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Asymptotic Performance Analysis of
Subspace Adaptive Algorithms Introduced
In the Neural Network Literature

Jean-Pierre Delmas and Florence Alberge

Abstract—In the neural network literature, many algorithms is [4]. In a constant step-size situation, it has been shown [5]
have been proposed for estimating the eigenstructure of covari- that the sequence of estimates can be approximated by the
ance matrices. We first show that many of these algorithms, when associated ODE, in the sense of weak convergence of random

presented in a common framework, show great similitudes with the st ize tends t H th Vi
the gradient-like stochastic algorithms usually encountered in the PTOCESSES as ne step size tends 1o zero. However, the analysis

signal processing literature. We derive the asymptotic distribution Of their asymptotic performance has not yet been studied.
of these different recursive subspace estimators. A closed-form The purpose of this paper is to use the approach developed

expression of the covariances in distribution of eigenvectors and jn [6]-[8] to study the more common adaptive algorithms
associated projection matrix estimators are given and analyzed. introduced in the neural network literature.

In particular, closed-form expressions of the mean square error . . . . .
of these estimators are given. It is found that these covariance Th|§ paperis orgfinlzed as follows. _|” Secthn I, We give an
matrices have a structure very similar to those describing batch overview of the main subspace adaptive algorithms introduced

estimation techniques. The accuracy of our asymptotic analysis in the neural network literature. These algorithms are presented
is checked by numerical simulations, and it is found to be valid j, 5 common framework. and connections to some signal

not only for a “small” step size but in a very large domain. . . L .
Finally, convergence speed and deviation from orthonormality processing algorithms are highlighted. These algorithms are

of the different algorithms are compared, and several tradeoffs grouped into two families; in the first one, the estimates
are analyzed. converge to eigenvectors, and in the second one, a global

Index Terms—Adaptive estimation, array signal processing, _conver_gence toa seF of orthonormal bas_es of an_ eigen_space
covariance matrices, eigenvalues/eigenfunctions, neural networks, IS achieved. In Section Ill, after presenting a brief review
principal component analysis, subspace adaptive algorithm. of a general Gaussian approximation result, we shall focus
exclusively on the first family in this paper, whereas a study
of the second family will be the subject of a forthcoming paper.
Closed-form expressions of the covariance in the limiting
OVER the past decade, adaptive estimation of subspaggsiributions of the eigenvector estimators in a constant step-

of covariance matrices has been applied successfullydfe environment are given by solving Lyapunov equations.
signal processing to high-resolution spectral analysis and, m@igen, thanks to a continuity theorem, closed-form expressions
recently, to the so-called subspace approach that is usedy)fine covariance in the limiting distributions of the associated
blind identification of multichannel FIR filters [1]. At the sameyojection matrices are derived. These expressions are further
time, many neural network realizations have been proposgehiyzed and compared with those obtained in batch estima-
for the statistical technique of principal component analysis an, and some byproducts as mean square errors are further
data compression and feature extraction as well as for optingaliyed. Finally, we present in Section IV some simulation
fitting in the total least square sense. Among these realizatiopsy its with two purposes. First, we examine the accuracy
several stochastic approximation gradient-like algorithms WeEP the expressions of the mean square error of eigenvectors
proposed by authors in the neural network community. Theggy sypspace projection matrix estimators and investigate the
algorithms have been studied from two points of view onlyj,main of the step size for which the asymptotic approach is
on the one hand, their neural implementation and, on g4 second, we examine performance criteria for which no
other hand, their convergence analysis in a decreasing step-§iz6e | results are available, such as the speed of convergence

si_tuation_ using the stability study of the associated ordinafy o eyiation from orthonormality. We evaluate the speed
differential equation (ODE); see [2] and [3] and the referenc ¥ convergence of the algorithms under study and analyze

therein. A classic paper on the practical numerical algorithrggVeral tradeoffs between the mean square error, the speed

of convergence, and the deviation from orthonormality.
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covariance, the trace operator, and the Frobenius matrix nogipal component analysis, these authors focused their attention
respectively. Veg) is the “vectorization” operator that turnson the dominant invariant subspace algorithms.

a matrix into a vector consisting of the columns of the matrix 1) Algorithm Converging to a Rotated Basis of an Eigenvec-
stacked one below another. It is used in conjunction with ther Subspace:The matrixS;,; orthonormalizes the columns
Kronecker producA @ B as the block matrix, th¢i, j) block of W, , in (2.2) in a symmetrical way. Sinc&V, has
element of which isa; ;B. Diag(as, -+, an) is a diagonal orthonormal columns, for smat,, the columns ofW,_, in
matrix with diagonal elements;, and DiadA1, ---, A,) is  (2.1) will be linearly independent, although not orthonormal.
a block diagonal matrix with block-diagonal matricds. The  Then, W/{, W;_, is positive definite, andW,,, will have
symbol 1, denotes the indicator function of the conditigh  orthonormal columns ifS;,; = (WE Wi Y2 A sto-

which assumes the value 1 if this condition is satisfied a%astic a|gorithm denotedubspace network |earnin@NL)

O otherwise. is obtained when, assuming is small, S;;}; is expanded
and when the tern®(~?) is omitted from its expansion. The
Il. REVIEW OF THE ALGORITHMS UNDER STUDY algorithm reads
A. General Structure Wi = Wi +%[L, - W W x,xI' Wy, (2.3)

For a givenn x n covariance matri®, = E(xx?) of a
Gaussian distributed, zero-mean real random vectatenote Which can be written columnwise as
by A; > ... > ), the eigenvalues oR,, and byvy, ---, v,
the corresponding normalized eigenvectors. We tackle two
kinds of problems. On the one hand, we are interested in
adaptively estimating normalized eigenvectors corresponding
to ther largest [or smallest] distinct eigenvalues (---, A,.) fork =1, --., r. The convergence of this algorithm has been
[resp., A\n—r+t1, -+, An] Of R,. On the other hand, we only studied earlier in [10] and then in [11], where it is shown
consider the recursive updating of an (approximately) othat the solution of its associated ODE need not tend to the
thonormal basis of am-dimensional dominant [or minorant] eigenvectorsvy, -- -, v,. but only to a rotated basis of the
invariant subspace oR., where we only have to assumesubspace spanned by them.
Ar > Apgr [resp, A > An_yy1]. Most of the stochastic  Written in the formW ., = W, + v[xix] — W, Wix,
algorithms introduced in the neural network community fok;f]wt, the SNL algorithm is quite similar to the algorithm
estimating such eigenvectors or eigenspaces can be descrifiedented by Yang [12] and further analyzed in [13]. This
in a common framework. They can be derived as a stochagtier algorithm is a stochastic gradient algorithm based on the

approximation algorithm, which can be seen as a counterpgficonstrained minimization of [k, — WW7¥x,||2,., and it
of the “simultaneous iteration method” of numerical analysigads

[9]. This stochastic approximation algorithm reads

Wil k= We b+ "

I, - ZWMWZZ} X x; wy g, (2.4)

=1

Wt+1 = Wt + Yt [2thz1 - XtX?WtWtT

/ —
t1 —Wf + R_tlwtl“t (2.1) ~ W, W x,xI|W, (2.5)
Wit :Wt+1st+1 (2.2)
- . o ~in which the term between brackets is the symmetrization
in which W, = (w1, -+, we.r) € R is @ matrix, of the termx,x¥ — W, W¥x,x? of the SNL algorithm. In

the columnsw,, € 'R"™ of which are orthonormal and[12] it is shown that like the SNL algorithm, the globally
approximater dominant eigenvectors oR.. In (2.1), the agympiotically stable solution of the associated ODE to (2.5)
matrix I'; is the usual- x » diagonal gain matrix of stochastiCig the set of the orthonormal bases of thdominant invariant
appr(_)ximation. We assume thdy, = L., e>_<cept in qne subspace oR,.

algorithm, wherdl’, = 7,Diag(1, az, - -+, ar) with a; > 0 is 2) Algorithms Converging to an Eigenvector Basis:
u;ed in order to take into account a better tradeoff between ﬁﬁother starting point for deriving practical algorithms
misadjustment and the speed of convergence. We suppose

. r o o (2.1) and (2.2) is that the matri$, performs the
the gain sequence; satisfies the conditions .~ % = +00 G sehmidt orthogonalization on the columns Wf).
and lim;— .y = 0. The matrixR, in (2.1) is an estimate !

i . . An algorithm denoted thetochastic gradient ascefBGA)
of the covariance matriR.. In this paper, we shall use for . ; . . . .
: ; T algorithm is obtained if the successive columns of matrix
R, the instantaneous estimatex; .

In (2.2), S.41 is a matrix depending oW, ,, which W, are expanded, assuming thatis small enough. By

T 5 A ; :
orthonormalizes the columns &W;,,. Thus, W; has or- omitting theO(47') term in this expansion, we obtain
thonormal columns for all. Depending on the form of matrix

k—1
S:+1, variants of the basic stochastic algorithm are obtained. Wirtk =Wo gk +7 |In — Wt,kWtT,k _9 Z Wt,z‘WtT,i

=1
B. Dominant Invariant Subspace Algorithms - xexTwy g fork=1,--,r (2.6)

Since the main problem addressed by the adaptive subspace
algorithms introduced in the neural network literature is prirAn extension of this algorithm is obtainedI = -, Diag(«;,
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Qg, -, o) With @ = 1 anda; > 0 C. Minorant Invariant Subspace Algorithm

Minor component analysis was also considered in the neural
Witl, k= network to solve the problem of optimal fitting in the total
- k-1 @ least square sense. Xt al. [20] introduced theoptimal fitting
Wik + e | In — We Wiy, — Z <1 + f)wt iWt,i|  analyzer(OFA) algorithm by modifying the SGA algorithm.

=1 This algorithm reads

-xtxzwwtjk fork=1,---, 7 (2.7)
— T T T

The so-calledgeneralized Hebbian algorithn{GHA) is Werd b = Wek £ | T = XXy W oW XXy
derived from the SNL algorithm (2.3) by replacing the matrix
Wix,xI'W, of the SNL algorithm by its diagonal and
superdiagonal only

— Wtjszjk -3 Z Wtyiwzjixtxf Wi, k
i=k+1
(2.13)
Wt+1 =W, + Yt [XtX$Wt -W, UDDE(WTXtXt Wt)]
(2.8) fork =n—7r+1,---,n Oja [2] showed that under the

in which the operator “upper” sets all subdiagonal elemergonditions that the eigenvalues are distinct and that
of a matrix to zero. When written columnwise, this algorithm i1
is similar to the SGA algorithm (2.6), with the difference that An—ry1 < landg> B 1 (2.14)

there is no coefficient 2 in the sum . " .
the only asymptotically stable points of the associated ODE are

k the eigenvectors,,_,.+1, - -+, v,. Note that the magnitude of
L, - Z Wtjiwfi] xtxfwtjk (2.9) the eigenvalues must be controlled in practice by normalizing
i=1 X, SO that the expression between brackets in (2.13) becomes
homogeneous.

Wil k= Wik + 7t

fork =1,---,
Ojaet al. [16] proposed an algorithm denoted tiveighted m

subspace algorithmWSA), which is similar to the SNL

algorithm, except for the scalar parametgis-- -, 3,

. ASYMPTOTIC PERFORMANCE ANALYSIS

A. A Short Review of a General Gaussian Approximation Result

In this section, we evaluate the asymptotic distributions of
ﬁk T T . . . . . .
L. - E Wt W, | Xe Xy Wik eigenvector and subspace projection matrix estimators given
(2.10) by the previous algorithms. For this purpose, we shall use
. ) the following result [21, Th. 2, p. 108]. Consider a constant
for k=1, -, r, With0 < B, < --- < S If B; = 1 for all 9 [ p. 108]

7, this algorithm reduces to the SNL algorithm. step-size recursive stochastic algorithm

It was, respectively, established by Oja [14], Sanger [15], Or41 =0, +7f(Oy, x4) (3.15)
and Ojaet al. [17] that the only asymptotically stable points
of the ODE associated, respectively, with the SGA, GHAé
and WSA algorithms are the eigenvectors, .-, v,.. We

Witl, k = Wk + "

with x; = g(&;), where¢, is a Markov chain independent of
Suppose that the parameter vecty converges almost
surely to the unigue asymptotically stable poift in the

note that the first vectork( = 1), which is estlmated by corresponding decreasing step-size algorithm. Consider the
the SGA and GHA algorithms, and the vecter=£ k& = 1), P 9 9 P- 9 '
continuous Lyapunov equation

which is estimated by the SNL and WSA algorithms, gives thé
constrained Hebbian learning rulef the basic PCA neuron DCo +CoDT+G =0 (3.16)

introduced by Oja [18
y Ola 18] whereD and G are, respectively, the derivative of the mean

Witt1 = We 1 +7e[Ln — W, 1W;‘Cl]xtXth, L (11 field and the covariance of the field of the algorithm (3.15)
def [ Of
This algorithm also coincides with the algorithm denadéect D= {8@ ©, Xt)} o0, (317
adaptive subspace estimatarhich was proposed by Rioet
al. [19] for &£ = 1. This latter algorithm reads e Z CoV[f(O., x¢), f(O., x0)]. (3.18)
t=—o0
Witl k= If all the eigenvalues of the derivati@ of the mean field have
k-t - strictly negative real parts, then in a stationary situation, when
wek+ 7 I — | In— Zwt,iwt,i (We, kW7 1) ~ — 0 andt — o, we have the convergence in distribution
=1
Xy X} Wy g fork=1,---,r (2.12) % (6 — 6,) Lt N(0, Co) (3.19)
v

and converges, after normalization wf, ;, for all k, & > 1, whereCg is the unique symmetric solution of the Lyapunov
to the eigenvectorsy, - -, v,. equation (3.16).
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B. Asymptotic Distributions of Eigenvector Estimators whose values aW = W, = (vy, ---, v,,) are, respectively,
T T T i
To characterize the derivative of the mean field and tH&« Aivivi, Aiv;vi, and AL, + 2A\ivivy, it is easy to
covariance of the field of the SGA, GHA, WSA. and orzobtain the following results for the SGA, GHA, WSA, and
algorithms, we use the Vec operator, which turns the r OFA algorithms, respectively, as in (3.23)—_(3.26), shown _at
matrix W into thenr x 1 vector parameter Ve®. Thus, the the bottom of the page. From these expressions, the following

four algorithms (2.7), (2.9), (2.10), and (2.13), which read (€0réM is proved in the Appendix. o
Theorem 1: The eigenvalues of the derivativ® of the

(3.20) mean field of the SGA, GHA, and OFA algorithms are strictly
negative real, and those of the WSA algorithm have strictly

Wil x = Wi + (W, xix7)
fork=1,---,r[resp,k=n—r+1,---, n] for the SGA,

GHA, WSA [resp., OFA] algorithms, can be written in a fornfegative r?a' parts. . :
similar to that of the (3.15): Covariance of the Field:In case the observations are

independent, the covariance of the field (3.18) evaluated in
VeCW 41 = VeCW, + v f(VeCW,, x,x; ). (3.21) W = W, is annr x nr block matrix G, where the(i, )

1) Local Characterization of the Field: block element is

Derivative of the Field: Let us denote byD; ; the (¢, j) G . —E[f:(W Ty (T (W T 327
block E&f:(W, x.x!)/dw,lw_w. of the nr x nr block o = EAWe 3 ) J7 (Wo g )] (3.27)
matrix D for (i,j) € {1, ---,7}? [resp., (i, /) € {n = e note that the fieldf;(W.,, x,x%) reduces to a linear

r+1, -+, n}’] of the SGA, GHA, and WSA [resp., OFA] expression ik, x? : B;x,xTv; for the SGA, GHA, and WSA
algorithms. Since the field; of definition (3.20) is linear in algorithms and to an affine expressiondn? : a; +B;x,xI v,
its second argument, the mean field at any p®Wits simply ¢, the OFA algorithm, withB;, depending on the algorithm.

ELL(W, xix])] = HIW, E(xix?)] = fi(W, R,). (3:22) Thanks to the classic property

If we note that Vec(ABC) = (CT @ A)Vec(B) (3.28)
8Rij _
ow; B.xixiv, = (vl ® B;) Vec(x;x1'). Therefore,G; ; reads
and Gi,; = (vI ©@B;) CovVeo(x,xV)])(v; ® BT)  (3.29)
8wiWiTRij _ R for i o
ow; = WiWi Ra ori#j since, moreover A @ B)T = AT @ BY. Now, for a Gaussian
aw;wl R, w; B { (WIRawi)L, + wywlR,  for i #j vectorx, we have [25, p. 57]
dw, (Wi Rewi)L, +2w;w{ R, fori=j CovVeexx™)] =R, ® R, + (R, ®R,)K  (3.30)
( i—1 a n
—Q; [ <)\Z + a—k )\k>VkV£ + 2)\1‘VZ‘V? + Z ()\Z — Ak)VkV{] 1=7
k=1 ¢ k=i+1
SGA _
D" =40 i< (3.23)
@y T S
—Q; <1 + —>)\1‘Vjvi P>
\ 2]
r i—1 n
- [Z ANivivE + 2\ vivE + Z (N — )\k)VkVE] i=7
DA = ¢ k=l k=it (3.24)
J 0) 1< j
L —)\iVjViT 1>
- Bi T T - T L
- Z N—|1- /3— Ak | VeV + 20 vivi + Z (A — Ak) Vv, 1=
DWSA _ P k k=r+1 (3.25)
4 ki
iy vnT PR
L /3] )‘Zvjvi 4 7& J
( i—1 n
DOEA _ J k=1 k=i+1 (3.26)
Y — AT i<
L O i>j
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whereK is ann? x n? block matrix, acting as a permutationODE. Since the normalized eigenvectors are defined up to
operator, in the sense that for any vectoor matrix A and a sign, the global attractéW . is not unique. However, the
vector b, we have practical use of the Benveniste results in such a situation is
usually justified (for example, in [22]) by using formally a
Kaob)=boaandK(A@b)=bo A. (3.31) general approximation result [21, Th. 1, p. 107]. Furthermore,
the almost sure convergence of the associated decreasing step-
size algorithms are not strictly fulfilled for the SGA, GHA,
G;,; = (v ®Bi)[R: @R +(R.®R.)K](v;®B7]) (3.32) WSA, and OFA algorithms. This a.s. convergence would need
a boundedness condition, whose satisfaction is a challenging
problem. However, as it is discussed in [23], this condition

It follows that

thanks to (3.31) and to the classic property

(A ® B)(C @ D) = (AC @ BD). (3.33) Was proved for only the algorithm (2.11), where @jaal. [24]
showed that if this algorithm is used with uniformly bounded
Therefore,G; ; becomes inputs x;, thenw, ; remains inside some bounded subset. If

T ’ ‘ T 7 T ‘ ’ we allow ourselves the Benveniste results in our situation, the

Gi.j =Vi Rov; ©BiReB; +vi RoB; @ BiR,v; Lyapunov continuous equations can be solved exactly. The
=Xiliz;BiR.B} + A\ viB] @B;v,.  (3.34) following theorem is proved in the Appendix.

Theorem 2: The covariance matricdSyy of the asymptotic

Last, taking into account the different valuesB®f and thanks distribution that appears in (3.19) read

to the relationvy @ v; = v;v?, it is straightforward to obtain
the values of the blocké&s; ; for the SGA, GHA, WSA, and

OFA algorithms, respectively: Cw= D>  buileje] @)

1<i<r
GSGA _ 1<kZi<n
23 I o
i—1 n + Z ci,j(eje; @ v,;vi) (3.39)
Za%)\m‘f{ + Z AEANNVVE] i = 1<iAj<r
k=1 k=i+1
9 T " N GRS with, for the SGA, GHA, WSA, and OFA algorithms, respec-
—OAAV Y by tively:
—Oé?)\j)\iVjVZT 1> 7
, , A AR 0 A Ak
GEHA = SGA o _ARAAk g, g ATk g
23 . bk,z 2()\k — )\z) k<i + 2()\Z — )\k) k>t
AdvivE = saa ___ NN L aghidy 4
k;—I (336) 20— ) T a0y — Ay (340)
O 1# ] GHA _ A ) A )
GVSA = bt = 20w — ) T a0, — gy
r n 2 2
B:\? o cHA _ N M .
> Ak <1 o R DI R e B AT v o R Ao W v i (3.41)
k=1 k=r+1
; 4 4 Ak
; ] DVEA = A A i + MM Licpar + —2F 1pon
(1= (1= 5 Pt 2 A Y iy
] Z (3.37) P = NN Licy + AN d L (3.42)
; Ai Ak 4
OFA _ OFA _ __ M2k 4. 4 gk,
Gij N ki = 50ny = ap) e T L
— n OFA _ pijq. . jiq._
STAAvvE 482 Y AvivE = Ciy o =0 licy + 1 i (3.43)
k=1 k=i+1 P ..
(14 B)MdjvivT oy and wheré", ¢, d"7, g*/, andh* are defined in the proof. For
VAN A .

the OFA algorithm, the two summations are, respectively, over
n—r+1<i<n, 1<k#i<nandn—r+1<i#j<n.

2) Solution of the Lyapunov Equatiorfor  independent _ Reémark: Of course, ifk = r = 1, the covariance matrices
observations:, and for the investigated algorithms, which caf*w ©f the SGA, GHA, and WSA algorithms coincide with the
be written in a form similar to (3.15) witl§, = x; for which €XPression of the covariance matrix of the Oja rule as given
the derivative of the mean field have strictly negative reQy Yang [6, Eq. (26)]
parts (Theorem 1), the hypotheses of the model of Benveniste "
etal.[21, Th. 2, p. 108] are fulfilled. However, the underlying Cy = Z AL Ak VT (3.44)
assumption for the results by Benvenisieal. is that the = 2(A1 — M)
solution of the corresponding stochastic approximation type
algorithms with decreasing step size almost surely converdes the WSA algorithm, we note that wheh tends to 1 for
to the unique asymptotically stable solution of the associatatl i, b/, ¢/, andd” tend to 0 from (B.30). Therefore(y

(3.38)
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tends to the finite value from (3.40)—(3.43), the termg; ; read for the SGA, GHA,
A Ak T WSA, and OFA algorithms, respectively:
CVV = Z ﬁ (e; e; ® Vkvz) (345) )\ )\
L<igrtien 2= M) BGA = % 39 =0 (3.52)

whereas wherf; = 1, for ¢ = 1, .-, r, the WSA algorithm GHA Y GHA A
coincides with the SNL algorithm, which does not converge %.i = m di; ™= 5 (3.53)
to the eigenvectors. We will show in Section IV thatGfyy . Ao ) N N N
keeps a finite value, the speed of convergence worsens whei,";* = ﬁ dVEA = N\ (b + ¢+ 2d7)
all the parameters; tend to 1. Since in many applications we (i = A)
are interested in the associated projection matrix estimators (3.54)
P, = W, W/, we consider now its asymptotic distribution. pOTA = N dOTA = AN + 20H 4 g

3) Asymptotic Distributions of Projection Matrix Estimators: ” 2(A; — i) ! 2(Ai — A)
The tool we use is a continuity theorem that can be directly (3.55)

adapted from a classic theorem (see [26, Th. 6.2a, p. 387
Applying this theorem to the differentiable mappiny =
(wi, -, w,.) — P =37 _ wpwi gives the asymptotic
distribution of subspace projector matrix estimaRy for the
different algorithms

ere b, ¢4, di¥, g%, and ¥ are defined in the Proof of
Theorem 2. For the WSA algorithm, we note that wh&n
tends to 1 for alf, d;, ; tends to 0 because of (B.30). Therefore,
Cp, which is given by (3.51), tends to

L veqP,) - VeeP,)] & M(0. Cp) (3.46) Cr= > CPVEDW ;M& (Vi®ov;+v;©vi)
4l ' " T ' 1sidrdizn 2A—N)
def . (Vi QV;+v; ® VZ‘)T (356)
when~y — 0 andt — co. In (3.46),P, > hei V&V, and
Cp is equal to which is an expression that coincides with the covariance in
distribution of the projection matrix estimator of the Yang
Cp = dVec(P) Cw d” Vec(P) (3.47) algorithm [8]. This property will be explained in a forthcoming
dVecdW) ~ dVed W) w_w, paper.
with C. Analysis of the Results
dVec(P) =L, ow +w oL, First, (3.39), (3.51), and (3.56) can be compared with the
dVec(W) covariances in the asymptotic distributions obtained in batch
yLow.+w,.@L,).  (3.48) estimation We know from [25, Th. 13.5.1, p. 541] that
f W, = (w1, -+, w ) denotes the eigenvector matrix

Of course, the prewous results also apply to the OFA algor'th&mputed from the elgenvalue decomposmon of the sample
with W = (Wy 41, -+, Wp). Therefore covariance matriX1/t) >"r_, xx%, then

Cr= >, Levi+vioL)Cw,, VE[Ved(W,) — Ved(W,)]  A(O, Cy) (3.57)
1<, j<r
Tyev) +v; ol,) (3.49) whent — oo, provided\y, - -, A.41 are distinct. In (3.57),

Cyy is equal to
where Cyy, ; denotes the(i, j) block of thenr x nr block

: ' Ai g T T
matrix Cy . From Theorem 2 Cy = 1;) m (eje] ®@VEvy)
CVV{,{ = Z bk7inV£ and CVV{,j = CZ‘JV]'VZT. 1§E;e7én
1<k#i<n AiAj
(3.50) - Z S wE (eie] @v;vl) (3.58)
1<iz#j<r

Thanks to (3.33) and the relationv)” = v, @v{’ = vl ©vj, i glose similarity to (3.39). Similarly, if P, =
in case of the SGA, GHA, or WSA algorithms, (3. 49) readsz iy Wi :w?. denotes the batch estimated orthogonal

rojection matrix, we have, from [8
Cp= Y (bilicrej +dijlicj<r) pro) 18]

reisEn ViVee(P,) - Ved(P,)] % N(O, Cp) (3.59)
. (Vi RV +Vv; @ VZ‘)(VZ‘ QV;+V;® Vi)T (3.51)
with
with d; ; L= 5+ ¢+ b ; + b ;. Of course, (3.51) also Y
holds in case of the OFA algonthm where the two indicators Cpr = Z ﬁ (Viovi+v;@v;)
areoverj < n—r+1<tandn—-r+1<1¢ < 7 1<i<r<j<n J

respectively. From the expressions fgf; and ¢; ; derived (viovi+v;ov)t (3.60)
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Fig. 1. Learning curves of the mean square erfpWe, — W.. || averag-

ing 100 independent runs for, respectively, the SGA [resp., WSA] algorithm

for different values of parameter, = 10 (1), 0.5 (2), 2 (3), 1 (4), [resp.,

B2/81 = 0.96 (1), 0.9 (2), 0.1 (3), 0.2 (4), 0.4 (5), 0.6 (6)], compared with 10°
yTr(Cw) (0).

mse

which is also in close similarity to (3.56) and to the first term
of the summation (3.51). We note that unlike the expression 1w}
(3.39) for Cy,, (3.51) for Cp is, in fact, an eigenvalue
decomposition. This property will be used further in the paper.
Second, a simple global measure of performance of our
adaptive algorithms is the MSE betwedW, and W, and 10— e i S e I B0 300 75000
betweenP; and P,. These MSE can be obtained from térations
the asymptotic distribution of VE®,.) and of Ve¢P,) if Fig. 2. Learning curves of the mean square erfPE— P.||2,  averaging

; independent runs for, respectively, the SGA [resp., WSA and OFA]
we suppose that both the first and second moments of ti%@orithms for different values of parametan — 10 (1) 0.5 (2. 1 (3),

limiting distribution of (1/,/7)(W: — W) are equal to the 2 (4) [resp.,3,/51 = 0.1 (1), 0.2 (2), 0.6 (3), 0.9 (4)3 = 2.5 (1), 10 (2),
corresponding asymptotic moments. In batch estimation, batt2). 5 (4)] compared withyTr(Cy) (0).

the first and second moments are identical ([27, Th. 9.24,

p. 343]). Motivated by this observation, we postulate thaf W, and of P,

this property al250 holds in our adaptive estimation. Therefore, E|[W, — W*H%ro =~TH(Cw) + o)
[E(W ) =W, I, = o(7), and CoyVec W) = vCy +o(7),
and by expandin@ aroundP,, ||E(P;)—P.]|,, = o(7), and y
Cov(VecP,) = vCp +o(7). Thus, the MSE betweeW, and ElIP: = Pullro =7 Tr(Cp) + o(7). (3.61)

W. and betweerP; and P, is given, respectively, by the Since the trace is invariant under the orthonormal change of
trace of the covariance matrix in the asymptotic distributiobasis (B.1), T¢Cy ) = Tr(X'). From the expressions &%

and
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Fig. 3. Learning curves of the mean square erngWE — W, ||z, and deviation to orthonormality| BV W — 1,.||3,, averaging 100 independent runs
for, respectively, WSA algorithn®z /31 = 0.6 (1), GHA algorithm (2), and SGA algorithmr; = 1 (3), compared withy Tr(Cyy ) (0).

and 2’2“ given in the proof of Theorem 2, the trace @fyr the regular structure (3.51) of the covariance maftix by
is equal, respectively, for the SGA, GHA, WSA, and OFAlecomposing the errd?, — P, into three terms
algorithms to

o P,—P, =P, ,+Py,+Ps, (3.70)
Tr(Cw) = Z Z Cnin (4, ) ﬁ (3.62) with
_1 jﬂ? P, ¥P.(P, - P,)P., P,, ¥ P,P,PL+PlPP,
-3y A (59 ang
T P, , ¥PLP,PL. (3.71)

i
= — 4 A (07 4+ , . .
1<i<§7:<j<n 2(Xi—=A;) 1<ZZ<;<T il ) UsingI, = P, + P, this is easily seen to be an orthogonal
T - (3.64) decomposition
n i—1
)\Z)\J ©j ||Pt—P*||%‘ro = ||P17t||%ro+||P27t||%ro+||P37t||%r0' (372)
4 z_: Z Aj = A * Z g7

1
2 . ‘.
i=n—r+1 j=1 n—r4+1<i<j<n

Since the closed-form expression (3.51) represents an eigen-
(365) value decomposition with orthonormal eigenvectorsv; +

As for Tr(Cp), using (3.51) and the relation (v} © Vi ®Vi)/V2 1 <i<j<n we have

vivl) = 1,2 1x=;, we get, respectively, for the SGA, GHA, C

WSA, and OFA algorithms r > biilicrss +dislicisr)

1<i<yj<n
A (Vi QV;+Vv; ® VZ‘) (VZ‘ QVvi+v; ® Vi)T
T(Cpr)= > a2 +0 (3.66) :
1<igdien N TN V2 V2
“ . (3.73)
— i) i
B 1<‘<Z:,,< Ai — Ay + z_; A (3.67) and therefore, the three mean square error terms on the right-
srEreEn NV hand side of (3.72) read, respectively, for each of the four
= Z A algorithms
1<idrdien N TN , 5
N (B tJ L) ’ ro 3 J
+20 > AN+ ¢+ 2dY) (3.68) e
1<i<j<r )
A\ ElPsellfo =2y Y biitoly) (375
= Z N — A 1<i<r<j<n
EEEE L E[Ps, |[fro = o). (3.76)
S 14k 426, (3.69
+ Z Aj— A + 297 ( ) Note that (3.74) reduces tg~) in case of the SGA algorithm.

n—r+1<i<j<n ; ;
Note also that (3.74) [resp., (3.75)] is equal to the first [resp.,

Finally, a finer picture of the MSE of » can be derived from second] term of (3.66)—(3.69), depending on the considered
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Fig. 4. Learning curves of the mean square erfPE— P. ||, and deviation to orthonormality|PW{ W, — I..||Z . averaging 100 independent runs
for, respectively, OFA algorithn® = 5 (1), GHA algorithm (2), WSA algorithn, /31 = 0.9 (3), SGA algorithmo, = 2 (4) compared withy Tr(Cy) (0).

algorithm. As for the OFA algorithm, these two summationsrror~ Tr(Cp) as a function ofy for the different algorithms
are, respectively, ovet —r +1 < i< j<nandl < j < studied. Our present asymptotic analysis is seen to be valid
n—r+1<i<n. We note that our first-order performancever a large range ofy (v < 0.01), and the domain of
analysis cannot determine an equivalent expression for tlstability” is v < 0.035 for which this ratio stays close to
deviation of orthonormality FWI W, — L.||%,,. We show 1. This result supports our conjecture that the asymptotic
in Section IV that this MSE is (to the first order) proportionatovariance matrices of our recursive eigenvector estimators
to v for the GHA and OFA algorithms and tg* for the WSA are identical to the covariance matrices in the limiting distri-
and SGA algorithms. butions.

Finally, Fig. 6 shows that the deviation from orthonormality

2 def T _ 2 ;
V. SIMULATIONS d*(v) = E[|W; W, — L||§,. iS proportional toy [resp., to

~?] in the domain of validity of (3.61) for the GHA and OFA
We consider, throughout this section, the case 4, 7 =2 algorithms (resp., for the WSA, SGA, and Yang algorithms
associated withR, = Diag(1.75, 1.5, 0.5, 0.25). Clearly, [8]) becausdog,, d2(7) = log;q ¢ + a loge 7 With o = 1
the eigenvalues oR, are 1.75, 1.5, 0.5, and 0.25, and they o = 2.

associated eigenvectors a, ¢ = 1, ---, 4. The entries of

the initial valueW, are chosen randomly uniformly on [0, 1].

Then,wo, , k=1, ---, 4 are normalized, and all the learning V. CONCLUSION

curves are averaged over 100 independent runs. In this paper, we have derived closed-form expressions of

First of all, in order to compare the different algorithms studhe covariance in distribution of the estimators of eigenvec-
ied, we consider the parameterized algorithms only. Figstdrs and of the associated projection matrix used in some
and 2 show the learning curves of the mean square eregfaptive gradient-like algorithms introduced in the neural net-
of W, for the SGA and WSA algorithms and d?, for work literature after presenting these algorithms in a common
the SGA, WSA, and OFA algorithms, respectively. We not®amework. The asymptotic performances of these algorithms
that the choicen — r = r allows us to compare the meanhave been studied, and closed-form expressions for the MSE,
square errors aP; for minorant and majorant algorithms. Forsimulations for the convergence speed, and the deviation from
the different algorithms, the step sizeis chosen to provide orthonormality have been derived. These results should prove
the same value for, respectively,Tr(Cyy) and yTr(Cp). useful in selecting the best algorithm for a given application
We select the values, = 1 and 32/5; = 0.6 to estimate and may also serve to popularize such algorithms in the signal
the eigenvectors and, = 2, 52/61 = 0.9, and 3 = 5 t0 processing community.
estimate projection matrices associated with the faster speed
of convergence.

For these parameters, Fig. 3, [resp., Fig. 4] shows the learn- APPENDIX A
ing curves of the mean square error ¥, [resp., P;] PROOF OF THEOREM 1
and the learning curves of the associated deviation fromif U % Diag(V, ---, V) denotes thenr x nr block
orthonormality for these algorithms. We see that the SGdiagonal orthonormal matrix with x n block diagonalV =
algorithm is the fastest for estimating both eigenvectors agd,, - - -, v,,), thenr x nr matrix D of the SGA, GHA, and
projection matrices. OFA algorithms can be written as

Fig. 5 shows the ratio of the estimated mean square error
E||P; — P.||%, over the theoretical asymptotic mean square D =UAU"T (A1)
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Fig. 5. Ratio of the estimated mean square efjP; — P.||%,, by averaging 400 independent runs to the theoretical asymptotic mean square error
~Tr(Cp) as a function ofy for the SGA algorithmas = 2, the GHA algorithm, the WSA algorithmi> /31 = 0.9, and the OFA algorithng = 5.

where A is annr x nr triangular matrix. From (3.23), (3.24), are

and (3.26), the diagonal entries of thex n diagonal blocks 3
A, ; of A are, for the SGA, GHA, and OFA algorithms, (Az‘l7i)k,k :_{ |:)\i - <1 - ﬁ_z>:|1k<r, ki
respectively k
+ 20 1= + (N — )\k)lk>r}

Qg
(A i)k k =~ |:<)\z t Ak) Lr<i k=1, n (A.3)

+ 2Xilpmi 4+ (N — )\k)lk>i:| As for the block matrixA?2, its (i, j) block has all its entries
equal to zero, except for the entry at the positigns)
k:l,...,n '[::17...77’ /3
i T
= — [(Nilk<i + 22X 1= + (A = ) L] A= _)‘iﬁejei : (A.4)
J
1 o o I !
= (A = M) Lics 4+ 200 — Dlpes Consujer thenr x nr orthonormall matrixU’, the columns
N Lt Al 1 of which come from a permutation of the columns ®f
+‘[ e 0™ such thaty? % (U7, UY), where UY is the nr x (n —
t=n=r+l . n (A2) ;4 1)r block diagonal matrix Dia@Vi, ---, V,.), with
. . V., def (Viy, Vig1, =+, Vi), @and wherdlJy, is thenr x (r—1)r
Thanks to the decreasing order of the eigenvalueand t0 ook matrix made of ther(r — 1)/2 matrices nr x 2
(2.14), (As, ),k < 0, and thus, the eigenvalues & are (ef @v;, ef @v;) for all pairs(i, j) such thatl <i < j <.
strictly negative real. _ _ We note that the particular ordering of these pairs is irrelevant
As for the WSA algorithm,A is no longer a triangular ¢, e following. Therefore
matrix; rather A = Al4+ A2, whereA' is a diagonal matrix.
The diagonal entries of the x n diagonal blocksA} ; of A! D=UuAU"T (A.5)

k=1,--,n §=1, 7
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APPENDIX B
PROOF OF THEOREM 2

A closed-form expression ofy can be given thanks to
the previous change of basis. With the orthonormal bbKfs
defined in Theorem 1, we have

D :U/A/U/T G = U/F/U/T
and
Cyw =U'XU7T, (B.1)

deviation from orthonormality

On the basis ofU’, (3.16) reads

AY +3AT 4T =0 (B.2)

—— i . WwhereA’ andI” have the same structure as above [see (A.6),
ston size (A.7) and (A.9)]. More precisely, the matrices} and A5’
for the SGA, GHA, and OFA algorithms read, respectively

def

Fig. 6. Deviation from orthonormalityi?(y) = E||W{ W, — I.||Z,, at

“convergence” estimated by averaging 100 independent runs as a function of A” Dlag[ 200\ — 4()\4 Y *+1)
~ in log-log scales for the Yang (1), SGA (2), GHA (3), WSA (4), and OFA i ‘ e
(5) algorithms. sy —ap (A = )] =1, (B.3)
ai(Ai = Aj) 0
H A/i’j = — . .
with 2 o7 <1 + %) )\j ay <)\j + % )\Z>
J J
A’ = Diag(A7], A)). (A.6) 1<i<ji<r (B.4)
T =Diag[—2\;, —(Ai = Arg1), oo, —(Ni = An)]
In (A.6), Af is the(n—r+1)r x (n—r+ 1)r block diagonal i=1 e g (B.5)
matrix L= b '
A/z‘,j:_<)‘i;)‘j f) 1<i<j<r  (B.6)
| = Diag(Af, -+, AT) (A7) _ J J
= Dlag[()‘Z - )‘1)7 Tt ()‘Z - )‘n—r)v 2()‘1 - 1)]
with t=n—7r4+1,-,n (B.7)
i [ N—A+N =B\
. 1,9 __ J
= Diag[—2X;, —=(Ai = Apy1), oo, —(Ai = A)] (A8) Ay = { 0 Aj— N
n—r+1<i<j<n (B.8)

and A} is the (r — 1)r x (r — 1)r block diagonal matrix
and for the SGA, GHA, OFA, and WSA algorithms, the

= Diag(---, A7, ) (A.9) matricesI'¥ and Iy’ read, respectively
P B.
A/i7j _ )\Z _ (1 __%171))\1 )\iai ; 1 (Alo) N 1 17 17 7_1 ( 9)
2 )‘jai,j )‘j_(l_ ZJ))\ I‘QZJ :azz)‘i)‘j<_1 1)
1<i<j<r (B.10)

for1<L<J<7andwnhawf‘_efﬁ/ﬁ < 1 If 4 ; and

denote the eigenvalues &5/, it is stralghtforward to =Diag(0, Aidrg1, 5 Aidn)

sée that 1=1,.,7 (B.11)
9 =\ 1 0
a:;J”—()\—)\)[( J—l)Ai—(am—l))\j]>O 2 N0 0
1<i<j<r (B.12)
and T =Diag(\ids, «+ 5 Aidn_r, 0)
ol = (i A+ aijA) < t=n-rtl e, (B.13)

1
so thatz’, ; andz; ; are either strictly negative real or conju- LFor the OFA algorithm, U, < Diag(Vu_,i1, . V) with
gate complex W|th strictly negative real part. Last, observing d.r ( and U is the 1 block matrix
that the eigenvalues @ are those oA’ and A7, Theorem made of ther(r — 1) yn—r). 2 IS thenr x (v = 1)r ;
g , made of ther(r — 1)/2 matricesnr X 2 (e} @ v;, e ® v;) for all pairs

i J
1 is proved. (i, j) such that —r +1 < i < j < n.
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jj def (1 — aijj)Qa;}[)@@a;} 1) + )\]2»(2%7]' — 1) + )\i)\j(4 — Qi — a_l)]

Ji 4t L I CrIEw (B.31)
2(\jai,j + Na; DN (a5 = 1) + M ai = 1) + A2 = aiy — a; )]
[l — A/,<(1 +4)? (1 +/3)> the solution of which, thanks to (B.4)—(B.10), (B.6)—(B.12),
? N+ 1 and (A.10)—~(B.16), in case of the SGA, GHA, and OFA
n—r+1<i1<j<n (B.14) algorithms, is, respectively
/Z f— i N ... .
1 — Dlag(07 )‘z)\r-l-lv ) )‘z)\n) 2/1‘,]’ B aZ)\Z)\j 1 -1 B.26
i=1, -7 (I13.15) 2 T -1 1 (B.26)
w 1—a; ;)? (1—a; )1 =a;;)
F/Z,J — )\z)‘ |: ( )] B ) J B i, _ )‘J )\z A
2 1 =a )1 —a;}) (1—a;})? w1 VDY (B.27)
h . . . o =, Aidj (B.28)
us, the unique symmetric soluti@&f of (B.2) is in the same h* 50w — X
form as A’ andI”, and (B.2) reduces to uncoupled 1-D and (Ai = Aj)
2-D Lyapunov equations. Therefore with
3’ = Diag(X}, X3) (B.17) ij def _ A
T T =+ AN
whereX is the(n — r + 1)r x (n — r 4+ 1)r block diagonal 2\ B
matrix '{(1+ﬁ)2_ Aj {1+/3+M}}
%) = Diag(3, -+, ) (8.18) 2and | |
pis et N {1 Ty S - }
[resp., Diag="~"*, ... 37*) for the OFA algorithrh, and i) 200 = A5 ]

X, isthe(r — 1)r - — 1)r block diagonal matrix
2 4 Jrx 0 r g As for the WSA algorithm, since (B.25) is no longer triangular,

3, = Diag(- - -, 37, ..) (B.19) '’ reads, after some tedious calculus
with =/ and X/, solutions of uncoupled 1-D and 2-D Lya- LRy {bx dz;} (8.29)
punov equations, respectively. In particuldl; is the unique dv ¢
symmetric solution of the diagonal — » + 1-dimensional with
Lyapunov equation
R yi — 2N d7 — (1 —ai 5)
AT +3TAY +T7 =0. (B.20) (I —ai ) — A
=l gig (1 =12
Thus, making use of (B.3)~(B.9), (B.5)(B.11), (B.7)~(B.13), gi 2 — (A —ai ) (B.30)
and (A.8)—(B.15),%/ reads, respectively, for the the SGA, 200 (1 —a;}) — Aj

GHA, OFA, and WSA algorithms . .
and with (B.31), shown at the top of the page. Putting together

&i — Diag|0, o AiArt1 N Aidp the results (B.21)—(B.26), (B.22)—(B.27), (B.23).—(B.28), and
200 = Ary) T 200 = M) (B.24)—(B.29), and thanks to (B.1), Theorem 2 is proved.
i=1,0,7 (B.21)
= Diag| 0, Aidr 1 e Aidn REFERENCES
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