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Cramer–Rao Bounds of DOA Estimates for BPSK
and QPSK Modulated Signals

Jean-Pierre Delmas, Member, IEEE, and Habti Abeida

Abstract—This paper focuses on the stochastic Cramer–Rao
bound (CRB) of direction of arrival (DOA) estimates for binary
phase-shift keying (BPSK) and quaternary phase-shift keying
(QPSK) modulated signals corrupted by additive circular complex
Gaussian noise. Explicit expressions of the CRB for the DOA
parameter alone in the case of a single signal waveform are given.
These CRBs are compared, on the one hand, with those obtained
with different a priori knowledge and, on the other hand, with
CRBs under the noncircular and circular complex Gaussian
distribution and with different deterministic CRBs. It is shown
in particular that the CRBs under the noncircular [respectively,
circular] complex Gaussian distribution are tight upper bounds
on the CRBs under the BPSK [respectively, QPSK] distribution at
very low and very high signal-to-noise ratios (SNRs) only. Finally,
these results and comparisons are extended to the case of two
independent BPSK or QPSK distributed sources where an explicit
expression of the CRB for the DOA parameters alone is given for
large SNR.

Index Terms—Binary phase-shift keying (BPSK) and quater-
nary phase-shift keying (QPSK) signals, direction of arrival (DOA)
estimation, Fisher information matrix, stochastic Cramer–Rao
bound.

I. INTRODUCTION

DETERMINISTIC and stochastic Cramer–Rao bounds
(CRBs) play an important role in direction of arrival

(DOA) estimation because they serve as a benchmark for the
performance of actual estimators (see, e.g., [1]). Moreover, the
stochastic CRB can be achieved asymptotically (in the number
of measurements) by the stochastic maximum likelihood (ML)
method. Unfortunately, this stochastic CRB appears to be
prohibitive to compute for non-Gaussian processes including
discrete signal waveforms. And to the best of our knowledge, no
contribution has dealt with stochastic CRB for discrete signal
waveforms in DOA estimation yet, despite some recent works
on stochastic CRB for noncircular signals (e.g., [2] and [3]).
To cope with this difficulty, a method sometimes used is to
assume that the signals are arbitrary deterministic sequences
while the noise is circular complex Gaussian, so that the distri-
bution is still Gaussian and the associated deterministic CRB
is easily deduced (see, e.g., [4, (2.13)]). But the corresponding
deterministic (or conditional) ML method does not achieve this
deterministic CRB because the deterministic likelihood function
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does not meet the required regularity conditions. Consequently,
this deterministic CRB is only a nonattainable lower bound
on the variance of any unbiased DOA estimator. To deal with
non-Gaussian processes, another solution is to suppose that the
signals are Gaussian but not necessarily complex circular. In that
case, the associated CRB is under rather general conditions (see,
e.g., [5, p. 293]) the largest CRB among the class of arbitrary
distributions with given covariance matrices. This approach was
used in [6] for noncircular complex signal waveforms such as
discrete signals. But the associated CRB is only an upper bound
on the true stochastic CRB. Faced with the drawbacks of the two
aforementioned approximations, we need an explicit expression
of the stochastic CRB under non-Gaussian distributions.

In this paper, we derive explicit expressions of the sto-
chastic CRB for the DOA parameter alone in the case of binary
phase-shift keying (BPSK) and quaternary phase-shift keying
(QPSK) signal waveforms observed in additive circular complex
Gaussian noise. More specifically, the main contribution of this
paper is devoted to the case of a single BPSK and QPSK signal
waveform. Because the distribution of these models are simple
mixed Gaussian, an explicit expression of the Fisher information
matrix (FIM) is derived using well-known properties of the
Gaussian distribution. An explicit expression of the stochastic
CRB for the DOA parameter alone is deduced. We note that
apart from the DOA applications, the recent papers (e.g., [7] and
[8]) that deal with stochastic CRBs for estimating the carrier
phase and frequency of BPSK and QPSK waveforms do not
give analytic solutions (see, e.g., [7, (9) and (16)] and [8, (16)]).
Our CRBs are compared with those obtained with different a
priori knowledge and are confronted with the noncircular and
circular complex Gaussian CRBs and with different determin-
istic CRBs presented in [9]. It is shown in particular that the
CRBs under the noncircular (respectively, circular) complex
Gaussian distribution are tight upper bounds on the CRBs under
the BPSK (respectively, QPSK) distribution at very low and very
high SNRs only. Finally, the case of two independent BPSK
distributed sources is dealt with. Due to the computational com-
plexity, an explicit expression of the DOA parameters alone is
given for large SNR only. Furthermore, numerical comparisons
of the stochastic CRBs associated with BPSK and noncircular
Gaussian distributed sources are given for all SNRs. In partic-
ular, they show that the CRB under the noncircular Gaussian
distribution is a very loose upper bound on the CRB under the
BPSK distribution. And the difference between these CRBs is
more prominent for small DOA and phase separation.

The following notations are used throughout this paper. Ma-
trices and vectors are represented by bold upper case and bold

1053-587X/$20.00 © 2005 IEEE



118 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 1, JANUARY 2006

lower case characters, respectively. Vectors are by default in
column orientation, while , , , , , and stand for trans-
pose, conjugate transpose, conjugate, real and imaginary part,
and , respectively. is the standard Kronecker product of
matrices. The symbol denotes the indicator function of the
condition , which assumes the value 1 if this condition is satis-
fied and 0 otherwise, and the symbol denotes the uni-
variate Gaussian distribution with mean and variance .

II. DATA MODEL

Consider a BPSK or QPSK modulated signal impinging
on an arbitrary array of sensors. We assume that the
array is perfectly calibrated for which the steering vector is a
kwown function of the source’s DOA. The received signals are
bandpass filtered, and after downshifting the sensor signal to
baseband, the in-phase and quadrature components are paired
to obtain complex signals. We assume Nyquist shaping and
ideal sample timing so that the intersymbol interference at
each symbol spaced sampling instance can be ignored. In the
absence of frequency offset but with possible phase offset, the
signals at the output of the matched filter can be represented as

where is the steering vector parametrized by the scalar
DOA parameter . We suppose .
where are independent identically distributed
(i.i.d.) random symbols taking values 1 (respectively,

) with equal probabilities for BPSK (respec-
tively, QPSK) modulations, where and are considered
as unknown parameters. The symbols are assumed to
be independent from . are i.i.d. -variate
zero-mean complex circular Gaussian random vectors with

. Consequently, are i.i.d. -di-
mensional random variable whose probability density function
(pdf) is mixed circular Gaussian

(2.1)

with and (respectively, and
) for BPSK (respectively, QPSK) modulated

signals and where .

III. STOCHASTIC CRB FOR BPSK AND QPSK SIGNALS

The main result of this paper, proved in Appendix A, is con-
tained in the following theorem.

Theorem 1: The FIM associated with the parameter
of stochastic BPSK and QPSK modulated

signals is given by the explicit closed-form expressions

with the equation shown at the bottom of the page with
and and where and

are the following decreasing function of :

,

.
We note the similarity of the 2 2 top left corner of these

FIMs with those derived in [10] used for the estimation of the
SNR of BPSK and QPSK modulated signals. Because these
Fisher information matrices are block diagonal, the following
explicit expressions for the CRB for the parameter DOA alone
are easily derived:

CRB (3.1)

CRB (3.2)

where is the purely geometrical factor 2 with

. We note that thanks to the decreasing
function , CRB CRB .
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In the absence of phase offset or after correcting it (i.e., pa-
rameter is known), these CRBs for become1

CRB (3.3)

CRB

(3.4)

Comparing (3.3) to (3.1), we note that the phase information
for a BPSK source is quite informative for all SNRs because
2 for the DOA perspective contrary to a QPSK
source, as shown in Section V-A (Fig. 3).

IV. COMPARISON WITH RELATED CRBS

Depending on the presence of different a priori information
on the parameters and on the distribution of the sources, several
CRBs can be considered.

A. Data-Aided CRB

If we assume that transmitted symbols are known at the
array receiver, the modulation can be removed perfectly
and the resulting signal is circular Gaussian distributed
with mean and covariance . Consequently,

is circular Gaussian distributed as well,
with mean and covariance , where

. Applying the Slepian–Bangs formula (see,
e.g., [5, (B.3.25)]), we obtain

then the following FIM is straightforwardly derived by noting
that and , which implies

and consequently and

and consequently

CRB

Because , we note that
the FIMs and of Section III approach and
consequently CRB and CRB approach

1Where the exponent CO of CRB (� ) and CRB (� ) means co-
herent.

CRB for large SNR values. On the contrary, because
, CRB and CRB are lower

than CRB for large SNR values. The phase information
is quite informative compared with the training symbols from
the DOA perspective.

B. Deterministic CRB

For the deterministic or conditional model of the signal wave-
form, the CRB for does not depend on the realization of

because and is given by (see,
e.g., [4, (2.11)])

CRB

We note that if side information is available such as the constant
modulus of BPSK and QPSK modulation [11] and some training
symbols among the symbols [9, (50)], the previous CRB for

is preserved. Furthermore, the data-aided and deterministic
CRB are the same, implying that knowing the signal or not is
not important.

C. Stochastic Complex Gaussian CRB

Because the BPSK (respectively, QPSK) modulation is non-
circular (respectively, circular) complex to the second-order, it
makes sense to compare the stochastic CRBs (3.1) and (3.2) to
the CRBs associated with, respectively, noncircular2 (NCG) [6,
(3.14)] or circular (CG) complex Gaussian distribution that can
be considered as upper bounds on the true stochastic CRBs (see,
e.g., [5, p. 293]). More precisely, after recalling these CRBs
under Gaussian distributions for the convenience of the reader

CRB

CRB

we have

CRB
CRB

CRB
CRB

We note that these ratios depend on only and
tend to one when tends to . However, this dependence in
is not monotone, as is numerically shown in the next section.

V. NUMERICAL EXAMPLES

The purpose of this section is to illustrate the results of Sec-
tion IV and to extend them to the case of two independent BPSK
distributed sources. We consider throughout this section one or
two independent sources impinging on a uniform linear array

2Because E(� ) = Ej� j for the BPSK modulation, we consider the noncir-
cular complex Gaussian distribution associated with E(� ) = Ej� j = 1, i.e.,
with � = 1 in [6, (3.14)] where the noncircularity rate � and the circularity
phase � of � are defined here by E(� ) = � e Ej� j.
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Fig. 1. Ratios r (� ) = CRB (� )=CRB (� ) and r (� ) =

CRB (� )=CRB (� ) as a function of � = M� =� .

of sensors spaced a half-wavelength apart for which
.

A. Single Source Case

The first experiment illustrates the results of Section IV.
Fig. 1 shows the ratios CRB CRB and

CRB CRB as a function of .
We see from that figure that the CRBs under the noncircular
(respectively, circular) complex Gaussian distribution are tight
upper bounds on the CRBs under the BPSK (respectively,
QPSK) distribution at very low and very high SNRs only.

Figs. 2 and 3 show the different CRBs3 as a function of the
SNR for the BPSK and QPSK modulations, respectively. From
these figures, we see that the CRBs achieved in the absence of
phase offset outperform all the other CRBs except for very low
SNRs. It is shown that there is no significant difference between
the bounds for non-data-aided and data-aided estimations ex-
cept at low SNR.

B. Two Sources Case

We consider now two independent BPSK or QPSK dis-
tributed sources. Because the pdf of is a mixture of 4 or
16 Gaussian pdfs, the associated stochastic CRB appears to
be prohibitive to compute. Consequently, we use a numerical
approximation derived from the strong law of large numbers,
i.e.,

CRB

(5.1)

3All the CRBs are computed for T = 1. That means that the actual CRBs
associated with the signal model defined in Section II are obtained from the
results given in this section by dividing by T .

Fig. 2. Normalized (T = 1) CRBs for BPSK modulation: CRB (� ),
CRB (� ), CRB (� ), and CRB (� ) as a function of the SNR.

Fig. 3. Normalized (T = 1) CRBs for QPSK modulation: CRB (� ),
CRB (� ), CRB (� ), and CRB (� ) as a function of the SNR.

where denotes the 2 2 submatrix of de-
rived from the rows and columns 4 and 7

with (respectively, ) for BPSK (respectively,
QPSK) modulated signals where

(respectively, )

and where and
. At high SNRs (more precisely for

and ) it is proved in Appendix B that the FIMs
associated with BPSK and QPSK signals are approximated by
the same following explicit expression as shown in (5.2) at the
bottom of the next page.

We clearly see that the entries corresponding to sources 1 and
2 are decoupled. Consequently, for large SNRs and independent
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sources, the CRB for the DOA of one source is independent of
the parameters of the other source and

CRB CRB

where , . This quite curious result
reminds one of a similar result in cissoid parameter estimation
(see, e.g., [12]) where the asymptotic CRB of the frequencies
is independent of the frequency separation. Furthermore, the
CRBs CRB CRB and CRB
CRB for each DOA are those of the single source case
(because the 4 4 top left corner of the FIM (5.2) is the FIM
given in Theorem 1 for high SNR). We note that this property is
quite different from the behavior of the CRB under the Gaussian
distribution and the deterministic CRB, for which the CRB for
the DOA of one source depends on the DOA separation. More
precisely, it is proved [4, R9] that these latter two CRBs tend to
the same limit as all SNRs increase. For independent sources,
they are given by (from, e.g., [4, (2.13)])

CRB

CRB

with

where

If the transmitted symbols are known, the derivation of the
FIM follows the same lines that for the single source case.
And more specifically, because

, the parameter associated with the two sources is
decoupled, and it is straightforward to prove that the asymptotic
(for ) FIM is given by (5.2) as well.

The second experiment considers two independent and
equipowered BPSK or QPSK distributed sources. Fig. 4 com-
pares CRB given by (5.1) with the CRB under the

Fig. 4. Ratio r (� ) = CRB (� )=CRB (� ) as a function of the
DOA separation for different values of the phase separation�� forM = 6 and
SNR= 20 dB.

noncircular complex Gaussian distribution. And to be fair, this
comparison must be done under the same a priori that the two
sources are independent with , i.e., with the same

parameter . For that reason,
we use the nonexplicit expression of CRB obtained in
[13] which can take this a priori information into account.

Fig. 4 exhibits the ratio CRB CRB as a
function of the DOA separation for three values of the
phase separation . We see that the CRB is very
sensitive to the phase separation except for large DOA separa-
tion. This figure shows that, contrary to the single source case,
the CRB under the noncircular complex Gaussian distribution
is a very loose upper bound on the CRB under the BPSK distri-
bution except for large values of the DOA and phase separation.

Fig. 5 exhibits the domain of validity of the high SNR ap-
proximation. We see from this figure that this domain depends
not only on , SNR, and DOA separation, but also on the dis-
tributed sources. It is shown that this domain reduces for QPSK
sources compared with BPSK sources. For example, for ,
the threshold is about 5 dB [respectively, 8 dB] for
and 8 dB [respectively, 12 dB] for for BPSK [re-
spectively, QPSK] sources. The larger the DOA separation is or
the larger is, the larger is the domain of validity of the ap-
proximation.

(5.2)
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Fig. 5. Approximate and exact value (obtained due to (5.1) withT = 10000)
of CRB (� ) and CRB (� ) as a function of the SNR for different
values of the DOA separation.

Fig. 6. CRB (� ) and estimated MSE E(� � � ) given by the
deterministic EM algorithm (ten iterations) as a function of the DOA separation
for �� = 0:1rd.

Since the CRB under the noncircular [respectively, cir-
cular] Gaussian distribution is a very loose upper bound on
the CRB under the discrete BPSK [respectively, QPSK] dis-
tribution, specifically for small DOA or phase separation,
the ML estimators that take these discrete distributions into
account outperform the stochastic ML estimator under the
circular Gaussian distribution (see, e.g., [4]) and the weighed
subspace fitting estimator (see, e.g., [14]), which both reach
CRB . Consequently, the EM approaches [15] that are
iterative procedures capable of implementing the stochastic ML
estimator under these discrete distributions outperform the ML
estimator under noncircular or circular Gaussian distribution.
Fig. 6 exhibits CRB and the estimated mean square
error (MSE) given by the deterministic EM
algorithm initialized by the estimate given by the MUSIC-like

Fig. 7. CRB (� ), CRB (� ), and estimated MSE E(� � � )
given by the deterministic EM algorithm (five iterations) for �� = 0:3rd and
�� = 0:1rd, versus SNR.

algorithm described in [16], as a function of the DOA sepa-
ration for two SNRs. We see that contrary to CRB ,
CRB does not increase significantly when decreasing
the DOA separation. Fig. 7 compares the MSE
given by the deterministic EM algorithm (initialized as in
Fig. 6) to CRB and CRB , as a function of
the SNR. We see from this figure that the EM estimate reaches
CRB , which largely outperforms CRB . To
show the asymptotic domain (domain of sample size and SNR
for which CRB ), Figs. 8 and 9
compare these CRBs to the estimated mean square error given
by the deterministic EM algorithm initialized by values
and in the vicinity of and . We see that the estimates
given by the ML estimator under the discrete distribution reach
CRB in a very large domain (from SNR dB for

and from for SNR dB) in our scenario.

VI. CONCLUSION

This paper developed explicit expressions for the stochastic
CRB of the DOA parameter estimates for BPSK and QPSK
modulated signals corrupted by additive circular complex
Gaussian noise. These stochastic CRBs have been compared,
on the one hand, with those obtained with different a priori
knowledge and, on the other hand, with CRBs under the non-
circular and circular complex Gaussian distribution and with
different deterministic CRBs.

For a single source, we have proved that the CRBs under the
noncircular (respectively, circular) complex Gaussian distribu-
tion are tight upper bounds on the CRBs under the BPSK (re-
spectively, QPSK) distribution at very low and very high SNR
only. And for the case of two independent BPSK (respectively,
QPSK) distributed sources, we have exhibited an important dif-
ference of behavior of the stochastic CRB compared to those
obtained under the noncircular (respectively, circular) Gaussian
distribution. Because we have proved that the stochastic CRB
for the DOA of one source is independent of the parameters
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Fig. 8. CRB (� ), CRB (� ), and estimated (1000 independent runs)
mean square error E(� �� ) given by the deterministic EM algorithm (ten
iterations) for T = 500, M = 6, �� = 0:05rd, and �� = 0:1rd, versus
SNR.

Fig. 9. CRB (� ), CRB (� ), and estimated (1000 independent runs)
mean square error E(� �� ) given by the deterministic EM algorithm (ten
iterations), for SNR = 10 dB, M = 6, �� = 0:05rd, and �� = 0:1rd,
versus T .

of the other source over wide SNR ranges, the CRB under the
noncircular (respectively, circular) complex Gaussian distribu-
tion is a very loose upper bound on the CRB under the BPSK
(respectively, QPSK) distribution except for large values of the
DOA and phase separation. Consequently, ML implementations
such as the EM approaches outperform the ML estimator under
the circular Gaussian distribution, specifically for small DOA or
phase separation.

APPENDIX A
PROOF OF THEOREM 1

The Fisher information matrix is given (elementwise) by

(A.1)

where the pdf (2.1) is written after straightforward manipula-
tions as

with and .
We evaluate (A.1) for the BPSK modulation by taking partial

derivatives as follows:
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with , and

.
Using the regularity condition

(see, e.g., [17, rel. (a.9)]) which is
fulfilled for finite mixtures of Gaussian distributions, the
following property holds: . With

,
we obtain

(A.2)

This identity enables us to straightforwardly derive the terms
, and of thanks to the

definition of the function .
To evaluate , we note that

and
. Because and the couple

are independent, and that these last two Gaussian random
variables are uncorrelated and consequently independent,
the three random variables , and

are collectively independent
and thus and are independent. Therefore

with . With
and thanks to the identity (A.2), is straight-

forwardly derived.
Noting that , thanks

to derived from . Conse-
quently for the same reason that and ,
and are independent as well. And because
and are zero-mean, the expectations of the two
terms of , ,

and vanish
and therefore

.
Considering the first term of , in the same

way

with .

For the first term of ,
we note that the random variables and

are
independent. And since the zero-mean Gaussian random
variables and
are independent too, the three random variables ,

and are collectively
independent. Consequently the sum of these first two
random variables is independent of the last random variable

and thus

with (see Section IV).
Finally, regarding the second term of

and , we have to elaborate a little

bit. Because with
and with

where is zero-mean
Gaussian distributed, we have4

with

where is zero-mean Gaussian distributed with

and thus and are independent. Because
where the discrete random variable is inde-

pendent of the noise random variables , the random variables
and are independent and then

and follows from identity (A.2). The same approach
applies to evaluate and gives the
term .

For the QPSK modulation, evaluating the partial derivatives
and taking their expectation are derived

in the same way, provided the log-likelihoods associated with
and are gathered as well as the hypothesis of in-

dependence of and is taken into account.

4Because ka k = M implies d ka k =d� = a a + a a +

2ka k = 0.
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APPENDIX B
PROOF OF (5.2)

The derivation of (5.2) results from the following alternative
form of the FIM:

(B.1)
We consider only the terms of (B.1) associated with and
because the other terms follow along the same lines. For the
BPSK derivation, the pdf of is a mixture of four Gaussian
pdfs and

(B.2)

with

and

where the random variable are defined by

with , and

.
Because the random variables and are

independent, we can condition the random variable
with respect to the

different couples of symbols
to compute the expectation (B.1). In the following, we prove
that among the four exponentials in (B.2), three of them are
insignificant with respect to one of them that is dominant. For
example, for , we have

and for and

where are zero-mean Gaussian random variables of
variance

Consequently

where defined by is related to the
height of first sidelobe of the beam pattern of the array and sat-
isfies for all standard array .5 Therefore it is proved that
the term is dominant with respect to the terms ,

and and

and for an arbitrary couple of symbols

Consequently

and because and are independent and the four cou-
ples of symbols are equiprobable

5For a uniform linear array of M sensors, g = 2� � cos(�� +
(M�1)��=2)(sin(M��=2)=sin(��=2)) and � � 0:224.
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Using a mixture of 16 Gaussian pdfs, the extension to two QPSK
sources follows along the same lines.
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