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Statistical Performance of MUSIC-Like Algorithms
in Resolving Noncircular Sources
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Abstract—This paper addresses the resolution of the conven-
tional and noncircular MUSIC algorithms for arbitrary circular
and noncircular second-order distributions of two uncorrelated
closely spaced transmitters observed by an arbitrary array. An
explicit closed-form expression of the mean null spectrum of the
conventional and noncircular MUSIC algorithms is derived using
an analysis based on perturbations of the noise projector instead
of those of the eigenvectors. Based on these results, theoretical
and approximate interpretable closed-form expressions of the
threshold array signal-to-noise ratios (ASNR) at which these two
algorithms are able to resolve two closely spaced transmitters
along the Cox and the Sharman and Durrani criteria are given.
It is proved that the threshold ASNRs given by the conventional
MUSIC algorithm do not depend on the distribution of the
sources including their noncircularity, in contrast to the noncir-
cular MUSIC algorithm for which they are very sensitive to the
noncircularity phase separation of the sources. This threshold
ASNR given by the noncircular MUSIC algorithm is proven to
be comfortably lower than that given by the conventional MUSIC
algorithm except for weak phase separations of the sources for
which the resolving powers of these two algorithms are very close.
Finally, these results are analyzed through several illustrations
and Monte Carlo simulations.

Index Terms—Circular and noncircular signal, direction of ar-
rival (DOA), MUSIC algorithm, threshold of resolution.

I. INTRODUCTION

D EDUCING array resolution limits is a very old problem
that has been studied extensively in the literature, first in

astronomy and subsequently in signal processing. Based on the
classical beamformer, different resolution criteria have been de-
fined from the main lobe of the array spectrum as the celebrated
Rayleigh resolutions such as the half power beamwidth or the
null to null beamwidth [1] that depends solely on the antenna
geometry.

Then for specific so-called high-resolution algorithms based
on the search for two local minima of null sample spectra such
as different MUSIC-like algorithms, two main criteria based on
the mean null spectrum have been defined. For the first, intro-
duced by Cox [2], two sources are resolved if the midpoint mean
null spectrum is greater than the mean null spectrum in the two
true source DOAs. This criterion was first studied by Kaveh
and Barabell [3], [4] in the resolution analysis of the conven-
tional MUSIC and Min-Norm algorithms for two uncorrelated
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equal-power sources and a uniform linear array (ULA). This
analysis has been extended to more general classes of situations,
e.g., for two correlated or coherent equal-power sources with the
smoothed MUSIC algorithm [5], then for two unequipowered
sources impinging on an arbitrary array with the conventional
and beamspace MUSIC algorithm [6]. A subsequent paper by
Zhou et al. [7] developed a resolution measure based on the
mean zero spectrum and compared their results to Kaveh and
Barabell’s work. For the second one, introduced by Sharman
and Durrani [8] and then studied by Forster and Villier [9], [10]
in the context of the conventional MUSIC and Min-Norm algo-
rithms, for two uncorrelated equal-power sources and a ULA,
two sources are resolved if the second derivative of the mean
spectrum at the midpoint is negative.

Moreover, several authors have considered (e.g., [11]–[13])
the probability of resolution or an approximation of it based on
the Cox criterion applied to the sample null spectrum to circum-
vent the possible misleading results given by these two criteria.
Finally array resolution limits has been studied independently
of any algorithm from different points of view. Based on order
detection using information theoretic criteria such that the min-
imum description length (MDL) and the Akaike’s information
(AIC) criteria, the probability of underestimating or overesti-
mating the number of sources for the case of two closely spaced
sources has been analyzed in [4]. Resolution criteria have been
defined from the Cramér–Rao bound (CRB) [14] as the source
separation that equals its own CRB, then applied to discrete
sources in [15], and from the generalized likelihood ratio test
[16] through constraints on the probabilities of false alarm and
of detection.

We note that all these studies have been obtained under a
circular Gaussian distribution of signals. The aim of this paper
is to extend some of these previous results under arbitrary
second-order distributions, with a particular attention to non-
circular signals often used in digital communications. More
precisely, we consider the two resolution criteria based on
mean null spectra associated with the conventional MUSIC al-
gorithm and with a MUSIC-like (denoted noncircular MUSIC)
algorithm introduced and studied in [17] which is an extension
of a root MUSIC-like algorithm devised in [18] to an arbitrary
array that benefits from the second-order noncircularity of the
sources.

The paper is organized as follows. The array signal model and
the statement of the problem are given in Section II. Using an
analysis based on perturbations of the noise projector instead of
those of the eigenvectors, an explicit closed-form expression of
the mean null spectrum of conventional MUSIC algorithm that
does not depend on the distribution including the noncircularity
of the sources is derived in Section III. Consequently, the associ-
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ated expressions (e.g., [3, rel. (35)] and [9, rel. (18)]) of the res-
olution thresholds obtained under the two foregoing criteria for
circular Gaussian sources extend to arbitrary distributions and
arbitrary arrays. This analysis is applied again in Section IV, to
derive closed-form expressions of the null spectrum of the non-
circular MUSIC algorithm. Then, closed-form expressions of
the resolution thresholds are deduced under the two foregoing
criteria for arbitrary arrays. These expressions show the cru-
cial role played by the noncircularity phase separation of the
sources. They confirm that the noncircular MUSIC algorithm
largely outperforms the conventional MUSIC algorithm from
the resolution point of view for large noncircularity phase sep-
aration, in contrast to weak noncircularity phase separation for
which the threshold ASNRs given for the noncircular and con-
ventional MUSIC algorithms are similar. Finally, numerical il-
lustrations and Monte Carlo simulations are given in Section V
with particular attention paid to the noncircularity phase sepa-
ration and the main results are summarized in a conclusion.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold upper case and
bold lower case characters, respectively. Vectors are by de-
fault in column orientation, while , , , and # stand for
transpose, conjugate transpose, conjugate, and Moore–Penrose
inverse, respectively. , , , and
are the expectation, trace, determinant, Frobenius norm, real
and imaginary part operators respectively. is the -order
identity matrix, denotes the -unit vector in , and is

the partitioned matrix . is the

“vectorization” operator that turns a matrix into a vector by
stacking the columns of the matrix one below another which
is used in conjunction with the Kronecker product as
the block matrix whose block element is and with
the vec-permutation matrix which transforms to

for any square matrix .

II. STATEMENT OF THE PROBLEM

Let an arbitrary array of sensors receive the signals trans-
mitted by equal-power narrowband independent sources of
power . The observation vectors are modeled as

(2.1)

where are independent and identically distributed.
is the steering matrix where each vector

is parameterized by the real scalar parameter according
to the parametrization introduced in [6] where .

and model signals transmitted by
sources and additive measurement noise, respectively. and
are independent, zero-mean, is assumed to be Gaussian com-
plex circular, spatially uncorrelated with ;
while is complex noncircular not necessarily Gaussian with
covariance matrices and

. Consequently, this leads to the following two covariance ma-
trices of that contain information about :

and

These covariance matrices are classically estimated by
and ,

respectively.
For performance analysis, we suppose that the signal wave-

forms have finite fourth-order moments
. The noncircularity rate of the th

source is defined by
where is its noncircularity phase. Note that in the
particular case of rectilinear signals with phase .

The problem addressed in this paper is to derive in these
conditions, resolution threshold expressions associated with the
conventional and noncircular MUSIC algorithms. The DOA es-
timated by the conventional MUSIC algorithm are given by the

smallest minima of the following so-called null spectrum
[19]:

with

where denotes the projector matrix associated with the noise
subspace of . Then, for the noncircular MUSIC algorithms
devised for rectilinear signals,1 the estimated DOA are given
by the smallest minima of the following so-called spectrum

:

with [17]

(2.2)

where and are Hermitian and complex symmetric
respectively, given by the projector matrix

associated with the noise subspace of
with the extended observation

for which

with and .

III. RESOLVING POWER OF CONVENTIONAL MUSIC

Based upon the partially substantiated assumption [3] that the

standard deviation of the sample null spectrum
associated with the conventional MUSIC and Min-Norm algo-
rithms is small compared to its mean value in the

1Noncircular with unit rate of noncircularity, i.e., � � �.
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vicinity of the emitters, the mean value of the sample null spec-
trum can be reasonably taken as representative of the ensemble
of sample null spectra. We note that the conditions for the va-
lidity of this foregoing assumption has been specified in [11], for
which it has been proved for the conventional MUSIC algorithm

(3.1)
in the vicinity of the emitters, for a large number of snapshots,
a fixed number of sensors2 and for arbitrary SNR. Conse-
quently, under the conditions and

(3.2)

is validated in the vicinity of the emitters. We suppose that (3.2)
is valid for the noncircular algorithm as well and based on this
assumption, we use the Cox [2] and the Sharman and Durrani
criteria [8] for which in the case , two closely spaced
equal-power sources are resolved if the following respective
conditions are satisfied:

(3.3)

(3.4)

where . Approximations to the resolution
threshold are deduced from equalities in (3.3) and (3.4). Conse-
quently, the key point to derive these resolution thresholds de-
pends on the expectation of the random variable . To
obtain this expectation, we resort to an analysis based on pertur-
bations of the noise projector [19] instead of those of the eigen-
vectors (e.g., [3] and [6]). Therefore, we consider the following
second-order expansion of w.r.t.

proved in [19]:

(3.5)

To proceed, we need the expression of for
arbitrary matrices which is given by the following
lemma proved in Appendix A.

Lemma 1: For independent arbitrary noncircular, possibly
non-Gaussian sources, we have

2We note that (3.1) is derived from an expansion in ��� for � fixed,
and consequently is only valid for � � � . Consequently, our analysis is
not valid for small sample size scenarios studied in [20] for which � �� .
The domain of validity of our approach will be considered in the illustrative
examples Section.

that allows us to prove in Appendix B from (3.5) that

(3.6)

with . Consequently, we have for sources

where . For , this expres-
sion of the mean null spectrum coincides with those given in
the circular Gaussian assumption [3], [10]. Therefore, we can
conclude the following result for two independent equal-power
sources where the array signal-to-noise

ratio (ASNR) is defined by .
Result 1: The threshold ASNRs deduced from the Cox (3.3)

and the Sharman and Durrani criterion (3.4) given for the con-
ventional MUSIC algorithm with two independent equal-power
sources do not depend on the distribution including the noncir-
cularity of the sources.

Consequently, expressions [3, (rel. (35)],3 [9, rel. (18)] and
[6, rels. (91) and (93)] of the threshold ASNRs remain valid for
arbitrary distributions of the sources. The first two expressions
of this threshold ASNR dedicated to the ULA are given in the
following to be compared to those derived in the next section:

(3.7)

(3.8)

with and

, for which the DOA separa-

tion is defined here by 4

associated with the symmetric steering vectors

where the coordinate system has its origin at the centroid of the
array according to the parametrization of Lee et al. [6].

IV. RESOLVING POWER OF NONCIRCULAR MUSIC

The previous approach applies to the noncircular MUSIC al-
gorithm by replacing , and by , and in (3.5),
respectively. Using the following lemma proved in Appendix A.

Lemma 2: For independent rectilinear, possibly non
Gaussian sources, we have

3We note that due to a mistake in the derivation of [3, (rel. (33)] and a miscal-
culation in a series expansion, [3, (rel. (B.2)] and [3, (rel. (35)] are erroneous.
Expression (3.7) is the correct one.

4Most of the papers dealing with this topic use this normalization, so we also
use it in order to simplify comparisons with the literature.
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with , we prove in Appendix B the following
expressions:

(4.1)

with which gives with

, Hermitian positive-semidefinite matrices

(4.2)

(4.3)

This allows us to derive the mean null spectrum associated with
noncircular MUSIC algorithm (2.2). After simple but tedious
algebraic manipulations summarized in Appendix C, we obtain
under the assumptions of Lemma 2

(4.4)

with . Since
the expression of this mean null spectrum depends on the
second-order statistics only, it is the same for the different
threshold ASNRs deduced from it for two sources. Using
closed-form expressions of , , , and derived in
Appendix D, the following result is proved in Appendix E after
tedious algebraic manipulations.

Result 2: The threshold ASNRs deduced from the Cox (3.3)
and the Sharman and Durrani (3.4) criteria given for the non-
circular MUSIC algorithm with two independent equal-power
sources and an arbitrary array depend only on the second-order
statistics of the sources and are respectively given by

(4.5)

(4.6)

where is the noncircularity phase separation
and is defined according to the general parametrization of
Lee et al. [6] and where and are expansions in

without constant term, whose coefficients depend on
, and the array configuration.
We note that these threshold ASNRs (4.5) and (4.6) depend

not only on , , , but also on the noncircularity phase sep-
aration , contrary to the threshold ASNRs obtained for the
conventional MUSIC algorithm. Using symbolic calculus akin
to a high level language (e.g., Maple software), these intricate
expressions reduce to simple interpretable expressions for weak
and large noncircularity phase separation . For example, for

a ULA where is defined as in Result 1 to simplify com-
parisons, we have more precisely the following approximations.
First, in the case

(4.7)

and the behavior of the conventional and noncircular MUSIC
algorithms are similar due to the similarity of the dependence
in in the expressions (3.7), (3.8), (4.5), and (4.6). In the
opposite case, for , we prove that

(4.8)

and the noncircular MUSIC algorithm largely outperforms the
conventional MUSIC algorithm due to the proportionality of

in in the place of given in Result 1
for the conventional MUSIC algorithm. The domain of validity
of these approximated expressions will be specified in the next
section. Naturally, this domain depends on , and the cri-
terion, but it will be shown that this domain of validity for weak
phase separations is small in contrast to those for large phase
separations. For this second approximation with a large domain
of validity, we note that and are decreasing and
increasing function of for , respectively. Con-
sequently, we have proved the following result.

Result 3: The threshold ASNRs deduced from the Cox (3.3)
and the Sharman and Durrani (3.4) criteria given for the non-
circular MUSIC algorithm with two independent equal-power
sources and a ULA are decreasing function of the phase separa-
tion of the sources for and thus are minimum for

.
Consequently, the noncircularity phase separation between

the two sources plays an crucial role in the behavior of the non-
circular MUSIC algorithm. Furthermore, we note that the ex-
pressions of and depend of the choice of the
origin of the coordinate system, in contrast to , and
obtained for the conventional MUSIC algorithm. This is ex-
plained by the steering vector which has the structure

, where is
the wavelength and and denote the vector pointing from
the array centroid to sensor and the unit-length arrival vector
form a source in the direction , respectively. If the origin of the
coordinate system is moved from the array centroid to the point
, the new steering vector becomes . Conse-

quently, for rectilinear signals, (2.1) is rewritten as

where

and when the origin moves, becomes
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Fig. 1. Comparison of the threshold ASNRs given by the Cox criterion as a
function of the DOA separation �� associated with the conventional MUSIC
� � and noncircular MUSIC algorithms �� �� for three values of the non-
circularity phase separation ��.

and the noncircularity phase and the DOA are coupled. This im-
plies that this change of the origin of the coordinate system does
not modify the matrices that appear in (3.6) in contrast to those
of (4.1) and the resolving power of the noncircular MUSIC al-
gorithm is sensitive to the position of this origin in contrast to
the conventional MUSIC algorithm. Note that this sensitivity to
the phase reference also applies to the theoretical asymptotic
variance of the DOA estimated by the non-circular MUSIC al-
gorithm. As the CRB is concerned, the noncircular Gaussian
CRB [21, rel. (3.9)] in which the rectilinear property is a priori
unknown does not depend on the phase reference of the array in
contrast to the noncircular Gaussian CRB that takes this recti-
linear property as a priori known.

This quite curious result reminds one of a similar result in cis-
soid parameter estimation (see, e.g., [22] and [23, pp. 273–286])
where the Cramér–Rao bounds of the frequency and phase de-
pend upon the time at which the first sample is taken and are
minimum if the sampling times are symmetrically located about
zero. So, the centroid of the array that has been chosen as phase
origin to simplify the notation, can be conjectured to be the
phase origin that optimizes the performance of estimation and
resolution of closely spaced rectilinear sources.

V. ILLUSTRATIVE EXAMPLES

To illustrate Results 1, 2, and 3, we consider throughout this
section two independent equal-power BPSK modulated signals
impinging on a ULA of sensors with and
(except for Figs. 9 and 10). We clearly see in Figs. 1 and 2
that the noncircular MUSIC algorithm outperforms the conven-
tional MUSIC algorithm except for very weak noncircularity
phase separations for which the ASNR thresholds of these two
algorithms are very similar. Furthermore, we note that the be-
haviors of the ASNR threshold given by the two criteria are
very similar although the ASNR thresholds are slightly weaker
for the Sharman and Durrani criterion than for the Cox crite-
rion. This is explained by the bias of the sample null spectrum
at the true source direction that could imply that although the

Fig. 2. Comparison of the ASNR thresholds given by the Sharman and
Durrani criterion as a function of the DOA separation �� associated with
the conventional MUSIC � � and noncircular MUSIC algorithms �� ��
for three values of the noncircularity phase separation ��.

midpoint mean null spectrum is less than the mean of the mean
null spectrum in the true directions, the algorithm recognizes
two sources because the Sharman and Durrani criterion is sat-
isfied (see, e.g., [8, Fig. 3]). Finally, we cheek from these two
figures that the threshold ASNRs are approximately to
for the noncircular MUSIC algorithm with and

, in contrast to the conventional and noncircular
MUSIC algorithm with , for which they are approx-
imately to .

Figs. 3 and 4 exhibit the domain of validity of the approxima-
tions of the threshold ASNRs given in the foregoing section for
weak and large noncircularity phase separations . From these
figures given for , these approximations are valid in a
large domain of for the second approximation (for which
this domain enlarges when decreases which is consistent
with the condition ) in contrast to
the first approximation (for which it enlarges when increases
which is consistent with ). We
note that the domains of validity of these approximations are
larger for the Sharman and Durrani criterion than for the Cox
criterion.

Figs. 5 and 6 show the probability of resolution related to the
foregoing two criteria obtained by Monte Carlo simulations.5

Compared with the ASNR thresholds given by Figs. 1 and 2,
we see that the ASNR threshold given by our non probabilistic
approach based on the mean null spectrum corresponds
to a probability of resolution that ranges from 0.3 to 0.7 for the
two criteria. Thus, this non probabilistic approach gives cor-
rect approximate ASNR for the 0.3–0.7 probability of resolu-
tion threshold region in the same way that for the conventional
MUSIC algorithm [3]. Furthermore, we note that the resolution
is much more sensitive to the ASNR for the Sharman and Dur-
rani criterion than for the Cox criterion.

5In each simulation trial, the two sources are considered resolved for
these two criteria if ����� �� �� � �� �� � � �� �
for the Cox criterion, and � �� � ����	��� � � �� �

����	����	� �� � � � for the Sharman and Durrani criterion.
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Fig. 3. Ratio � � ������ ��	
 ���
����������������
 (derived from (4.7)) ASNR threshold given by the Cox and the Sharman and Durrani criteria as a
function of the noncircularity phase separation �� for three DOA separations ��. (a) Cox criterion and (b) Sharman and Durrani criterion.

Fig. 4. Ratio � � ������ ��	
 ���
����������������
 (derived from (4.8)) ASNR threshold given by the Cox and the Sharman and Durrani criteria as a
function of the noncircularity phase separation �� for three DOA separations ��. (a) Cox criterion and (b) Sharman and Durrani criterion.

We note that the difference of behavior in resolution between
the conventional and noncircular MUSIC algorithms are con-
nected to the accuracy of the DOA estimate given by the non-
circular MUSIC algorithm [17] compared to those of the con-
ventional MUSIC algorithm. This is illustrated in Figs. 7 and 8
where the variance of the estimated DOA and of the separation
of DOA are respectively exhibited. In these figures, the theoret-
ical asymptotic variances are derived form the covariance of the
asymptotic distribution of the DOAs estimated by the conven-
tional and the noncircular MUSIC given in [17]. We note in par-
ticular that the performances given by the noncircular MUSIC
algorithms for and those of the conventional MUSIC
algorithms are theoretically and empirically different but very
closed.

Finally, we question the domain of validity of our approach
that is totally based on the contention that the mean value of the
sample null spectrum can be taken as representative of the en-
semble of sample null spectra obtained for a large number of
snapshots and a fixed number of sensors and more specif-
ically under the condition . In Figs. 9 and 10,

and are fixed, in contrast to the number
of snapshots. First, we cheek that because , the

ASNR threshold varies as . Then compared with
the ASNR threshold given by Fig. 9, we see in Fig. 10 that the
ASNR threshold given by our approach based on the mean null
spectrum corresponds to a probability of resolution that
keeps on ranging from 0.2 to 0.7 for the Cox criterion provided
that . Consequently our approach seems to be valid at
least in the domain and . Consequently, the
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Fig. 5. Probability of resolution given by the Cox criterion (Monte Carlo with
1000 runs) as function of the ASNR for �� � ���� �� for the noncircular
MUSIC algorithm compared to the conventional MUSIC algorithm.

Fig. 6. Probability of resolution given by the Sharman and Durrani criterion
(Monte Carlo with 1000 runs) as function of the ASNR for �� � ���� ��
for the noncircular MUSIC algorithm compared to the conventional MUSIC
algorithm.

Cox and the Sharman and Durrani criteria that are very close,
enable one to obtain a coarse estimate of the ASNR threshold in
a relatively large domain of validity.

VI. CONCLUSION

This paper has presented a theoretical analysis of the reso-
lution according to the Cox and the Sharman and Durrani cri-
teria for the conventional and noncircular MUSIC algorithms
for arbitrary circular and noncircular second-order distribution
of two closely spaced transmitters. It has been proved that these
threshold ASNRs given by the conventional MUSIC algorithm
do not depend on the distribution of the sources including their
noncircularity, in contrast to the noncircular MUSIC algorithm
for which they are very sensitive to the noncircularity phase
separation of the sources. More precisely, it has been proved
that for very weak phase separations the behavior of the con-
ventional and noncircular MUSIC algorithms are very similar,
in contrast to large phase separation for which the noncircular

Fig. 7. Theoretical asymptotic variance of the DOA estimates given by the con-
ventional MUSIC � � and the noncircular MUSIC �� �� algorithms and
empirical variance given by the conventional MUSIC �	� and the noncircular
MUSIC (o) algorithms (with 1000 Monte Carlo runs) for three values of the
noncircularity phase separation �� as a function of the DOA separation ��,
for 
�� � 20 dB.

Fig. 8. Theoretical asymptotic variance of the difference between DOA esti-
mates given by the conventional MUSIC � � and the noncircular MUSIC
�� �� algorithms and empirical variance of the difference between DOA es-
timates given by the conventional MUSIC �	� and the noncircular MUSIC
(o) algorithms (with 1000 Monte Carlo runs) for three values of the noncir-
cularity phase separation �� as a function of the DOA separation ��, for

�� � 20 dB.

MUSIC algorithm comfortably outperforms the conventional
MUSIC algorithm.

APPENDIX A
PROOF OF LEMMAS 1 AND 2

We recall for the ease of the reader the following identities
that will be frequently used in all Appendices (see, e.g., [24,
Th. 7.7, 7.16, and 7.17]):

(A.1)

(A.2)

(A.3)
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Fig. 9. Comparison of the threshold ASNRs given by the Cox criterion as a
function of the number � of snapshots associated with the conventional MUSIC
� � and noncircular MUSIC algorithms ���� for �� � ��� �� and �� �
��	 ��.

Fig. 10. Probability of resolution given by the Cox criterion (Monte Carlo with
1000 runs) as function of the ASNR for �� � ��� �� for the noncircular
MUSIC algorithm with �� � ��	 ��, for six values of the number � of snap-
shots.

First, using the vectorization operator and (A.2), we have

(A.4)
with

where
. Using the following relation de-

duced from the derivation of [25] in the particular case of
independent sources:

we obtain

Incorporating this relation in (A.4) gives

and using (A.1), (A.2), and (A.3) and with
proves Lemma 1.

For independent rectilinear sources, ,

implies that and con-
sequently the proof of Lemma 1 extends by replacing ,

, and by , , and , respectively. Since

, Lemma 2 is proved.

APPENDIX B
PROOF OF RELATIONS (3.6) AND (4.1)

First, note that the first order term of (3.5) in vanishes
because . Then, using Lemma 1 with ,

and , the contributions of in van-
ishes except the following first two terms because
and :

Finally after a close examination, all the contributions of
and in vanishes because
and respectively, and consequently (3.6)

is proved.
Relation (4.1) is proved in the same way by replacing ,
and by , and , respectively, and using the relations
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, and because

and are structured as in the form .

APPENDIX C
PROOF OF RELATION (4.4)

To simplify the expression of , introduce

and for which we have

which gives

(C.1)

The first-order terms of (C.1) are deduced from (4.2) and (4.3)
which gives from where

for the sake of brevity.

Introducing these expressions, the first-order terms of (C.1) are
given by

(C.2)

(C.3)

The second-order terms of (C.1) are given by

(C.4)

(C.5)

where and denote the covariance matrices of the
asymptotic distribution of and , respectively, whose
following expressions are proved in [17]:

Introducing these expressions in (C.4) and (C.5) gives after
straightforward algebra manipulations

(C.6)

(C.7)

Incorporating expressions (C.2), (C.3), (C.6), and (C.7) in (C.1)
proves relation (4.4).

APPENDIX D
EXPRESSIONS OF , , , AND

To give the expressions of the blocks , and ,

from and respectively,

amounts to deriving the two eigenvectors and associated eigen-
values of the rank two matrices with

, 1, 2.

The nonzero eigenvalues of are derived from
their sum and product, and consequently given by the roots of
the quadratic equation

which gives using and

, where

is the spatial complex-valued cor-

relation coefficient between the two sources and

(D.1)

The associated eigenvectors span the two-dimen-
sional signal subspace generated by and therefore
they are linear combinations of and with ,

,2. Solving this linear system, we obtain

(D.2)
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With
and , we obtain

Developing w.r.t. physical parameters by using the expres-
sions of and given in (D.1) and (D.2), we
obtain after tedious but straightforward algebra manipulations

(D.3)

(D.4)

where and are the following ASNR (defined by
) dependent geometric terms

Finally, and are deduced from
and the expressions of and given in (D.2). After tedious
but straightforward algebra manipulations, we obtain

(D.5)

(D.6)

where and are the following purely geometric terms:

APPENDIX E
PROOF OF RESULT 2

For simplifying the notations to derive the two expressions of
the threshold ASNR and given by the Cox and the Sharman
and Durrani criteria respectively, we first consider centrosym-
metric arrays.6 This assumption7 that means that the steering
vectors satisfy , implies that the different

6We note that this structure is very used in practice because uniform linear,
uniform circular, and regular hexagonal shaped arrays [26] are centrosymmetric.

7We note that this assumption necessarily implies that the origin of the coor-
dinate system is at the array centroid.

spatial correlation coefficients: , ,

,2 with , , ,2 with

and , ,2

with that will be used in the proof
are real-valued.

Consider the Cox criterion. From (4.4)

Expressing and as function of the ASNR
using (D.3) and (D.4) respectively, and also and

as function of the spatial correlation coefficient ,
using (D.5) and (D.6), respectively, we obtain after tedious but
straightforward algebraic manipulations

(E.1)

with

To derive , and are ex-
pressed as function of the ASNR using (D.3) and (D.4)
respectively, and also and as function of

and using (D.5) and (D.6), respectively, we obtain
after tedious but straightforward algebraic manipulations

(E.2)

where , and depend on , ,
and , and are given by
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where

Finally, the threshold ASNR given by the Cox criterion is de-
duced from the value of for which expressions (E.1) and
(E.2) are equal

with and
which depend on , ,

and the specific array. Using expansions of the spatial correla-
tion coefficients , and w.r.t. for closely spaced
sources and a symbolic calculus akin to a high level language to
achieve the algebra manipulations, completes the proof of (4.5).
For example, for a ULA, using the parametrization recalled at
the end of Section III

and

with

To consider now the Sharman and Durrani criterion for which
the threshold ASNR is deduced from nulling the second
derivative of the mean null spectrum at the midpoint (see
(3.4)), we follow the same steps used for deriving the threshold
ASNR associated with the conventional MUSIC algorithm
detailed in [10]. The main steps are given in the following in
which the mean null spectrum given by (4.4) is written for

as

(E.3)

with

Differentiating (E.3) twice w.r.t. , leads to

(E.4)

with

where , ,

, ,

and . By
expressing , and , and

, and as a function of
the ASNR using (D.3) and (D.4), respectively, and expressing

, and , and ,
and as a function of and ,

using (D.5) and (D.6), respectively, we obtain after tedious but
straightforward algebraic manipulations

(E.5)

with
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where and
and where the spatial

correlation coefficients , , 1, 2 depend on ,
and the specific array. From the expression of given by

(D.3), where here is real-valued and consequently ,
we obtain

������ �
�

� �� ����� �	

�����

�

�

�
� � ����� �	


�����


 �� ����� �	

�����

�

�

��
� (E.6)

Inserting (E.6) and (E.5) into (E.4), we obtain after straightfor-
ward algebraic manipulations

(E.7)

where , , depend on ,
, and the specific array are given by the equation shown

at the bottom of the page. Finally, the threshold ASNR given by
the Sharman and Durrani criterion is deduced from the value
of for which expression (E.7) of the second derivative of the
mean null spectrum at the midpoint is null

with and which de-
pend on , , and the specific array. Using expansions
of the spatial correlation coefficients , , and of

, , w.r.t. for closely spaced sources and
a symbolic calculus akin to a high level language to achieve
the algebra manipulations, completes the proof of (4.6). For ex-
ample, for a ULA using the parametrization recalled at the end
of Section III

and

To extend the proof to an arbitrary array, it is conve-
nient to use the general parametrization proposed by Lee
et al. [6] that has been recalled at the end of Section IV
where is defined here by rather than

[6, rel. (8)].
In this case, all the steps of the previous proof extend, but now
the spatial correlation coefficients , and ,

1, 2 are generally complex-valued and consequently the
notation are much cumbersome and furthermore the expansions
of the spatial correlation coefficients are much more involved.
For example, in the derivation of and , we obtain

where is the unit vector parallel to and is the bisector
of and , which gives the expansions

with and .
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