically.
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Wideband Spectrum Sensing With Sub-Nyquist
Sampling in Cognitive Radios

Hongjian Sun, Wei-Yu Chiu, Jing Jiang,
Arumugam Nallanathan, and H. Vincent Poor

Abstract—Multi-rate asynchronous sub-Nyquist sampling (MASS)
is proposed for wideband spectrum sensing. Corresponding spectral
recovery conditions are derived and the probability of successful recovery
is given. Compared to previous approaches, MASS offers lower sampling
rate, and is an attractive approach for cognitive radio networks.

Index Terms—Cognitive radio, fading, spectral recovery, spectrum
sensing, wideband spectrum sensing.

[. INTRODUCTION

The radio frequency (RF) spectrum is a limited natural resource,
which is currently regulated by government agencies. The primary user
(PU) of a particular spectral band has the exclusive right to use that
band. Nowadays, on the one hand, the demands for the RF spectrum are
constantly increasing due to the growth of wireless applications, but on
the other hand, it has been reported that the spectrum utilization effi-
ciency is extremely low. Cognitive radio (CR) is one of the promising
solutions for addressing this spectral under-utilization problem [1]. An
essential requirement of CRs is that they must rapidly fill in spec-
trum holes (i.e., portions of the licensed but unused spectrum) without
causing harmful interference to PUs. This task is enabled by spectrum
sensing, which is defined as a technique for achieving awareness about
the spectral opportunities and existence of PUs in a given geographical
area [2]-[4].
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