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Asymptotic Performance Analysis of
Subspace Adaptive Algorithms Introduced

in the Neural Network Literature
Jean-Pierre Delmas and Florence Alberge

Abstract—In the neural network literature, many algorithms
have been proposed for estimating the eigenstructure of covari-
ance matrices. We first show that many of these algorithms, when
presented in a common framework, show great similitudes with
the gradient-like stochastic algorithms usually encountered in the
signal processing literature. We derive the asymptotic distribution
of these different recursive subspace estimators. A closed-form
expression of the covariances in distribution of eigenvectors and
associated projection matrix estimators are given and analyzed.
In particular, closed-form expressions of the mean square error
of these estimators are given. It is found that these covariance
matrices have a structure very similar to those describing batch
estimation techniques. The accuracy of our asymptotic analysis
is checked by numerical simulations, and it is found to be valid
not only for a “small” step size but in a very large domain.
Finally, convergence speed and deviation from orthonormality
of the different algorithms are compared, and several tradeoffs
are analyzed.

Index Terms—Adaptive estimation, array signal processing,
covariance matrices, eigenvalues/eigenfunctions, neural networks,
principal component analysis, subspace adaptive algorithm.

I. INTRODUCTION

OVER the past decade, adaptive estimation of subspaces
of covariance matrices has been applied successfully in

signal processing to high-resolution spectral analysis and, more
recently, to the so-called subspace approach that is used in
blind identification of multichannel FIR filters [1]. At the same
time, many neural network realizations have been proposed
for the statistical technique of principal component analysis in
data compression and feature extraction as well as for optimal
fitting in the total least square sense. Among these realizations,
several stochastic approximation gradient-like algorithms were
proposed by authors in the neural network community. These
algorithms have been studied from two points of view only:
on the one hand, their neural implementation and, on the
other hand, their convergence analysis in a decreasing step-size
situation using the stability study of the associated ordinary
differential equation (ODE); see [2] and [3] and the references
therein. A classic paper on the practical numerical algorithms
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is [4]. In a constant step-size situation, it has been shown [5]
that the sequence of estimates can be approximated by the
associated ODE, in the sense of weak convergence of random
processes as the step size tends to zero. However, the analysis
of their asymptotic performance has not yet been studied.
The purpose of this paper is to use the approach developed
in [6]–[8] to study the more common adaptive algorithms
introduced in the neural network literature.

This paper is organized as follows. In Section II, we give an
overview of the main subspace adaptive algorithms introduced
in the neural network literature. These algorithms are presented
in a common framework, and connections to some signal
processing algorithms are highlighted. These algorithms are
grouped into two families; in the first one, the estimates
converge to eigenvectors, and in the second one, a global
convergence to a set of orthonormal bases of an eigenspace
is achieved. In Section III, after presenting a brief review
of a general Gaussian approximation result, we shall focus
exclusively on the first family in this paper, whereas a study
of the second family will be the subject of a forthcoming paper.
Closed-form expressions of the covariance in the limiting
distributions of the eigenvector estimators in a constant step-
size environment are given by solving Lyapunov equations.
Then, thanks to a continuity theorem, closed-form expressions
of the covariance in the limiting distributions of the associated
projection matrices are derived. These expressions are further
analyzed and compared with those obtained in batch estima-
tion, and some byproducts as mean square errors are further
derived. Finally, we present in Section IV some simulation
results with two purposes. First, we examine the accuracy
of the expressions of the mean square error of eigenvectors
and subspace projection matrix estimators and investigate the
domain of the step size for which the asymptotic approach is
valid. Second, we examine performance criteria for which no
general results are available, such as the speed of convergence
or the deviation from orthonormality. We evaluate the speed
of convergence of the algorithms under study and analyze
several tradeoffs between the mean square error, the speed
of convergence, and the deviation from orthonormality.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold uppercase and
bold lowercase characters, respectively. Vectors are, by de-
fault, in column orientation. is the th unit vector in

. stands for transpose, and is the identity matrix.
E Cov Tr , and denote the expectation, the
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covariance, the trace operator, and the Frobenius matrix norm,
respectively. Vec is the “vectorization” operator that turns
a matrix into a vector consisting of the columns of the matrix
stacked one below another. It is used in conjunction with the
Kronecker product as the block matrix, the block
element of which is . Diag is a diagonal
matrix with diagonal elements , and Diag is
a block diagonal matrix with block-diagonal matrices. The
symbol 1 denotes the indicator function of the condition,
which assumes the value 1 if this condition is satisfied and
0 otherwise.

II. REVIEW OF THE ALGORITHMS UNDER STUDY

A. General Structure

For a given covariance matrix of a
Gaussian distributed, zero-mean real random vector, denote
by the eigenvalues of and by
the corresponding normalized eigenvectors. We tackle two
kinds of problems. On the one hand, we are interested in
adaptively estimating normalized eigenvectors corresponding
to the largest [or smallest] distinct eigenvalues ( )
[resp., ] of . On the other hand, we only
consider the recursive updating of an (approximately) or-
thonormal basis of an-dimensional dominant [or minorant]
invariant subspace of , where we only have to assume

[resp., ]. Most of the stochastic
algorithms introduced in the neural network community for
estimating such eigenvectors or eigenspaces can be described
in a common framework. They can be derived as a stochastic
approximation algorithm, which can be seen as a counterpart
of the “simultaneous iteration method” of numerical analysis
[9]. This stochastic approximation algorithm reads

(2.1)

(2.2)

in which is a matrix,
the columns of which are orthonormal and
approximate dominant eigenvectors of . In (2.1), the
matrix is the usual diagonal gain matrix of stochastic
approximation. We assume that , except in one
algorithm, where Diag with is
used in order to take into account a better tradeoff between the
misadjustment and the speed of convergence. We suppose that
the gain sequence satisfies the conditions
and The matrix in (2.1) is an estimate
of the covariance matrix . In this paper, we shall use for

the instantaneous estimate
In (2.2), is a matrix depending on , which

orthonormalizes the columns of . Thus, has or-
thonormal columns for all. Depending on the form of matrix

, variants of the basic stochastic algorithm are obtained.

B. Dominant Invariant Subspace Algorithms

Since the main problem addressed by the adaptive subspace
algorithms introduced in the neural network literature is prin-

cipal component analysis, these authors focused their attention
on the dominant invariant subspace algorithms.

1) Algorithm Converging to a Rotated Basis of an Eigenvec-
tor Subspace:The matrix orthonormalizes the columns
of in (2.2) in a symmetrical way. Since has
orthonormal columns, for small , the columns of in
(2.1) will be linearly independent, although not orthonormal.
Then, is positive definite, and will have
orthonormal columns if . A sto-
chastic algorithm denotedsubspace network learning(SNL)
is obtained when, assuming is small, is expanded
and when the term is omitted from its expansion. The
algorithm reads

(2.3)

which can be written columnwise as

(2.4)

for . The convergence of this algorithm has been
studied earlier in [10] and then in [11], where it is shown
that the solution of its associated ODE need not tend to the
eigenvectors but only to a rotated basis of the
subspace spanned by them.

Written in the form
, the SNL algorithm is quite similar to the algorithm

presented by Yang [12] and further analyzed in [13]. This
latter algorithm is a stochastic gradient algorithm based on the
unconstrained minimization of E , and it
reads

(2.5)

in which the term between brackets is the symmetrization
of the term of the SNL algorithm. In
[12], it is shown that like the SNL algorithm, the globally
asymptotically stable solution of the associated ODE to (2.5)
is the set of the orthonormal bases of the-dominant invariant
subspace of .

2) Algorithms Converging to an Eigenvector Basis:
Another starting point for deriving practical algorithms
from (2.1) and (2.2) is that the matrix performs the
Gram–Schmidt orthogonalization on the columns of .
An algorithm denoted thestochastic gradient ascent(SGA)
algorithm is obtained if the successive columns of matrix

are expanded, assuming that is small enough. By
omitting the term in this expansion, we obtain

for (2.6)

An extension of this algorithm is obtained if Diag
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with and

for (2.7)

The so-calledgeneralized Hebbian algorithm(GHA) is
derived from the SNL algorithm (2.3) by replacing the matrix

of the SNL algorithm by its diagonal and
superdiagonal only

upper
(2.8)

in which the operator “upper” sets all subdiagonal elements
of a matrix to zero. When written columnwise, this algorithm
is similar to the SGA algorithm (2.6), with the difference that
there is no coefficient 2 in the sum

(2.9)

for
Oja et al. [16] proposed an algorithm denoted theweighted

subspace algorithm(WSA), which is similar to the SNL
algorithm, except for the scalar parameters

(2.10)
for , with . If for all
, this algorithm reduces to the SNL algorithm.

It was, respectively, established by Oja [14], Sanger [15],
and Ojaet al. [17] that the only asymptotically stable points
of the ODE associated, respectively, with the SGA, GHA,
and WSA algorithms are the eigenvectors . We
note that the first vector ( ), which is estimated by
the SGA and GHA algorithms, and the vector ( ),
which is estimated by the SNL and WSA algorithms, gives the
constrained Hebbian learning ruleof the basic PCA neuron
introduced by Oja [18]

(2.11)

This algorithm also coincides with the algorithm denoteddirect
adaptive subspace estimator, which was proposed by Riouet
al. [19] for . This latter algorithm reads

for (2.12)

and converges, after normalization of for all , ,
to the eigenvectors .

C. Minorant Invariant Subspace Algorithm

Minor component analysis was also considered in the neural
network to solve the problem of optimal fitting in the total
least square sense. Xuet al. [20] introduced theoptimal fitting
analyzer(OFA) algorithm by modifying the SGA algorithm.
This algorithm reads

(2.13)

for Oja [2] showed that under the
conditions that the eigenvalues are distinct and that

and (2.14)

the only asymptotically stable points of the associated ODE are
the eigenvectors . Note that the magnitude of
the eigenvalues must be controlled in practice by normalizing

so that the expression between brackets in (2.13) becomes
homogeneous.

III. A SYMPTOTIC PERFORMANCE ANALYSIS

A. A Short Review of a General Gaussian Approximation Result

In this section, we evaluate the asymptotic distributions of
eigenvector and subspace projection matrix estimators given
by the previous algorithms. For this purpose, we shall use
the following result [21, Th. 2, p. 108]. Consider a constant
step-size recursive stochastic algorithm

(3.15)

with , where is a Markov chain independent of
. Suppose that the parameter vector converges almost

surely to the unique asymptotically stable point in the
corresponding decreasing step-size algorithm. Consider the
continuous Lyapunov equation

(3.16)

where and are, respectively, the derivative of the mean
field and the covariance of the field of the algorithm (3.15)

E (3.17)

Cov (3.18)

If all the eigenvalues of the derivative of the mean field have
strictly negative real parts, then in a stationary situation, when

and , we have the convergence in distribution

(3.19)

where is the unique symmetric solution of the Lyapunov
equation (3.16).
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B. Asymptotic Distributions of Eigenvector Estimators

To characterize the derivative of the mean field and the
covariance of the field of the SGA, GHA, WSA, and OFA
algorithms, we use the Vec operator, which turns the
matrix into the vector parameter Vec . Thus, the
four algorithms (2.7), (2.9), (2.10), and (2.13), which read

(3.20)

for [resp., ] for the SGA,
GHA, WSA [resp., OFA] algorithms, can be written in a form
similar to that of the (3.15):

Vec Vec Vec (3.21)

1) Local Characterization of the Field:
Derivative of the Field: Let us denote by the

block E of the block
matrix for [resp.,

] of the SGA, GHA, and WSA [resp., OFA]
algorithms. Since the field of definition (3.20) is linear in
its second argument, the mean field at any pointis simply

E E (3.22)

If we note that

and

for

for
for

whose values at are, respectively,
, , , and , it is easy to

obtain the following results for the SGA, GHA, WSA, and
OFA algorithms, respectively, as in (3.23)–(3.26), shown at
the bottom of the page. From these expressions, the following
theorem is proved in the Appendix.

Theorem 1: The eigenvalues of the derivative of the
mean field of the SGA, GHA, and OFA algorithms are strictly
negative real, and those of the WSA algorithm have strictly
negative real parts.

Covariance of the Field:In case the observations are
independent, the covariance of the field (3.18) evaluated in

is an block matrix , where the
block element is

E (3.27)

We note that the field reduces to a linear
expression in : for the SGA, GHA, and WSA
algorithms and to an affine expression in :
for the OFA algorithm, with , depending on the algorithm.
Thanks to the classic property

Vec Vec (3.28)

Vec . Therefore, reads

Cov Vec (3.29)

since, moreover, . Now, for a Gaussian
vector , we have [25, p. 57]

Cov Vec (3.30)

(3.23)

(3.24)

(3.25)

(3.26)
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where is an block matrix, acting as a permutation
operator, in the sense that for any vectoror matrix and
vector , we have

and (3.31)

It follows that

(3.32)

thanks to (3.31) and to the classic property

(3.33)

Therefore, becomes

(3.34)

Last, taking into account the different values of and thanks
to the relation , it is straightforward to obtain
the values of the blocks for the SGA, GHA, WSA, and
OFA algorithms, respectively:

(3.35)

(3.36)

(3.37)

.
(3.38)

2) Solution of the Lyapunov Equation:For independent
observations and for the investigated algorithms, which can
be written in a form similar to (3.15) with for which
the derivative of the mean field have strictly negative real
parts (Theorem 1), the hypotheses of the model of Benveniste
et al. [21, Th. 2, p. 108] are fulfilled. However, the underlying
assumption for the results by Benvenisteet al. is that the
solution of the corresponding stochastic approximation type
algorithms with decreasing step size almost surely converges
to the unique asymptotically stable solution of the associated

ODE. Since the normalized eigenvectors are defined up to
a sign, the global attractor is not unique. However, the
practical use of the Benveniste results in such a situation is
usually justified (for example, in [22]) by using formally a
general approximation result [21, Th. 1, p. 107]. Furthermore,
the almost sure convergence of the associated decreasing step-
size algorithms are not strictly fulfilled for the SGA, GHA,
WSA, and OFA algorithms. This a.s. convergence would need
a boundedness condition, whose satisfaction is a challenging
problem. However, as it is discussed in [23], this condition
was proved for only the algorithm (2.11), where Ojaet al. [24]
showed that if this algorithm is used with uniformly bounded
inputs , then remains inside some bounded subset. If
we allow ourselves the Benveniste results in our situation, the
Lyapunov continuous equations can be solved exactly. The
following theorem is proved in the Appendix.

Theorem 2: The covariance matrices of the asymptotic
distribution that appears in (3.19) read

(3.39)

with, for the SGA, GHA, WSA, and OFA algorithms, respec-
tively:

(3.40)

(3.41)

(3.42)

(3.43)

and where , , , , and are defined in the proof. For
the OFA algorithm, the two summations are, respectively, over

and .
Remark: Of course, if , the covariance matrices

of the SGA, GHA, and WSA algorithms coincide with the
expression of the covariance matrix of the Oja rule as given
by Yang [6, Eq. (26)]

(3.44)

For the WSA algorithm, we note that when tends to 1 for
all , , , and tend to 0 from (B.30). Therefore,
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tends to the finite value

(3.45)

whereas when , for , the WSA algorithm
coincides with the SNL algorithm, which does not converge
to the eigenvectors. We will show in Section IV that if
keeps a finite value, the speed of convergence worsens when
all the parameters tend to 1. Since in many applications we
are interested in the associated projection matrix estimators

, we consider now its asymptotic distribution.
3) Asymptotic Distributions of Projection Matrix Estimators:

The tool we use is a continuity theorem that can be directly
adapted from a classic theorem (see [26, Th. 6.2a, p. 387]).
Applying this theorem to the differentiable mapping

gives the asymptotic
distribution of subspace projector matrix estimator for the
different algorithms

Vec Vec (3.46)

when and . In (3.46), , and
is equal to

Vec
Vec

Vec
Vec

(3.47)

with

Vec
Vec

(3.48)

Of course, the previous results also apply to the OFA algorithm
with . Therefore

(3.49)

where denotes the block of the block
matrix . From Theorem 2

and

(3.50)

Thanks to (3.33) and the relation ,
in case of the SGA, GHA, or WSA algorithms, (3.49) reads

(3.51)

with . Of course, (3.51) also
holds in case of the OFA algorithm, where the two indicators
are over and ,
respectively. From the expressions of and derived

from (3.40)–(3.43), the terms read for the SGA, GHA,
WSA, and OFA algorithms, respectively:

(3.52)

(3.53)

(3.54)

(3.55)

where , , , , and are defined in the Proof of
Theorem 2. For the WSA algorithm, we note that when
tends to 1 for all , tends to 0 because of (B.30). Therefore,

, which is given by (3.51), tends to

(3.56)

which is an expression that coincides with the covariance in
distribution of the projection matrix estimator of the Yang
algorithm [8]. This property will be explained in a forthcoming
paper.

C. Analysis of the Results

First, (3.39), (3.51), and (3.56) can be compared with the
covariances in the asymptotic distributions obtained in batch
estimation. We know from [25, Th. 13.5.1, p. 541] that
if denotes the eigenvector matrix
computed from the eigenvalue decomposition of the sample
covariance matrix , then

Vec Vec (3.57)

when , provided are distinct. In (3.57),
is equal to

(3.58)

in close similarity to (3.39). Similarly, if
denotes the batch estimated orthogonal

projection matrix, we have, from [8]

Vec Vec (3.59)

with

(3.60)
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Fig. 1. Learning curves of the mean square error EkWt�W�k2Fro averag-
ing 100 independent runs for, respectively, the SGA [resp., WSA] algorithm
for different values of parameter�2 = 10 (1), 0.5 (2), 2 (3), 1 (4), [resp.,
�2=�1 = 0:96 (1), 0.9 (2), 0.1 (3), 0.2 (4), 0.4 (5), 0.6 (6)], compared with

 Tr(CW ) (0).

which is also in close similarity to (3.56) and to the first term
of the summation (3.51). We note that unlike the expression
(3.39) for , (3.51) for is, in fact, an eigenvalue
decomposition. This property will be used further in the paper.

Second, a simple global measure of performance of our
adaptive algorithms is the MSE between and and
between and . These MSE can be obtained from
the asymptotic distribution of Vec and of Vec if
we suppose that both the first and second moments of the
limiting distribution of are equal to the
corresponding asymptotic moments. In batch estimation, both
the first and second moments are identical ([27, Th. 9.24,
p. 343]). Motivated by this observation, we postulate that
this property also holds in our adaptive estimation. Therefore,
E , and CovVec ,

and by expanding around , E , and
Cov Vec . Thus, the MSE between and

and between and is given, respectively, by the
trace of the covariance matrix in the asymptotic distribution

Fig. 2. Learning curves of the mean square error EkPt�P�k2Fro averaging
100 independent runs for, respectively, the SGA [resp., WSA and OFA]
algorithms for different values of parameter�2 = 10 (1), 0.5 (2), 1 (3),
2 (4) [resp.,�2=�1 = 0:1 (1), 0.2 (2), 0.6 (3), 0.9 (4),� = 2:5 (1), 10 (2),
3 (3), 5 (4)] compared with
Tr(CW ) (0).

of and of

E Tr

and

E Tr (3.61)

Since the trace is invariant under the orthonormal change of
basis (B.1), Tr Tr . From the expressions of
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Fig. 3. Learning curves of the mean square error EkWt �W�k2Fro and deviation to orthonormality EkWT
t
Wt � Irk2Fro averaging 100 independent runs

for, respectively, WSA algorithm�2=�1 = 0:6 (1), GHA algorithm (2), and SGA algorithm�2 = 1 (3), compared with
 Tr(CW ) (0).

and given in the proof of Theorem 2, the trace of
is equal, respectively, for the SGA, GHA, WSA, and OFA
algorithms to

Tr (3.62)

(3.63)

(3.64)

(3.65)

As for Tr , using (3.51) and the relation Tr
, we get, respectively, for the SGA, GHA,

WSA, and OFA algorithms

Tr (3.66)

(3.67)

(3.68)

(3.69)

Finally, a finer picture of the MSE of can be derived from

the regular structure (3.51) of the covariance matrix by
decomposing the error into three terms

(3.70)

with

and

(3.71)

Using , this is easily seen to be an orthogonal
decomposition

(3.72)

Since the closed-form expression (3.51) represents an eigen-
value decomposition with orthonormal eigenvectors

, , we have

(3.73)

and therefore, the three mean square error terms on the right-
hand side of (3.72) read, respectively, for each of the four
algorithms

E (3.74)

E (3.75)

E (3.76)

Note that (3.74) reduces to in case of the SGA algorithm.
Note also that (3.74) [resp., (3.75)] is equal to the first [resp.,
second] term of (3.66)–(3.69), depending on the considered
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Fig. 4. Learning curves of the mean square error EkPt �P�k2Fro and deviation to orthonormality EkWT
t
Wt � Irk2Fro averaging 100 independent runs

for, respectively, OFA algorithm� = 5 (1), GHA algorithm (2), WSA algorithm�2=�1 = 0:9 (3), SGA algorithm�2 = 2 (4) compared with
 Tr(CW ) (0).

algorithm. As for the OFA algorithm, these two summations
are, respectively, over and

. We note that our first-order performance
analysis cannot determine an equivalent expression for the
deviation of orthonormality E . We show
in Section IV that this MSE is (to the first order) proportional
to for the GHA and OFA algorithms and to for the WSA
and SGA algorithms.

IV. SIMULATIONS

We consider, throughout this section, the case ,
associated with Diag . Clearly,
the eigenvalues of are 1.75, 1.5, 0.5, and 0.25, and the
associated eigenvectors are . The entries of
the initial value are chosen randomly uniformly on [0, 1].
Then, are normalized, and all the learning
curves are averaged over 100 independent runs.

First of all, in order to compare the different algorithms stud-
ied, we consider the parameterized algorithms only. Figs. 1
and 2 show the learning curves of the mean square error
of for the SGA and WSA algorithms and of for
the SGA, WSA, and OFA algorithms, respectively. We note
that the choice allows us to compare the mean
square errors of for minorant and majorant algorithms. For
the different algorithms, the step sizeis chosen to provide
the same value for, respectively,Tr and Tr .
We select the values and to estimate
the eigenvectors and , , and to
estimate projection matrices associated with the faster speed
of convergence.

For these parameters, Fig. 3, [resp., Fig. 4] shows the learn-
ing curves of the mean square error of [resp., ]
and the learning curves of the associated deviation from
orthonormality for these algorithms. We see that the SGA
algorithm is the fastest for estimating both eigenvectors and
projection matrices.

Fig. 5 shows the ratio of the estimated mean square error
E over the theoretical asymptotic mean square

error Tr as a function of for the different algorithms
studied. Our present asymptotic analysis is seen to be valid
over a large range of ( ), and the domain of
“stability” is for which this ratio stays close to
1. This result supports our conjecture that the asymptotic
covariance matrices of our recursive eigenvector estimators
are identical to the covariance matrices in the limiting distri-
butions.

Finally, Fig. 6 shows that the deviation from orthonormality

E is proportional to [resp., to
] in the domain of validity of (3.61) for the GHA and OFA

algorithms (resp., for the WSA, SGA, and Yang algorithms
[8]) because with
or .

V. CONCLUSION

In this paper, we have derived closed-form expressions of
the covariance in distribution of the estimators of eigenvec-
tors and of the associated projection matrix used in some
adaptive gradient-like algorithms introduced in the neural net-
work literature after presenting these algorithms in a common
framework. The asymptotic performances of these algorithms
have been studied, and closed-form expressions for the MSE,
simulations for the convergence speed, and the deviation from
orthonormality have been derived. These results should prove
useful in selecting the best algorithm for a given application
and may also serve to popularize such algorithms in the signal
processing community.

APPENDIX A
PROOF OF THEOREM 1

If Diag denotes the block
diagonal orthonormal matrix with block diagonal

, the matrix of the SGA, GHA, and
OFA algorithms can be written as

(A.1)
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Fig. 5. Ratio of the estimated mean square errorEkPt � P�k2Fro by averaging 400 independent runs to the theoretical asymptotic mean square error

 Tr(CP ) as a function of
 for the SGA algorithm�2 = 2, the GHA algorithm, the WSA algorithm�2=�1 = 0:9, and the OFA algorithm� = 5.

where is an triangular matrix. From (3.23), (3.24),
and (3.26), the diagonal entries of the diagonal blocks

of are, for the SGA, GHA, and OFA algorithms,
respectively

(A.2)

Thanks to the decreasing order of the eigenvaluesand to
(2.14), , and thus, the eigenvalues of are
strictly negative real.

As for the WSA algorithm, is no longer a triangular
matrix; rather, , where is a diagonal matrix.
The diagonal entries of the diagonal blocks of

are

(A.3)

As for the block matrix , its block has all its entries
equal to zero, except for the entry at the position

(A.4)

Consider the orthonormal matrix , the columns
of which come from a permutation of the columns of

such that , where is the
block diagonal matrix Diag , with

, and where is the
block matrix made of the matrices

for all pairs such that .
We note that the particular ordering of these pairs is irrelevant
for the following. Therefore

(A.5)
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Fig. 6. Deviation from orthonormalityd2(
)
def
= EkWT

t Wt � Irk2Fro at
“convergence” estimated by averaging 100 independent runs as a function of

 in log–log scales for the Yang (1), SGA (2), GHA (3), WSA (4), and OFA
(5) algorithms.

with

Diag (A.6)

In (A.6), is the block diagonal
matrix

Diag (A.7)

with

Diag (A.8)

and is the block diagonal matrix

Diag (A.9)

with

(A.10)

for and with . If and
denote the eigenvalues of , it is straightforward to

see that

and

so that and are either strictly negative real or conju-
gate complex with strictly negative real part. Last, observing
that the eigenvalues of are those of and , Theorem
1 is proved.

APPENDIX B
PROOF OF THEOREM 2

A closed-form expression of can be given thanks to
the previous change of basis. With the orthonormal basis1

defined in Theorem 1, we have

and

(B.1)

On the basis of , (3.16) reads

(B.2)

where and have the same structure as above [see (A.6),
(A.7) and (A.9)]. More precisely, the matrices and
for the SGA, GHA, and OFA algorithms read, respectively

Diag

(B.3)

(B.4)

Diag

(B.5)

(B.6)

Diag

(B.7)

(B.8)

and for the SGA, GHA, OFA, and WSA algorithms, the
matrices and read, respectively

Diag

(B.9)

(B.10)

Diag

(B.11)

(B.12)

Diag

(B.13)

1For the OFA algorithm,U0

1

def
= Diag(Vn�r+1; � � � ; Vn) with

Vi
def
= (vi; v1; � � � ; vn�r), andU0

2
is the nr � (r � 1)r block matrix

made of ther(r � 1)=2 matricesnr � 2 (eri 
 vj ; e
r
j 
 vi) for all pairs

(i; j) such thatn� r + 1 � i < j � n.
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(B.31)

(B.14)

Diag

(B.15)

(B.16)

Thus, the unique symmetric solution of (B.2) is in the same
form as and , and (B.2) reduces to uncoupled 1-D and
2-D Lyapunov equations. Therefore

Diag (B.17)

where is the block diagonal
matrix

Diag (B.18)

resp., Diag for the OFA algorithm, and
is the block diagonal matrix

Diag (B.19)

with and solutions of uncoupled 1-D and 2-D Lya-
punov equations, respectively. In particular, is the unique
symmetric solution of the diagonal -dimensional
Lyapunov equation

(B.20)

Thus, making use of (B.3)–(B.9), (B.5)–(B.11), (B.7)–(B.13),
and (A.8)–(B.15), reads, respectively, for the the SGA,
GHA, OFA, and WSA algorithms

Diag

(B.21)

Diag

(B.22)

Diag

(B.23)

Diag

(B.24)

and is the unique symmetric solution of the triangular
2-D Lyapunov equation

(B.25)

the solution of which, thanks to (B.4)–(B.10), (B.6)–(B.12),
and (A.10)–(B.16), in case of the SGA, GHA, and OFA
algorithms, is, respectively

(B.26)

(B.27)

(B.28)

with

and

As for the WSA algorithm, since (B.25) is no longer triangular,
reads, after some tedious calculus

(B.29)

with

(B.30)

and with (B.31), shown at the top of the page. Putting together
the results (B.21)–(B.26), (B.22)–(B.27), (B.23)–(B.28), and
(B.24)–(B.29), and thanks to (B.1), Theorem 2 is proved.

REFERENCES

[1] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, “Subspace
methods for blind identification of multichannel FIR filters,”IEEE
Trans. Signal Processing,vol. 43, pp. 516–525, Feb. 1995.

[2] E. Oja, “Principal components, minor components and linear neural
networks,”Neural Networks,vol. 5, pp. 927–935, 1992.

[3] J. Dehaene, “Continuous-time matrix algorithms, systolic algorithms and
adaptive neural networks,” Ph.D. dissertation, Katholieke Univ. Leuven,
Leuven, Belgium, Oct. 1995.

[4] P. Comon and G. H. Golub, “Tracking a few extreme singular values
and vectors in signal processing,”Proc. IEEE,vol. 78, pp. 1327–1343,
Aug. 1990.

[5] C. M. Kuan and K. Hornik, “Convergence of learning algorithms with
constant learning rates,”IEEE Trans. Neural Networks,vol. 2, pp.
484–489, Sept. 1991.

[6] B. Yang and F. Gersemsky, “Asymptotic distribution of recursive
subspace estimators,” inProc. ICASSP,Atlanta, GA, May 1996, pp.
1764–1767.



182 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 1, JANUARY 1998

[7] J. P. Delmas, “Performance analysis of parametrized adaptive eigen-
subspace algorithms,” inProc. ICASSP,Detroit, MI, May 1995, pp.
2056–2059.

[8] J. P. Delmas and J. F. Cardoso, “Performance analysis of an adaptative
algorithm for tracking dominant subspaces,” submitted for publication.

[9] H. Rutishauser, “Computational aspects of F. L. Bauer’s simultaneous
iteration method,”Numer. Math.vol. 13 pp. 4–13, 1969.

[10] R. Williams, “Feature discovery through error-correcting learning,” Inst.
Cognitive Sci., Univ. California, San Diego, Tech. Rep. 8501, 1985.

[11] W.-Y. Yan, U. Helmke, and J. B. Moore, “Global analysis of Oja’s
flow for neural networks,”IEEE Trans. Neural Networks,vol. 5, pp.
674–683, Sept. 1994.

[12] B. Yang, “Projection approximation subspace tracking,”IEEE Trans.
Signal Processing,vol. 43, pp. 95–107, Jan. 1995.

[13] , “Convergence analysis of the subspace tracking algorithms
PAST and PASTd,” inProc. ICASSP,Atlanta, GA, May 1996, pp.
1760–1763.

[14] E. Oja, Subspace Methods of Pattern Recognition.Letchworth, U.K.:
Res. Studies/Wiley, 1983.

[15] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear
feedforward network,”Neural Networks,vol. 2, pp. 459–473, 1989.

[16] E. Oja, H. Ogawa, and J. Wangviwattana, “Principal component anal-
ysis by homogeneous neural networks, Part I: The weighted subspace
criterion,” IEICE Trans. Inform. Syst.,vol. E75-D, pp. 366–375, 1992.

[17] , “Principal component analysis by homogeneous neural net-
works, Part II: Analysis and extensions of the learning algorithms,”
IEICE Trans. Inform. Syst.,vol. E75-D, no. 3, pp. 376–382, 1992.

[18] E. Oja, “A simplified neuron model as a principal components analyzer,”
J. Math. Biol.,vol. 15, pp. 267–273, 1982.

[19] C. Riou, T. Chonavel, and P. Y. Cochet, “Adaptive subspace esti-
mation—Application to moving sources localization and blind chan-
nel identification,” in Proc. ICASSP,Atlanta, GA, May 1996, pp.
1649–1652.

[20] L. Xu, E. Oja, and C. Suen, “Modified Hebbian learning for curve and
surface fitting,”Neural Networks,vol. 5, no. 3, pp. 441–457, 1992.

[21] A. Benveniste, M. M´etivier, and P. Priouret,Adaptive Algorithms and
Stochastic Approximations.New York: Springer-Verlag, 1990.

[22] N. Delfosse and P. Loubaton, “Adaptive blind separation of independent
sources: A deflation approach,”Signal Process.,vol. 45, pp. 59–83,
1995.

[23] K. Hornik and C. M. Kuan, “Convergence analysis of local feature
extraction algorithms,”Neural Networks,vol. 5, pp. 229–240, 1992.

[24] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvec-
tors and eigenvalues of the expectation of a random matrix,”J. Math.
Anal. Appl.,vol. 106, pp. 69–84, 1985.

[25] T. W. Anderson,An Introduction to Multivariate Statistical Analysis,
2nd ed. New York: Wiley, 1984.

[26] C. R. Rao,Linear Statistical Inference and Its Applications.New York:
Wiley, 1973.

[27] D. R. Brillinger, Times Series, Data Analysis and Theory.San Fran-
cisco, CA: Holden-Day, 1980.

Jean-Pierre Delmaswas born in France in 1950.
He received the engineering degree from Ecole
Centrale de Lyon, Lyon, France, in 1973 and the
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