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Closed-Form Expressions of the Exact Cramer–Rao
Bound for Parameter Estimation of BPSK,

MSK, or QPSK Waveforms
Jean-Pierre Delmas, Senior Member, IEEE

Abstract—This letter addresses the stochastic Cramer–Rao
bound (CRB) pertaining to the joint estimation of the carrier fre-
quency offset, the carrier phase and the noise and signal powers of
binary phase-shift keying (BPSK), minimum shift keying (MSK),
and quaternary phase-shift keying (QPSK) modulated signals
corrupted by additive white circular Gaussian noise. Because
the associated models are governed by simple Gaussian mixture
distributions, an explicit expression of the Fisher information
matrix is given and an explicit expression for the stochastic CRB
of these four parameters are deduced. Specialized expressions for
low and high SNR are presented as well. Finally, these expressions
are related to the modified CRB and our proposed analytical
expressions are numerically compared with the approximate
expressions previously given in the literature.

Index Terms—BPSK, modified Cramer–Rao bound, minimum
shift keying (MSK), quaternary phase-shift keying (QPSK), sto-
chastic Cramer–Rao bound.

I. INTRODUCTION

THE stochastic Cramer–Rao bound (CRB) is a well-known
lower bound on the variance of any unbiased estimate and,

as such, serves as a useful benchmark for practical estimators.
Unfortunately, the evaluation of this CRB is mathematically
quite difficult when the observed signal contains, in addition
to the parameters to be estimated, random discrete data and
random noise. A typical example of such a situation that has
been studied by many authors (see, e.g., [1] and the references
therein) is the observation of noisy linearly modulated wave-
forms that are a function of deterministic parameters such that
the time delay, the carrier frequency offset, the carrier phase,
noise and signal powers, as well as the data symbol sequence.
Because the analytical computation of this CRB has been con-
sidered to be unfeasible, a modified CRB (MCRB) which is
much simpler to evaluate than the exact CRB has been intro-
duced in [2]. However, this MCRB may not be as tight as the
exact CRB [3] for joint estimation of all parameters. To circum-
vent this difficulty, asymptotic expressions at low [4] or high
[5] signal-to-noise ratio (SNR) have been investigated. Unfor-
tunately, though, these asymptotic expressions do not apply at
moderate SNR, for which only combined analytical/numerical
(see, e.g., [1], [5], and [6]) approaches are available until now.

In this letter, we investigate an analytical expression of the
stochastic CRB (i.e., if the information symbols are viewed as
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nuisance parameters and thus applicable in non-data-aided es-
timation) associated with the joint estimation of the carrier fre-
quency offset, the carrier phase and the noise and signal powers
of BPSK, QPSK, or MSK modulated signals corrupted by ad-
ditive white circular Gaussian noise, which is valid for arbitrary
SNR. This letter is organized as follows. After formulating the
problem in Section II, an explicit expression of the Fisher infor-
mation matrix (FIM) associated with all the deterministic pa-
rameters is given in Section III. Because the carrier frequency
offset and the carrier phase parameters are decoupled from the
signal noise and signal powers parameters, simple explicit ex-
pressions for the stochastic CRB of these four parameters are
deduced. Specialized expressions for low and high SNR are pre-
sented as well. Finally, in Section IV, our proposed analytical
expressions are numerically compared with the previously given
approximate expressions.

II. PROBLEM FORMULATION

Consider BPSK, QPSK, or MSK modulated signals. The re-
ceived signals are bandpass filtered and after down conversion
the signal to baseband, the in-phase and quadrature components
are paired to obtain complex signals. We assume Nyquist
shaping and ideal sample timing so that the inter-symbol
interference at each symbol spaced sampling instance can
be ignored. In the presence of frequency offset and carrier
phase, the signals at the output of the matched filters yield the
observation vector , with

for . is a sequence of independent
identically distributed (IID) data symbols taking values and

with equal probabilities for BPSK and QPSK,
respectively, and for MSK are defined by , where

is a sequence of independent BPSK symbols with equal
probabilities, where the original value remains unspeci-
fied in the set . The deterministic unknown
parameters , , and represent the amplitude, the carrier
frequency offset normalized to the symbol rate, and the carrier
phase at . Finally, the sequence consists of IID
zero-mean complex circular Gaussian noise random variables1

of variance . The symbols are assumed to be
independent from . If no a priori information is available
concerning the transmitted symbols, the distribution of is

1Note that many papers consider the parameters � and � denoted usually as
the symbol energy � and the noise power spectral density � as known. They
usually suppose a unit variance for the noise and use the ratio � � �� �� �
as the modulation amplitude, but in practice, these two parameters are unknown
as well.
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parameterized by . We note that the MSK
is modeled equivalently (see, e.g., [7]) by ,
where is another sequence of independent BPSK symbols

with equal probabilities. Consequently, similar to
the BPSK and QPSK, are independently
non-identically distributed along the following: mixture of
circular Gaussian distribution2

(1)

with , , or
with associated with BPSK,

QPSK, or MSK, respectively.

III. STOCHASTIC CRB: ANALYTICAL RESULTS

A. General Closed-Form Expression

Using the independence of the random variables , the FIM
is given (elementwise) by

(2)
where the PDFs (1) take the following forms:

3where is respectively equal to ,
, and

for the BPSK, QPSK, and MSK,

respectively, with ,

, and .
Extending the approach used in [8] for the parameters and
only and in [9] for the direction of arrival (DOA) parameters,
the following lemma is proved in Appendix A.

Lemma 1: The parameter is partitioned in
two decoupled parameters and in the FIM associ-
ated with the BPSK, QPSK, and MSK, as follows:

with

2Usually for such a mixture, explicit closed-form expressions of the CRB are
not available.

3Note that this productform does not extend to arbitrary QAM (see, e.g., [6,
rel. (41)] for the 16QAM).

where is the SNR and and are the following de-
creasing functions of :

The determinants of and do not depend on the time
at which the first sample is taken, and consequently, the CRB

for the frequency does not depend on it either, but the CRB for
the phase does. The minimum value for this CRB is attained for

. This particular choice of renders and
diagonal, and we obtain in this case the following result,

where the MCRB are straightforwardly derived from [2]:

1) Result 1: The CRB for the joint estimation of the param-
eters associated with the BPSK and MSK are given
by

(3)

(4)

(5)

(6)

The CRBs associated with the QPSK are obtained by replacing
and by, respectively, and

in (3)–(6).
Note that the proof of the decoupling that is not trivial [see

(11) and (12)] has not appeared in the literature despite the
first expressions and coincide with the expressions
given in [10] for with known and
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with known, for the BPSK only. The first expressions
and do not appear in [10] for MSK and QPSK

including for or known. Using the definition
of and , these asymptotic CRBs coincide with the MCRB
for high SNR. This extends a property proved in [3] for a scalar
parameter only.

B. Low-SNR Expression

For low SNR, and approach 1. We resort to
a Taylor series expansion of these functions obtained by ex-
panding and around . Then, using the
values of the moments of order of zero-mean
unit variance Gaussian random variables, we obtain, after
tedious but straightforward algebraic manipulations

Inserting these expansions in Result 1 allows us to prove the
following result.4

1) Result 2: The CRB for the joint estimation of the parame-
ters associated with the BPSK, MSK, and QPSK are
given for low SNR by

(7)

(8)

(9)

(10)

with for BPSK and MSK and for QPSK, and
, , , , , and
.

We note that (7) and (8) for BPSK and QPSK are refinements
of the expressions of and given in [4].

C. High-SNR Expression

For high SNR, the MCRB approaches the CRB at the
same rate that and approach 0. Because we prove
in Appendix B that these functions are bounded above by

and more precisely that tends
to 1 when tends to , the CRB are practically equal to
the MCRB for moderate SNR. For example: (3 dB)
and (6 dB)] give, respectively, the upper bound 0.05

4Of course, these bounds are going to infinity as the SNR decreases to zero;
consequently, for the parameters � and � with finite support, these results are
useful for not too low SNR only (typically in the range [�� ��, 0 dB]).

Fig. 1. Ratio�������������� 	 �������������� at low SNR. (a)
Exact value given by (3) and (4). (b) Approximate value given by (7) and (8).
(c) Approximate value given in [4].

Fig. 2. Ratio CRB(a)/MCRB(a) at low SNR. (a) Exact value given by (5). (b)
Approximate value given by (9).

Fig. 3. Ratio �������������� at low SNR. (a) Exact value given by (6).
(b) Approximate value given by (10).

and 0.005 for and , and consequently, the ratios
CRB/MCRB is around one from these values of SNR.

IV. NUMERICAL RESULTS

The analytical result 1 is numerically compared with the ap-
proximations given in result 2 and to the approximations given
in [4] for and of BPSK and QPSK at low
SNR.

In these conditions, we see in Figs. 1–3 a good agreement
between the numerical values derived from results 1 and 2 in
a large range of low SNR. Furthermore, we note that the ratio
CRB/MCRB is unbounded except for the noise power of BPSK
and MSK for which it tends to 2 when the SNR tends to 0.
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APPENDIX A
PROOF OF LEMMA 1

To evaluate the FIM (2) for the BPSK, the partial derivatives
are straightforwardly derived, in particular

(11)

(12)

Using the regularity condition
which is fulfilled for finite mix-

tures of Gaussian distributions, the following property
holds: . With

, we obtain

This identity enables us to straightforwardly derive the
terms of using the definition of the function

, where the random vari-
able is equally weighted mixed Gaussian [
and .

To evaluate , we note that
and
Be-

cause and are independent and the two Gaussian
random variables
and are uncorre-
lated and therefore independent, the three random
variables , , and

are collectively independent and
thus and are independent. Using the definition
of the function , the terms
of are derived.

Because and are indepen-
dent and zero mean,

. This implies that the parameters
and are decoupled in the FIM.

For the MSK, the derivations follow the same lines, replacing
by .

Finally, for the QPSK, evaluating the partial derivatives
and taking their expectation are derived

in the same way, provided the log-likelihoods associated with

and are gathered, and the hypothesis of indepen-
dence of and is taken into account.

APPENDIX B
BOUNDS ON AND

For high SNR, using the inequality
, we obtain, after simple algebraic manipulations

and

where is the error function
classically bounded above by . Applying
this upper bounds in (6.13) gives: and

. To specify the upper bound of , we
use the following expansion:

Inserting this into , we obtain after simple algebraic ma-
nipulations the following alternating expansion:

Using the standard bounds
and

in (6.14) proves, after simple algebraic manipulations, that
tends to 1 when tends to .

REFERENCES

[1] N. Noels, H. Steendam, and M. Moeneclaey, “The true Cramer-Rao
bound for carrier frequency estimation from a PSK signal,” IEEE
Trans. Commun., vol. 52, no. 5, pp. 834–844, May 2004.

[2] A. N. D. Andrea, U. Mengali, and R. Reggiannini, “The modified
Cramer-Rao bound and its application to synchronization problems,”
IEEE Trans. Commun., vol. 42, no. 234, pt. 2, pp. 1391–1399,
Feb.-Apr. 1994.

[3] M. Moeneclaey, “On the true and modified Cramer-Rao bound for the
estimation of a scalar parameter in the presence of nuisance param-
eters,” IEEE Trans. Commun., vol. 46, no. 11, pp. 1536–1544, Nov.
1998.

[4] H. Steendam and M. Moeneclaey, “Low SNR limit of the Cramer-Rao
bound for estimating the carrier phase and frequency of a PAM, PSK
or QAM waveform,” IEEE Commun. letters, vol. 5, no. 5, pp. 218–220,
May 2001.

[5] G. N. Tavares, L. M. Tavares, and M. S. Piedade, “Improved
Cramer-Rao bounds for phase and frequency estimation with M-PSK
signals,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2083–2087, Dec.
2001.

[6] F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramer-Rao bounds for
the QAM phase and frequency estimation,” IEEE Trans. Commun., vol.
49, no. 9, pp. 1582–1591, Sep. 2001.

[7] J. Lebrun and P. Comon, “An algebraic approach to blind identification
of communication channel,” in Proc. Int. Symp. Signal Processing and
its Applications, Paris, France, Jul. 2003.

[8] N. S. Alagha, “Cramer-Rao bounds for SNR estimates for BPSK and
QPSK modulated signals,” IEEE Commun. Lett., vol. 5, no. 1, pp.
10–12, Jan. 2001.

[9] J. P. Delmas and H. Abeida, “Cramer-Rao bounds of DOA estimates
for BPSK and QPSK modulated signals,” IEEE Trans. Signal Process.,
vol. 54, no. 1, pp. 117–126, Jan. 2006.

[10] W. C. Cowley, “Phase and frequency estimation for PSK packets:
Bounds and algorithms,” IEEE Trans. Commun., vol. 44, no. 1, pp.
26–29, Jan. 1996.


