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MUSIC-Like Estimation of Direction of Arrival
for Noncircular Sources

Habti Abeida and Jean-Pierre Delmas, Senior Member, IEEE

Abstract—This paper examines the asymptotic performance of
MUSIC-like algorithms for estimating directions of arrival (DOA)
of narrowband complex noncircular sources. Using closed-form ex-
pressions of the covariance of the asymptotic distribution of dif-
ferent projection matrices, it provides a unifying framework for
investigating the asymptotic performance of arbitrary subspace-
based algorithms valid for Gaussian or non-Gaussian and complex
circular or noncircular sources. We also derive different robustness
properties from the asymptotic covariance of the estimated DOA
given by such algorithms. These results are successively applied
to four algorithms: to two attractive MUSIC-like algorithms pre-
viously introduced in the literature, to an extension of these algo-
rithms, and to an optimally weighted MUSIC algorithm proposed
in this paper. Numerical examples illustrate the performance of the
studied algorithms compared to the asymptotically minimum vari-
ance (AMV) algorithms introduced as benchmarks.

Index Terms—Asymptotically minimum variance (AMV), com-
plex noncircular sources, direction of arrival (DOA) estimation,
MUSIC algorithm, subspace-based algorithms.

I. INTRODUCTION

THERE is considerable literature about second-order statis-
tics-based algorithms for estimating the direction of arrival

(DOA) of narrowband sources impinging on an array of sen-
sors. Among these algorithms, subspace-based algorithms, i.e.,
algorithms obtained by exploiting the orthogonality between a
sample subspace and a DOA parameter-dependent subspace,
have been mainly proved very interesting. However, up to now,
these algorithms have been designed under the complex circular
Gaussian assumption only (see, e.g., [1] and [2]).

In mobile communications, after frequency downshifting
the sensor signals to the baseband, the paired in-phase and
quadrature components may be complex noncircular [for
example, binary-phase-shift-keying (BPSK) and offset-quadra-
ture-phase-shift-keying (OQPSK) modulated signals). Because
the second-order statistical characteristics are also contained in
the unconjugated spatial covariance matrix for noncircular sig-
nals, second-order asymptotically minimum variance (AMV)
algorithms [3] and Gaussian maximum-likelihood algorithms
[4] must be based on the two covariance matrices. In [3],
the potential benefits due to the noncircular property have
been evaluated using a closed-form expression of the lower
bound on the asymptotic covariance of estimators given by
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arbitrary second-order algorithms. However, the generalized
covariance-matching algorithm that attains this bound requires
a multidimensional nonlinear optimization, which is com-
putationally demanding. Consequently, we need suboptimal
monodimensional optimization algorithms that could benefit
from the noncircular property. Such algorithms have been
introduced in the context of uncorrelated sources of maximum
noncircularity rate impinging on a uniform linear array in
[5]–[8], where their performance was observed by simulation
only. The aim of this paper is to extend these algorithms, to
provide generic asymptotic results for subspace-based esti-
mates of the DOA for noncircular sources based on closed-form
expressions of the covariance of the asymptotic distribution
of extended projection matrices, and to apply these results to
specific MUSIC-like algorithms.

The paper is organized as follows. The array signal model and
the statement of the problem are given in Section II. The po-
tential benefit due to the noncircularity property is underscored
by the help of subspace-based algorithms built from the uncon-
jugated spatial covariance matrix only in Section III. The four
subspace-based algorithms that we shall study are described in
Section IV. Their performance is analyzed in Section V using
a general functional methodology. Finally, numerical illustra-
tions and Monte Carlo simulations of the performance of the
algorithms are given in Section VI.

The following notations are used throughout the paper. Ma-
trices and vectors are represented by bold upper case and bold
lower case characters, respectively. Vectors are, by default, in
column orientation, while , , , and stand for transpose,
conjugate transpose, conjugate, and Moore Penrose inverse, re-
spectively. , , , , and are the
expectation, trace, determinant, Frobenius norm, and real and
imaginary part operators, respectively. is the identity matrix.

is the “vectorization” operator that turns a matrix into a
vector by stacking the columns of the matrix one below another,
which is used in conjunction with the Kronecker product
as the block matrix whose block element is and with
the vec-permutation matrix , which transforms to

for any matrix .

II. STATEMENT OF THE PROBLEM

Let an array of sensors receive the signals emitted by
narrowband sources. The observation vectors are modeled as

where are independent and identically distributed
(i.i.d.). is the steering matrix, where each
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vector is parameterized by the real scalar param-
eter . and model signals trans-
mitted by sources and additive measurement noise, respectively.

and are multivariate independent, zero-mean; is as-
sumed to be Gaussian complex circular, spatially uncorrelated
with ; while is complex noncircular, not
necessarily Gaussian and possibly spatially correlated with non-
singular covariance matrices and

. Consequently, this leads to two covariance matrices

of that contain information about

and (2.1)

These covariance matrices are traditionally estimated by
and ,

respectively. The parameter vector is assumed identifiable
from .

For a performance analysis, we suppose that the signal
waveforms have finite fourth-order moments. The fourth-order
cumulants of the sources are
gathered into the quadrivariance matrix defined by

.
The noncircularity rate of the th source is defined by

, where is its
noncircularity phase and satisfies (from the
Cauchy–Schwartz inequality).

The problem addressed in this paper is to estimate the DOA
from the two sample covariance matrices and by

using subspace-based algorithms. The number of sources is
assumed to be known.

III. SUBSPACE-BASED ALGORITHMS BASED ON ONLY

We prove in this section the potential benefit due to the
noncircularity property by proposing a MUSIC-like algorithm
based on the unconjugated spatial covariance matrix only.
Because and have a common noise subspace (see (2.1))
with associated orthogonal projection matrices , the
first idea for estimating from alone, is to apply the
following steps: Estimate the projection matrix associated
with the noise subspace of using the singular value
decomposition (SVD) of the symmetric complex-valued matrix

and, then, use the standard MUSIC algorithm based
on , where the DOA are estimated as the
locations of the smallest minima of the function

with

(3.1)
Compared to the standard MUSIC algorithm based on as-
sociated with the noise subspace of , whose performance
is given e.g., in [1, rel. (3.11a)], we prove in Appendix A the
following

Theorem 1: The sequences , where is the
DOA estimate given by these two MUSIC algorithms, converge
in distribution to the zero-mean Gaussian distribution of covari-
ance matrix given by

(3.2)

with and , where

with and

with for the MUSIC algorithms built on
and , respectively.

As a result of the similar structure of , given by these
two MUSIC algorithms, the asymptotic performance of their
estimates can be very similar. In particular, for only one source,
it is proved in Appendix A that these asymptotic variances are
respectively given by

and

We note that for (e.g., for an unfiltered BPSK modu-
lated source), these two variances are equal. Naturally, when
approaches zero, is unbounded and the unconjugated spa-
tial covariance matrix conveys no information about . In
consequence of Theorem 1, the following query is raised: How
does one combine the statistics and to improve the esti-
mate of ? A possible solution is proposed in Section IV.

IV. SUBSPACE-BASED ALGORITHMS UNDER STUDY

To devise subspace-based algorithms built from both

and , we consider the extended covariance matrix
where

for which

(4.1)

with

and (4.2)

From the assumptions of Section II,
and depending on this rank, many situations may be considered.
We concentrate first on a particular case (case 1) for which the
sources are uncorrelated and with noncircularity rate equal to
1 because very attractive algorithms have been devised for this
case [5], [6]. This case corresponds, for example, to unfiltered
BPSK or OQPSK uncorrelated modulated signals. In this case,

and with

and . Consequently

and . Then subsequently, we consider the gen-
eral case for which (case 2). This case cor-
responds, for example, to filtered BPSK or OQPSK modulated
signals. In these two cases, using the structured matrices and

(4.2), we prove the following lemma.
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Lemma 1: In cases 1) and 2), the orthogonal projector matrix
onto the noise subspace is structured as

where and are Hermitian and complex symmetric, re-
spectively, and where and are not projection matrices in
case 1 and is the orthogonal projector onto the column space
of and in case 2. Furthermore, the orthogonal pro-
jector onto the noise subspace associated with the sample
estimate of has the same structure

(4.3)

where and are Hermitian and complex symmetric
respectively.

Proof: Noting that or satisfy the relation
with

if denotes the partitioned eigenvectors matrix associ-

ated with the signal subspace of or , the corresponding
signal part of the eigenvalue decomposition of or is

Due to the uniqueness of these normalized eigenvectors up to a
unit modulus complex constant, we have , where
is a diagonal matrix whose diagonal is composed of unit mod-
ulus complex terms. Consequently, these orthogonal projector
matrices onto the noise subspace are structured as

In case 2 specifically,

with .

A. Case 1: Uncorrelated Sources With

Consider now three subspace-based algorithms for case 1.
An algorithm (denoted ), devised in [5], has been derived
from the standard MUSIC algorithm because in this case (4.1)
becomes

(4.4)

Specifically, the estimated DOA are obtained
as the locations of the smallest minima of the following
function:

with

(4.5)

with the extended steering vector

Noting that

with

the matrix

is positive definite and a consistent estimate of the rank deficient
2 2 matrix . Consequently, we can propose a new subspace-
based algorithms (denoted ) defined by

with

(4.6)

In the particular case of a uniform linear array, replacing
the generic steering vector

by in (4.6), [6] proposed a
root-MUSIC-like algorithm (denoted ) defined by

with roots of

closest to the unit circle (4.7)

where is the following polynomial1 of degree
whose roots appear in reciprocal conjugate pairs and ,
as follows:

1We note that this procedure allows one to estimate up to 2(M � 1) possible
DOA, whereas the upper bound is 2M � 1[9].
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B. Case 2: Arbitrary Full-Rank Spatial Extended Covariance
Matrix

Based on

different MUSIC-like algorithms can be proposed. Since
, a natural idea consists in proposing the following algorithm

(denoted )2:

(4.8)

It is shown in Section V, however, that this algorithm is always
outperformed by the standard MUSIC algorithm based on
only. Using the ideas of the weighted MUSIC algorithm intro-
duced for DOA estimation [2], then applied for frequency esti-
mation [10], [11], we propose the following column weighting3

MUSIC (denoted ):

with where is a 2 2
nonnegative definite weighting matrix whose optimal value will
be specified in Theorem 7, and is the steering matrix

To derive the optimal weighting matrix

in Section V, the weighted MUSIC cost function can be written
as

(4.9)

with . Consequently, the perfor-
mance of this algorithm depends only on . By choosing
diagonal, we have , and this algorithm reduces to .

V. PERFORMANCE ANALYSIS

A. Second-Order Algorithms Based on Only

Considering first the influence of the noncircularity on the
performance of an arbitrary second-order algorithm based on

only, we prove the following theorem.
Theorem 2: All DOA consistent estimates given by an arbi-

trary second-order algorithms based on only, that do not
explicitly suppose the sources to be spatially uncorrelated, are
robust to the distribution and to the noncircularity of the sources;
i.e., the asymptotic performances are those of the standard com-
plex circular Gaussian case.

2We note that unlike ��� , the positive semidefinite matrix ��� is not a pro-
jection matrix.

3Because ~��� is an orthogonal projector, the cost function
k~��� �A(�)W k reduces to g (�).

Proof: Based on these assumptions, the Jacobian matrix
of the mapping ( ) that asso-

ciates the estimate to satisfies the constraint (see [12])

and because the covariance matrix of the asymptotic distri-
bution of is given by [3]

with , where is
the quadrivariance matrix defined in Section II, the first term of

(which contains and ) disappears in the expression
of the covariance

of the asymptotic distribution of the estimated DOA given
by the algorithm .

B. Subspace-Based Algorithms Built From

To consider the asymptotic performance of an arbitrary sub-
space-based algorithms built from , we adopt a functional
analysis which consists of recognizing that the whole process
of constructing an estimate of is equivalent to defining a
functional relation linking this estimate to the statistics
from which it is inferred. This functional dependence is denoted

. By assumption, , so arbitrary suf-
ficiently “regular” subspace-based algorithms built from
constitute distinct extensions of the mapping . For
the different algorithms defined in Section IV, we note
that this mapping is differentiable with respect to .
With this approach, the asymptotic distributions of the estimates
given by these algorithms are directly related to the asymptotic
distributions of or for which we prove
the following theorem in Appendix B.

Theorem 3: The sequence of statistics

and

converge in distribution to the zero-mean Gaussian distributions
of first covariance matrices

(5.1)
and

(5.2)

with

(5.3)
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where with

.
We note that Theorem 2 does not extend to arbitrary

second-order algorithms based on because here

due to the constraints on (see
the proof in [12]). However, since expression (5.1) of does
not depend on the fourth-order moments of the sources, we
have proved the following

Theorem 4: The asymptotic performance given by an arbi-
trary subspace-based algorithm built from depends on the
distribution of the sources through their second-order moments
only.

More specifically, regarding the algorithms described in
Section IV, we prove the following.

Theorem 5: The sequences , where are
the DOA estimates given by the first three subspace-based algo-
rithms (respectively, algorithms 1 and 2) described in Section IV
for a uniform linear array (respectively, arbitrary array), con-
verge in distribution to the same zero-mean Gaussian distribu-
tion4 with covariance matrix

(5.4)

with ,
, where

, and with

and being the purely geometric factors

and . In particular

(5.5)

which gives in the case of a single source

(5.6)

where is the purely geometric factor with
.

Remark: If the case of a single noncircular complex
Gaussian distributed source of maximum noncircularity rate

, asymptotic variance (5.6) attains the noncircular
Gaussian Cramer–Rao bound given in [4]. Consequently, the
first three subspace-based algorithms described in Section IV
are efficient for a single source.

Proof: First, we note that the cost functions and
given in (4.5) and (4.6), respectively, satisfy the relation

with

, where in exact statistics (because

4These three algorithms have different behavior outside the asymptotic
regime, as will be stressed in Section VI.

if were to vanish, we would have
and , and consequently

would belong to the signal space of for all values of , which
leads to a contradiction with (4.4). Then, applying the proof [1,
Theorem 3.2], the estimates minimizing and have the
same asymptotic distribution and consequently algorithms 1 and
2 have the same asymptotic performances.

Then, to prove that algorithms 2 and 3 have the same asymp-
totic performances, we consider the first-order perturbation ex-
pansions of as a function of

and given by these two algo-
rithms. Following the lines of the derivation given in [13] where
the standard MUSIC and root-MUSIC algorithms are replaced
by algorithms 1 and 3, respectively, we prove in Appendix C
that these algorithms satisfy the same perturbation expansion

(5.7)

The proof is completed in Appendix C, where the DOA estimate
given by algorithm 1 is proved to converge in distribution to a
Gaussian distribution whose covariance matrice is given with
(5.4), (5.5), and (5.6).

In case 2, it is straightforward to prove the following theorem.
Theorem 6: The sequence , where is the

DOA estimate given by the MUSIC-like algorithm (4.8) de-
scribed in Section IV, converges in distribution to the zero-mean
Gaussian distribution with covariance matrix

(5.8)

where is given in (A.3). Because

with , we note that the performance of this al-
gorithm is critical when which interacts in approaches
singularity. This is particularly the case when the sources are
uncorrelated with at least a noncircularity rate that tends to one
(because in this case, ).

For a single source (5.8) gives

and, consequently

and

(5.9)

Thus, this algorithm is always outperformed by the standard
MUSIC algorithm. This critical property will be studied for two
sources, through numerical examples in Section VI.

Then considering the second algorithm proposed in case 2,
we prove in Appendix D the following.
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Theorem 7: The sequence , where is the
DOA estimate given by the weighted MUSIC algorithm intro-
duced in Section IV converges in distribution to the zero-mean
Gaussian distribution with covariance matrix

(5.10)

with , and

. Furthermore, the value that min-
imizes is given by

(5.11)

for which the minimum value of is

(5.12)

For a single source, we prove in Appendix E.
Corollary 1: The asymptotic variance of the DOA estimate

given by the optimal weighting MUSIC algorithm attains the
noncircular Gaussian Cramer–Rao bound for all values of the
noncircularity rate in the single source case.

Remark 1: The optimal value of the weight previously de-
rived depends on the specific DOA whose variance is to be min-
imized, which means that the optimal weight is not the same for
all DOAs. This, however, might have been expected as MUSIC
estimates the DOAs one by one. In addition, it should be noted
that is sample dependent. Consequently, this value ought
to be replaced by a consistent estimate in the implementation of
the optimal weighting MUSIC algorithm. This point will be de-
scribed in Section VI). We note that this replacement of by
a consistent estimate has no effect on the asymptotic variance of
the weighting MUSIC algorithm as it is proved in Appendix E.

Remark 2: For circular sources, is block diagonal. This
successively implies that , , and are block diagonal.
Consequently, , , is diagonal, and
the optimal weighting MUSIC algorithm reduces to the stan-
dard MUSIC algorithm. Then, (5.12) becomes

, which is the asymptotic variance given
by (3.2).

To implement this optimal weighted MUSIC algorithm, we
propose to use the following multistep procedure described in
[11, sec. 7].

1. Determine standard MUSIC estimates of
from .

2. For , perform the following: Let de-
note the estimates obtained in step 1. Use

and the estimate and of and derived
from to obtain consistent estimates of .
Then, determine improved estimates by locally min-
imizing the weighted MUSIC cost function (4.9) associ-
ated with around .

Fig. 1. Theoretical and empirical asymptotic variances given by algorithms 1,
2, and 3 and AMV algorithm based on (R ;R ) as a function of the SNR
for �� = 0.05 rad, �� = � 6 rad.

VI. ILLUSTRATIVE EXAMPLES

In this section, we provide numerical illustrations and Monte
Carlo simulations of the performance of the different algorithms
presented in Section IV and numerical comparisons of the vari-
ances of these DOA estimates to the asymptotic variance of
AMV estimators based on (i.e., and ) and on

alone [3].
We consider throughout this section two uncorrelated5

equipowered (SNR ) filtered or unfiltered
BPSK modulated signals with identical noncircularity rate
( ) with phases of noncircularity and

. These signals impinge on a uniform linear array with
sensors separated by a half-wavelength for which

where , with
the DOAs relative to the normal of array broadside. 1000

independent simulation runs have been performed to obtain the
estimated variances and the number of snapshots is
[respectively, ] in case 1 [respectively, in case 2].

The first experiment illustrates Theorem 5 for which .
Figs. 1–3 exhibit the dependence of given by algo-
rithms 1, 2, and 3, and by the AMV algorithm based on
(i.e., on and ), with the SNR, the DOA separation

, and the noncircularity phase separation
6. Figs. 1 and 2 show that the domain of validity of

our asymptotic analysis depends on the algorithm. Below an
SNR threshold that is algorithm dependent, algorithm 3 (root-
MUSIC-like algorithm) outperforms algorithm 2, which outper-
forms algorithm 1, and naturally all three algorithms clearly out-
perform the standard MUSIC and the AMV algorithm based on

alone. In Fig. 2, we note that the asymptotic variances

5We concentrate on uncorrelated sources because it was shown in [3] that ex-
pected benefits due to the noncircular property happens mainly for uncorrelated
sources.

6By virtue of numerical examples, the different theoretical variances depend
on � , � , � , � by only �� = � � � and �� = � � � in case 1
[only �� = � � � in case 2] for two equipowered sources with identical
noncircularity rates.
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Fig. 2. Theoretical and empirical asymptotic variances given by algorithms
1, 2, 3, standard MUSIC and AMV algorithms based on R only and on
(R ;R ) as a function of the DOA separation for SNR = 20 dB, �� = �
6 rad.

Fig. 3. Theoretical asymptotic variances given by algorithms 1, 2, and 3 and
(1) by the AMV algorithm based on (R ;R ) (2) as a function of the
noncircularity phase separation for two DOA separations and SNR = 20 dB.

given by algorithms 1, 2 and 3 and the AMV algorithm tend
to a finite limit when the DOA separation decreases to zero.
For algorithms 1, 2 and 3, this strange behavior is explained by
the two nonzero eigenvalues of which interact in

that appears in (5.5) of Theorem 5. With

we see that one of these eigenvalues approaches zero, and con-
sequently the asymptotic variances increases without limit only
if both and tend to zero. For the AMV algorithm,

(see the notations of [3]) and is

column rank deficient only if both and tend to zero

Fig. 4. Ratio r = Var =Var as a function of the SNR for
different DOA separations, �� = � 6 rad.

Fig. 5. Ratio r = Var =Var as a function of the
noncircularity rate for different DOA separations for SNR = 5 dB, �� = �
6 rad.

as well. Fig. 3 illustrates the sensitivity of the performances
to the noncircularity phase separation , which is particu-
larly prominent for low DOA separations. Figs. 1 and 2 show
the good efficiency of these three algorithms compared to the
AMV estimator based on , particularly for large DOA sep-

arations. To specify this point, Fig. 4 exhibits the ratio
as a function of the SNR for different

DOA separations. It shows that algorithms 1, 2, and 3 are very
efficient, except for low DOA separations and low SNRs.

The second experiment considers arbitrary noncircu-
larity rates (case 2). Fig. 5 exhibits the ratio

as a function of the noncircularity
rate for different DOA separations. It shows that algorithm 4
is worse than the standard MUSIC algorithm based on
alone, for all scenarios. This extends that a property proved by
(5.9) in the single-source case.

In the following, we concentrate on the optimal weighted
MUSIC algorithm (alg5) introduced in Section IV-B. Compared
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Fig. 6. Ratio r = Var =Var as a function of the
noncircularity rate for different DOA separations for SNR = 5 dB.

Fig. 7. Ratio r = Var =Var as a function of the
noncircularity rate for different SNRs for �� = 0.1 rad.

with the standard MUSIC algorithm based on , Figs. 6 and
7 show that algorithm 5 outperforms the standard MUSIC al-
gorithm, particularly for low SNRs and DOA separations when
the noncircularity rate increases.

The efficiency of this optimal weighted MUSIC al-
gorithm is exhibited in Fig. 8 through the ratio

. We show that, despite the fact that
algorithm 5 improves the performance of the standard MUSIC
algorithm based on for low SNRs and DOA separations
when the noncircularity rate increases, its efficiency decreases
in these circumstances.

Tables I and II compare our theoretical asymptotic variance
expressions with empirical mean square errors (MSEs) obtained

Fig. 8. Ratio r = Var =Var as a function of the
noncircularity rate for different SNRs for �� = 0.1 rad, �� = � 6 rad.

from Monte Carlo simulations for the standard MUSIC and
the optimal weighted MUSIC algorithms for 0.9,
0.2~{\hbox{rad}}. We see that there is an agreement between
the theoretical and empirical results beyond a SNR threshold.
Below this threshold, the optimal weighted MUSIC algorithm
largely outperforms the standard MUSIC algorithm.

VII. CONCLUSION

This paper has provided a unifying framework to investi-
gate the asymptotic performance of arbitrary subspace-based
algorithms for estimating DOA’s of narrowband complex non-
circular sources by giving closed-form expressions of the co-
variance of the asymptotic distribution of extended projection
matrices. Different robustness properties of the asymptotic co-
variance of the estimated DOA given by such algorithms are
proved. These results are applied to different MUSIC-like al-
gorithms. We have proved that such specific algorithms largely
outperform the standard MUSIC algorithm in the case of un-
correlated sources with maximum noncircularity rate. In the
general case of nonsingular extended spatial covariance of the
sources, the optimal weighted MUSIC that we have introduced
outperforms the standard MUSIC algorithm as well, but the of-
fered performance gain is noticeable for low SNRs and DOA
separations only. Furthermore, this optimal weighted MUSIC is
computationally more demanding than the standard MUSIC al-
gorithm. Consequently, from an application viewpoint, this gain
in performance may not motivate the extra computational com-
plexity. In this general case of nonsingular extended spatial co-
variance of the sources, only multidimensional nonlinear opti-
mization algorithms such as the subspace-based AMV estimator
seems to be able to totally benefit of the noncircular property.
A study to deal with this issue is underway.
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TABLE I
�� = 0.2 rad

TABLE II
�� = 0.2 rad AND SNR = 8 dB

APPENDIX A
PROOF OF THEOREM 1

Because is the orthogonal projector onto the noise sub-
space of the Hermitian matrix , the standard pertur-
bation result (B.1) for orthogonal projectors associated with in-
variant subspaces of Hermitian matrices can be applied, as fol-
lows:

Using ,

, and , we obtain

Then using the standard theorem of continuity (see, e.g., [18, p.
122]) on regular functions of asymptotically Gaussian statistics,
the asymptotic behaviors of and are directly related
and the first covariance matrix of the asymptotically Gaussian
distribution of can be written as

(A.1)

where the expressions of
and
are

given in [3, Lemma 2]. Inserting these expressions in (A.1) and
using , , we obtain after tedious
but simple algebra manipulations

(A.2)

where is given here by . Using again the stan-
dard theorem of continuity, the DOAs estimated by the MUSIC
algorithm based on are asymptotically Gaussian distributed

with covariance , where the Jaco-

bian matrix of the mapping that associates to is
given by

... with

(A.3)
straightforwardly obtained from a first-order expansion of

. Using expression (A.2) of
, expression (3.2) of is straightforwardly deduced.

In the case of a single source,
, and the

expression of follows.

APPENDIX B
PROOF OF THEOREM 3

The proof relies on the standard central limit theorem
applied to the independent equidistributed complex non-
circular random variables with .
Thanks to simple algebraic manipulations of

, we
straightforwardly obtain

with and where
. Then using the standard per-

turbation result for orthogonal projectors [17] (see also [13])
applied to associated with the noise subspace of

(B.1)

the asymptotic behaviors of and are directly related.
The standard theorem (see, e.g., [18, p. 122]) on regular func-
tions of asymptotically Gaussian statistics applies and the first
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covariance matrix of the asymptotically Gaussian distribution
of can be written as

(B.2)

where , and and are
used in the second and third equalities, respectively.

Proving the convergence in distribution of the second statistic
follows the same lines where the terms of

can be deduced from the expression of

(B.3)

where is the block permutation matrix defined by

With expressions (B.3) and (5.1) of , we obtain

(B.4)

Then, using the following two identities deduced from the defi-
nition of the permutation matrices and for any
matrices , , , and

the expressions of , , , , and of
Theorem 3 follow directly from (B.4).

APPENDIX C
PROOF OF THEOREM 5

We first prove that algorithms 2 and 3 satisfy the same first-
order perturbation expansion (5.7). For algorithm 2, we note that

with and . Be-
cause satisfies , we
straightforwardly obtain the following first-order perturbation
expansion thanks to , ,

and
:

(C.1)
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with , and
. Furthermore, we note that the sum

of the first two terms of the left-hand side of (C.1) vanishes
thanks to the identity , which is equivalent to

, and which implies

(C.2)

Consequently

Thus, (C.1) becomes (C.3), shown at the bottom of the page.
For algorithm 3, we note that

(C.4)

with . By definition of algorithm 3 (see
(4.7)), is solution of

with

(C.5)

To relate to , , and , a second-order
expansion of , , and is required since the first-
order terms in and vanish, as noted in [13] for the
standard root-MUSIC algorithm.

with and , where
and denote the first and

second-order terms of the expansion of with

regard to , and where is a third-order
term in . Consequently

Inserting these second-order expansions of , ,

, and in the expression (C.4) of
and using identity (C.2) and identity

deduced from identity (issued from
and ), one can check that the first-order
terms in and vanish, and the following expression of

of (C.4) is obtained after simple, but tedious, algebra
manipulations:

(C.6)

Since the different matrices are composed of sums of
rank-one matrices and that matrices , and ,
(respectively, , , and ) are Hermitian (respec-
tively, complex symmetric) structured, one can check that the

(C.3)
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first four lines within the braces in (C.6) are real, while the last
two lines in the second brace are purely imaginary. By setting
the imaginary part of this expansion equal to zero ( is a
root of ), (C.3) is found.

Remark: With different cost functions, we note the similarity
of behavior of our algorithms 1 and 2, with the standard MUSIC
and root-MUSIC algorithms analyzed in [13]: In the two cases,
the asymptotic distributions of the DOA estimates given by the
MUSIC and the associated root-MUSIC algorithm are identical.
Furthermore the second-order terms in and are
not used for the derivation of (they would be used in the
derivation of , which is not studied in this paper) for the
two root-MUSIC algorithms.

Considering algorithm 1, the estimates and are so-
lutions of the global minimization

with , where

. Because satisfies

and

we straightforwardly obtain the following first-order perturba-
tion expansion

(C.7)

with , ,

, , and

associated with the source . Noting

that , which is

denoted by , (C.7) gives

where ,

. Consequently, the Jacobian matrix
of the mapping that associates to is given by

with

Because is asymptotically Gaussian distributed with first
covariance , is also asymptotically Gaussian dis-
tributed thanks to the standard theorem of continuity (see, e.g.,

[18, p. 122]) with covariance .
Using, the expression (5.1) of , the expressions (5.4)
and (5.5) of are straightforwardly deduced after simple
but tedious algebra manipulations thanks to the identities

for all vectors , ,
and . In the case of a single source,

and (5.6) is straightforwardly deduced as well.

APPENDIX D
PROOF OF THEOREM 7

Because satisfies ,
we straightforwardly obtain the following first-order perturba-
tion expansion thanks to , where we have used
the identity [19,
th. 7.17]

(D.1)

And because is asymptotically Gaussian distributed, is
also asymptotically Gaussian distributed thanks to the standard
theorem of continuity (see e.g., [18, p. 122]) with covariance:

with and

. Using the alternative expression
of given by (5.1)

where , we obtain thanks
to straightforward algebra manipulations

and because

and , expression (5.10) is proved.
Expressing the matrix

of (5.10) as a function of , and , we obtain after simple
but tedious algebra manipulations

with and

. Consequently, (5.10) becomes
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which is minimum for
.

The associated minimum value of is

(D.2)

and the proof is completed.
We note that replacement of by an arbitrary consistent

estimate that satisfies has no effect
on the asymptotic variance of the weighted MUSIC estimates
because the first order perturbation (D.1) is preserved.

APPENDIX E
PROOF OF COROLLARY 1

For the single source case, we obtain from the expressions of
given at the end of Appendix D

Then, using these values in expression (D.2) of
we obtain after tedious but simple algebra manipulations

where , which is the expression of the noncir-
cular Gaussian Cramer–Rao bound proved in [4].
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