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Performance Limits of Alphabet Diversities for FIR
SISO Channel Identification
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Abstract—Finite impulse responses (FIR) of single-input
single-output (SISO) channels can be blindly identified from
second-order statistics of transformed data, for instance when the
channel is excited by binary phase shift keying (BPSK), minimum
shift keying (MSK), or quadrature phase shift keying (QPSK)
inputs. Identifiability conditions are derived by considering
that noncircularity induces diversity. Theoretical performance
issues are addressed to evaluate the robustness of standard
subspace-based estimators with respect to these identifiability
conditions. Then benchmarks such as asymptotically minimum
variance (AMV) bounds based on various statistics are presented.
Some illustrative examples are eventually given where Monte
Carlo experiments are compared to theoretical performances.
These comparisons allow to quantify limits to the use of the al-
phabet diversities for the identification of FIR SISO channels, and
to demonstrate the robustness of algorithms based on high-order
statistics.

Index Terms—Blind estimation, noncircularity, performance
analysis, single-input single-output (SISO) channel.

I. INTRODUCTION

S INGLE-INPUT single-output (SISO) blind identification
has been long considered to need high-order statistics

(HOS) [1], [2]. Actually, it is now well known that the use
of an additional diversity at the receiver permits to build
a single-input multiple-output (SIMO) channel that can be
identified with the sole help of second-order statistics, e.g.,
via subspace techniques [3]; if spatial diversity is not avail-
able at the receiver, oversampling allows to increase diversity
only in the presence of sufficient excess bandwidth, which is
however rarely encountered. This is one of the reasons why
HOS-based techniques are still often preferred. Other more
recent techniques incorporate the knowledge of the symbol
constellation, which eventually amounts to using noncircularity
of the symbol sequence [4]–[8]. It is thus legitimate to ask
oneself the question whether the latter are more attractive than
HOS-based approaches. We address this question in rather
favorable conditions, but our answer is still negative, as will be
subsequently shown.
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Second- or higher order noncircularity can be utilized in
order to restore identifiability of finite-impulse-response (FIR)
SISO channels in the absence of space or bandwidth diver-
sities. This results in simple SIMO-type blind identification
algorithms based on second-order statistics of transformed
data; these transformations include complex conjugation, but
also monomial functions. This is one of the differences be-
tween our analysis and that of [5], where the performance
analysis only takes into account second-order statistics of the
inputs; we were not aware of the existence of [5] until a
reviewer pointed it out to us. Identifiability conditions are de-
rived for binary phase shift keying (BPSK), minimum shift
keying (MSK), and quadrature phase shift keying (QPSK) in-
puts. Theoretical performance issues are addressed to evaluate
the robustness of standard subspace-based estimators when
the impulse response approaches an unidentifiable channel.
In this contribution, it is demonstrated that HOS-based blind
identification algorithms exhibit a much better robustness than
alphabet-based.

For this purpose, benchmarks such as asymptotically min-
imum variance (AMV) bounds based on second-order or ex-
tended second-order statistics, or based on orthogonal projec-
tors, are presented. In comparison to previous works dedicated
to performance analysis of identification of impulse responses,
which suppose the stacked samples of the received signal to be
independent and Gaussian distributed [9], [10], the theoretical
performance analysis we propose is based on the actual distri-
bution of the observed signals, including the possibility of cor-
related signals.

This paper is organized as follows. Section II introduces FIR
SISO data models. Identifiability results are given in Section III,
and performance issues are addressed in Section IV. Some illus-
trative examples are reported in Section V. Finally, conclusions
are drawn in Section VI.

II. DATA MODEL

Limiting our discussion to linear modulations, the complex
envelope of a transmitted signal takes the baseband ex-
pression , where denotes the dis-
crete sequence of transmitted symbols, the symbol period,
and the transmit filter. After propagation through a time-in-
variant channel, the signal received on the antenna is of the
form , for some complex linear filter

representing the global channel, combining transmit and
receive filters with the channel. It is subsequently assumed that
the global channel can be approximated by a FIR filter. Thus,
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if sampled exactly at the rate , the received discrete-time
signal may be modeled as

where , and denotes an ad-
ditive noise, which is assumed to be second-order circular
(i.e., ), white, zero-mean and with finite variance

. The information symbol sequence, is a sta-
tionary process; in addition, and noise are assumed to be
statistically independent. It is convenient to use a multivariate
representation by stacking samples1 of the received
signal:

(1)

with and
, and where is the following

Toeplitz matrix:

. . .
. . .

with . In the following, the cases of
BPSK, MSK and QPSK modulations will be considered, as
working examples.

III. IDENTIFIABILITY

A. BPSK Modulation

In this section, is a stationary process, possibly colored,
taking its values in the set with equal probabilities.

It is assumed that the so-called noncircular covariance
is nonsingular. The set of nonzero circular and non-

circular second-order statistics of can be gathered in the co-
variance matrix of the extended vector , so that
from (1)

(2)

Consequently, we obtain this way a structured covariance matrix
similar to that obtained in the SIMO case; here the two channels
have impulse responses and . Therefore the results (see e.g.,
[11]) concerning the global identifiability of SIMO channels can

1The length � � � of the observed output samples � has been selected for
two reasons. First, it is the minimal length to assure the SIMO channel iden-
tifiability with the so-called zero condition. Second, this length allows one to
simplify the subspace algorithm because in this case, the dimension of the noise
subspace reduces to one.

be applied. Because and is nonsin-

gular, the range space of the filtering matrix

is identifiable from , and this range space determines the
channel coefficients up to a multiplicative constant if channels
and do not share any common zeros. This ambiguity can be
fixed by using the knowledge of the alphabet; we have proved
the following.

Result 1: With a BPSK modulation and additive noise sat-
isfying the above assumptions, the impulse response of a
SISO channel is globally identifiable from the circular and
noncircular second-order statistics of its output if the polyno-
mial has neither real zeros nor conjugated
zeros.

Using the notion of local identifiability for which it has
been shown in [10] that a SIMO channel is identifiable if and
only if the different channels do not share common conjugate
reciprocal zeros, or equivalently here and

do not share common zeros, we have proved the
following.

Result 2: Under the conditions of Result 1, the impulse re-
sponse of a SISO channel is locally identifiable from the cir-
cular and noncircular second-order statistics of its output if and
only if .

Remark: If this condition is satisfied, there is no other
channel in the neighborhood of a channel , but possibly other
channels outside this neighborhood satisfying the constraints
imposed by the second-order statistics of its output. Conse-
quently in practice, one must know the whereabouts of the
true channel in order to identify it under this condition only.
Such knowledge may come from some prior information. A
locally consistent estimator that gives accurate estimate of a
channel satisfying but with real zeros or conjugated
zeros will be exhibited in Section IV. This is in contrast to the
global identifiability, for which we know that if a channel is
identifiable, there is no other channel in the space
satisfying the constraints imposed by the second-order statistics
of its output.

B. MSK Modulation

Now, we suppose is a MSK modulated signal defined by
where is a sequence of independent BPSK

symbols with equal probabilities where the original
value remains unspecified in the set . This
process may be equivalently modeled as where
is another sequence of independent BPSK symbols
with equal probabilities.

We note that (and thus ) is not stationary. But by demod-
ulating2 each , we get

(3)

2In [4], this demodulation is performed on vector � and consequently � �

� � becomes stationary at the second order but not � .
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with and where is
still second-order stationary. Gathering again the set of nonzero
circular and noncircular second-order statistics of in the co-
variance matrix of the extended vector we
obtain because in contrast to of (2) which is
not necessarily equal to from the assumptions

(4)

Consequently, we can use the same approach as for the BPSK
modulation. Because , we
obtain the result below.

Result 3: With a MSK modulation and additive noise satis-
fying the above assumptions, the impulse response of a SISO
channel is globally [respectively, locally] identifiable from the
circular and noncircular second-order statistics of its demodu-
lated output if the polynomial has neither purely imaginary
zeros nor paired zeros of the form [respec-
tively, if ].

C. QPSK Modulation

Now, we suppose is a QPSK modulated signal de-
fined as a sequence of i.i.d. r.v. taking their values in the
set with equal probabilities and now
is Gaussian distributed and circular. Consequently is
now second-order circular. However, noting that is a
BPSK modulation, a similar approach can still be used
by squaring the outputs . Indeed define and

. Then, by using i) the multilinearity
of moments and cumulants [12], [13]; ii) relations between
moments and cumulants; iii) properties specific to the QPSK
alphabet, namely and ; and
iv) the whiteness of at order 4, we obtain the following
second-order statistics of the modified input :

for . Gathering the extended second-order statis-
tics and in an Hermitian 2 2
block Toeplitz matrix, we obtain the extended covariance matrix

(5)

As a consequence, a structured covariance matrix has been ob-
tained, which is similar to that obtained in the SIMO case, with
two channels of impulse responses and . Therefore the
results (see, e.g., [11]) concerning the identifiability of SIMO
channels can be applied as well. The range space of de-
termines the channel coefficients of and up to a multi-

plicative constant if these channels do not share any common
zeros. This ambiguity can be reduced by using the knowledge
of the symbol alphabet. Returning to , each coefficient of
is determined up to a sign ambiguity, which may be cleared
up using the successive second-order statistics

. Consequently, we obtain the following
result.

Result 4: With a QPSK modulation and additive noise sat-
isfying the above assumptions, the impulse response of a
channel is globally [respectively, locally] identifiable from the
second-order statistics of the squared output if the polynomial

has neither real zeros nor conjugated zeros
[respectively, if ].

IV. ASYMPTOTIC PERFORMANCE

The above identifiability results naturally raise the impor-
tant issue of performance analysis of algorithms based on the
second-order covariance , and on the modified second-order
statistics . In particular, it is essential to evaluate the per-
formance of algorithms identifying channels whose impulse re-
sponse approaches the conditions of non-identifiability previ-
ously given.

Usually, the deterministic Cramér–Rao bound (CRB) serves
as a useful benchmark for unbiased estimators yielded by iden-
tification algorithms. Because this CRB is neither attainable for
increasing SNR, nor for increasing the number of symbols, this
CRB is only a loose lower bound for the variance of unbiased
estimator, in contrast to the stochastic CRB, which is attainable
in the previous conditions. In the present context, the distribu-
tion of is a mixture of a large number of Gaussian
distributions and consequently the stochastic CRB appears to
be computationally prohibitive. In these conditions, the notion
of asymptotically (in the number of measurements) minimum
variance bound introduced by Porat and Friedlander [14], and
Stoica et al. with their asymptotically best consistent (ABC) es-
timator [15], are considered.

A. AMV Bounds Based on Extended Covariance Matrices

We first note that is identifiable from or except an
intrinsic ambiguity, viz: a sign ambiguity for BPSK, or a rotation
of ambiguity for MSK and QPSK modulations. Further-
more, the subspace-based algorithms that are proposed estimate

up to a multiplicative constant. To compare the asymptotic
performance of these algorithms to given AMV bounds based
on various statistics, must be strictly identifiable from these
statistics. Consequently, one parameter of is fixed to a prede-
fined value, say, throughout Sections IV and V.

Let denote the real-valued unknown param-
eters (containing the real and imaginary parts of the complex
parameters) of the extended covariance matrices or ,

where ,
and where collects the nuisance3 parameters for the BPSK
and MSK modulations. Depending on the a priori knowl-
edge of the inputs, if the BPSK sequence or the
driving sequence for the MSK modulation are white, and

3Note that all the previous performance analyses (e.g., [10]) consider that the
nuisance parameters are known, and consequently give optimistic AMV bounds.
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with for
correlated BPSK symbols. We note that if the conditions of
Section III are satisfied is identifiable from or .

These block Toeplitz matrices and are traditionally
consistently estimated from successive received signals
by replacing the various expectations by the associated sample
correlations:

and

. In order to apply the
AMV bound [14], [15] to an arbitrary consistent extended
second-order algorithm based on the sample estimates or

of or respectively, the involved statistics must
collect real-valued sample correlations and complex-valued
sample correlations and their conjugate [16]. For example, for
BPSK modulations, we have

(6)

Under these conditions, the asymptotic covariance of
an estimator of given by an arbitrary consistent second-order
algorithm based on these statistics is bounded below by the
real symmetric positive definite matrix

where4 with and where
is the circular covariance5 of the asymptotic distribution

of whose expression is given in Appendix A. Furthermore,
there exists a nonlinear least square algorithm (dubbed the AMV
algorithm [14]), for which the covariance of the asymptotic dis-
tribution of the estimate of attains this lower bound.

For white BPSK sequences and white driving sequences of
MSK modulations, is the unique nuisance parameter and

and for
BPSK sequences. Consequently, is structured as

, where is the first unit vector in . This
implies , and the matrix inversion lemma yields

(7)

with

where denotes the projector onto the orthogonal comple-
ment of the columns of .

4Note that the local identifiability used in Result 2 is equivalent to that the
Jacobian � is full column rank [10]. When � � �, the number of columns
of � is reduced by 2 w.r.t. the case of an arbitrary � and � becomes locally
identifiable for arbitrary channels.

5Note that the circular and the noncircular covariance matrices contain the
same terms [16].

For the BPSK modulation with correlated symbols,
and

where . Consequently

is structured as , which implies

with and the matrix inversion lemma
gives this time:

(8)

with

We note that when the BPSK symbols are uncorrelated,

where here is derived under the assumption of
uncorrelated symbols.

Lastly for the QPSK modulation, where there is no nuisance
parameter in , we obtain the lower bound

(9)

with

where is here associated with the statistics

where

and (see
Section III-C), which is a consistent estimate of

whose expression is derived in Appendix B.

B. AMV Bounds Based on Orthogonal Projectors

In order to assess the performance of subspace-based algo-
rithms built from or , it is relevant to replace the pre-
vious statistics by the orthogonal projectors or
onto the noise subspace of or respectively. In this
case, or , consistent estimates of

and respectively which here depends only on and are
therefore denoted by .
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The circular covariances of the asymptotic distribution of
and are singular, but it is proved in [17]

that the AMV bound definition can be extended and is given by

(10)

where denotes the Moore-Penrose inverse of the covari-
ance of the asymptotic distribution of or

which are derived in Appendix C and where

.
Remark 1: Noting that the block Toeplitz matrix

and the sample covariance (which is not
block Toeplitz structured) have the same asymptotic Gaussian
distribution [18], the circular covariance matrix of the
asymptotic distribution of can be derived from that of

. Based on the linear structure
of the correlated data , the robustness [19, Result 3] property
that states that the circular covariance of the asymptotic distri-
bution of the associated projection matrix does not depend on
the distribution of but on the temporal correlation of
applies. Using , this property extends to
the MSK case. This is in contrast with , associated with
the statistics and , which depend on the second and
fourth-order terms of . Naturally for QPSK symbols,
depends on the second-, fourth-, sixth-, and eighth-order terms.

Remark 2: Note that lower bounds (8), (7), and (9) associated
with arbitrary consistent algorithms based on or satisfy,
for the same a priori knowledge

and

where and denote lower bound (10) as-
sociated with and , respectively, because these sta-
tistics are functions of and , respectively.

C. Subspace-Based Algorithms

Because the structure of the covariance matrices and
of (2), (4), and (5) are similar to those obtained in the SIMO
case, all the algorithms devised in this case can be used in the
present context. In the sequel by lack of place, only the so-called
least square (LS) and subspace (SS) will be considered [20]. We
note that i) the LS and SS estimates coincide in the two-channel
case [20], and ii) the noise subspace is of dimension one.

For the BPSK modulation, any eigenvector associated with
the smallest eigenvalue of the block structured matrix

satisfies and from [21]

From now, is constrained to have its first component to be
unity: . Consequently, the LS and SS esti-
mates are given by where
denotes the eigenvector associated with the smallest eigenvalue

of the block structured matrices whose

first component is unity.
The asymptotic performance of this algorithm can be deduced

from the asymptotic distribution of whose circular covari-

ance is derived from the mapping6 ,
where denotes the eigenvector associated with the smallest
eigenvalue of satisfying the constraint , where

is an arbitrary unit norm eigenvector of associated with
its smallest eigenvalue. Using the standard perturbation theory
[22, p. 162]

with , we obtain by the chain rule and the
standard theorem of continuity (see, e.g., [28, p. 122])

(11)

where

is the Jacobian matrix associated with the mapping
.

For the MSK and QPSK modulations, this analysis extends
by replacing and by and , respectively, and
appending the mapping .

V. ILLUSTRATIVE EXAMPLES

Four experiments are considered to illustrate the perfor-
mance of the impulse response estimates and particularly the
robustness of estimators when the impulse response is close to
unidentifiable.

In Figs. 1 and 2, the channel is given by
with and ,

where varies from 0 to for SNR
15 dB and 100 Monte Carlo runs. These figures exhibit the
following for independent BPSK and MSK inputs driven by
independent symbols:

• the theoretical AMV bound MSE
with the prior information of independent

symbols (denoted AMV1 bound) and without any a priori
information (denoted AMV2 bound);

• the theoretical AMV bound MSE
(denoted AMV3 bound);

• the theoretical asymptotic MSE
given by the LS/SS algorithm;

• the actual (Monte Carlo) MSE given by the LS/SS
algorithm.

The following relation is satisfied for arbitrary as noted in
Section IV

We note that the theoretical AMV bound is
bounded when the zero approaches the real [respec-
tively, imaginary] axis for the BPSK [respectively, MSK]
modulation for which becomes globally nonidentifiable
but remains locally identifiable. This is in contrast with

6In practice, the unique eigenvector �� is obtained from � through an
eigenvector �� satisfying other constraints. For example, the SVD function of
MATLAB forces all eigenvectors to have a real first element and a unit norm.
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Fig. 1. For white BPSK inputs three AMV bounds, asymptotic theoretical
MSE��� and ��� actual MSE���, given by the LS/SS algorithm as a function
of the phase � of a zero of �.

Fig. 2. For MSK inputs driven by white symbols 3 AMV bounds, asymptotic
theoretical MSE��� and ��� actual MSE���, given by the LS/SS algorithm as
a function of the phase � of a zero of �.

and which increase
dramatically in this case. The behavior of the two bounds

is explained by in (7) which remains
full rank contrary to in (8), which becomes
rank deficient. The behavior of and is
explained by the pseudoinverses # and # in (10) and
(11) respectively, for which becomes rank deficient. This
behavior of the LS/SS algorithm is interpreted by the “noise
eigenvector” that is mistaken for a “signal eigenvector” when
the channel is close to the non identifiability conditions. If the
length of the stacked observed output samples

increases, the dimension of the noise
subspace increases and it is well known that the performance

Fig. 3. For correlated BPSK symbols asymptotic, 2 AMV bounds, asymptotic
theoretical MSE��� and ��� actual MSE���, given by the LS/SS algorithm as
a function of the probability �.

improves (see, e.g., [23], where Fig. 1 shows the two channel
case with order two), but at an expense of additive complexity.
Furthermore, we note that for arbitrary processing window
lengths , only the correlations
and are involved in the LS/SS algorithm for
independent inputs . Consequently, the AMV2 bound given
if Fig. 1 keeps on being a lower bound for the MSE of the im-
pulse response estimated by arbitrary second-order algorithms
derived for samples of stacked observed outputs.
And we see from this figure that this AMV2 bound is also very
sensitive to the non identifiable conditions.

We now consider the influence of the correlation of BPSK
symbols on the performance of the identification of by using a
differential coding for which the symbols are generated from

with is an i.i.d. sequence where
and . In this case is a zero mean
correlated sequence for which
and for
implying for

. Incorporating these values in (14) and (15),
Appendix A allows you to study the performance. Fig. 3 exhibits
for the channel used in the previous figure with radians,
as functions of the probability for and SNR 5 dB:

• the theoretical AMV bound MSE
with the prior information of differ-

ential coding (denoted AMV4 bound) and without any a
priori information (denoted AMV2 bound);

• the theoretical asymptotic MSE
given by the LS/SS algorithm;

• the actual (Monte Carlo) MSE given by the LS/SS
algorithm.

We see from this figure7 that the different MSE are sensitive
to the probability except for and degrade rapidly for
a strong correlation i.e., .

7We note that the different MSE are symmetric with respect to � � ���.
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Fig. 4. For white BPSK symbols, empirical distribution function of the random
variable MSE��� for four values of the SNR.

To test the occurrence of an unidentifiable channel, we
consider now a random second-order FIR channel where

and are i.i.d. uniformly dis-
tributed in . For each realization of such a channel,
the asymptotic theoretical MSE is
computed with the associated matched SNR. Fig. 4 exhibits the
empirical distribution function of the random variable MSE
from 1000 realizations for . From this figure, we see
for example that MSE , for SNR
15 dB. Comparing this median with the different MSE given by
the LS/SS algorithm for the specific channel of Fig. 1 for this
same SNR, we see that this specific channel is representative
enough. Consequently, channels close to unidentifiable are not
uncommon.

Unfortunately for more realistic random channels, the em-
pirical distribution function of the random variable MSE is
much worse. For example, for Clarke filters in the typical urban
mode, where each generated channel is specular and contains six
paths, where the transmit filter is a raised cosine with a rolloff
of 0.1, and where delays and attenuation standard deviations are
given in [24] according to the ETSI norm, the probability of a
high asymptotic theoretical MSE ( is much larger than for the
channels of Fig. 4.

In the last experiment, we consider the channel given by

(where the real
part of the square roots are positive) associated with

with and
where varies from 0 to for SNR 20 dB
and 100 Monte Carlo runs. This figure exhibits for independent
QPSK symbols:

• the theoretical AMV bound MSE

based on the statistics used in the LS/SS
algorithm;

Fig. 5. For white QPSK symbols, AMV bound, asymptotic theoretical
MSE��� and actual MSE��� given by the LS/SS and the ���� �� algorithms
as a function of the phase � of a zero of � .

• the theoretical asymptotic MSE
given by the LS/SS algorithm;

• the theoretical asymptotic MSE
given by the so-called formula of Giannakis
[27], [2] ( where

denotes the estimated cumulant associated
with the sample moment ;

• the actual (Monte Carlo) MSE given by the LS/SS
algorithm;

• the actual (Monte Carlo) MSE given by the for-
mula of Giannakis [2], [27].

We see from this figure that the AMV bound outperforms by
far the LS/SS algorithm, and the latter is outperformed in a large
domain of by the formula of Giannakis.8 Next, we
note that these algorithms require very large data samples for
an effective estimation (here ). Furthermore when

becomes nonidentifiable, i.e., approaches 0 or , the perfor-
mance of the LS/SS algorithms degrades in contrast to those of
the formula of Giannakis. Finally, we note that the the-
oretical and actual MSE’s of the LS/SS present some disconti-
nuities in the neighborhood of for which the real part
of is zero, implying some artifacts in the derivation of the
theoretical asymptotic MSE given by the LS/SS algorithm and
large errors in the estimates.

VI. CONCLUSION

In this paper, the problem of blindly estimating FIR SISO
channels has been considered, when the channel is excited by
discrete inputs. Identifiability has been stated from second-order
statistics of transformed data. One may say that the knowledge
of the alphabet has induced a form of diversity. Identifiability
conditions have been derived and limitations have been pointed

8Of course, this algorithm may be outperformed by other HOS-algorithms
that use these statistics more efficiently. This���� �� algorithm has nevertheless
been selected simply to reveal the lack of robustness of the standard subspace
alphabet-based estimators.
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out: some particular channels are not identifiable. Theoretical
performance issues have been addressed in order to evaluate the
robustness of standard subspace-based estimators with respect
to these identifiability conditions, as well as the performance of
the so-called -algorithm [27], [2]. More precisely, it has
been shown that the performance of alphabet-based algorithms
seriously degrades in the neighborhood of nonidentifiable chan-
nels, implying that these approaches are unapplicable in prac-
tice. On the other hand, the HOS-based algorithms not based on
subspace approaches, as the -algorithm which does not
utilize noncircularity, do not present difficult identifiability con-
ditions and consequently are much more robust.

APPENDIX A
DERIVATION OF ASSOCIATED WITH THE BPSK AND

MSK MODULATION

To derive the expression of the circular covariance of
the asymptotic distribution of , we number the channels

and by and respectively and the associ-
ated output by and . Consequently the terms of

are con-
stituted by the terms

(12)

for and
to elim-

inate redundancies, in which

and for the BPSK modulation. Limit
(12) deduced from the Bartlett formula (see e.g., [25]) is given
by

(13)

with

and

where in the white case and
with

(14)

and

(15)

in the general correlated case.
The expression of the circular covariance of the asymptotic

distribution of associated with the MSK modulation driven
by white symbols follows the same lines as the white BPSK case
replacing and by and respectively according to (3).

APPENDIX B
DERIVATION OF ASSOCIATED WITH THE

QPSK MODULATION

First, we note that the statistics is a simple function of the
statistics

Consequently, using the standard theorem of continuity (see,
e.g., [28]) on regular functions of asymptotically Gaussian sta-
tistics, is derived from by

Then the different terms of
similar to terms (12) are given (see, e.g.,

[26, rel. 10.5.2]) by the following finite limits:

where the exponents take values 1 or 2. The last sum re-
duces to (13) using the Bartlett formula but the first two sums
are much more intricate. We could use the extended Bartlett
formulas derived in [25] in the case of infinite sums (ARMA
models), but here because all the sums are finite, we use a spe-
cific symbolic calculus akin to a high-level language to auto-
matically generate the expressions of these sums. This calculus
uses , the circularity of with
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and the following specific properties of the
QPSK alphabet, namely

for
elsewhere.

APPENDIX C
DERIVATION OF THE COVARIANCE OF THE ASYMPTOTIC

DISTRIBUTION OF OR

First, noting that the Hermitian block Toeplitz matrix
is built from its first column and row constituted by the sta-
tistics given by (6), the circular covariance of the
asymptotic distribution of is deduced from given
in Appendix A by

Using the standard perturbation result for orthogonal projectors
[30] (see also [29]) applied to associated with the noise sub-
space of

(16)

with , the asymptotic behaviors of
and are directly related. The standard theorem

(see, e.g., [28, p. 122]) on regular functions of asymptotically
Gaussian statistics applies and the circular covariance matrix
of the asymptotically Gaussian distribution of can
be written as

For the case of MSK and QPSK symbols, is deduced in
the same way from the circular covariance matrix of the
asymptotic distribution of the associated second-order statistics
of transformed data where .
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