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Gaussian Cramer–Rao Bound for Direction
Estimation of Noncircular Signals in

Unknown Noise Fields
Habti Abeida and Jean-Pierre Delmas, Member, IEEE

Abstract—This paper focuses on the stochastic Cramer–Rao
bound (CRB) on direction of arrival (DOA) estimation accuracy
for noncircular Gaussian sources in the general case of an arbi-
trary unknown Gaussian noise field parameterized by a vector
of unknowns. Explicit closed-form expressions of the stochastic
CRB for DOA parameters alone are obtained directly from the
Slepian–Bangs formula for general noncircular complex Gaussian
distributions. As a special case, the CRB under the nonuniform
white noise assumption is derived. Our expressions can be viewed
as extensions of the well-known results by Stoica and Nehorai,
Ottersten et al., Weiss and Friedlander, Pesavento and Gershman,
and Gershman et al. Some properties of these CRBs are proved
and finally, these bounds are numerically compared with the con-
ventional CRBs under the circular complex Gaussian distribution
for different unknown noise field models.

Index Terms—Colored noise, deterministic Cramer–Rao bound
(CRB), direction of arrival (DOA) estimation, noncircular signals,
nonuniform noise, stochastic Cramer–Rao bound.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation has been an in-
tensive research field since the introduction of so-called

high resolution DOA estimation methods. The performance of
such methods are often evaluated using the stochastic and deter-
ministic Cramer–Rao bounds (CRBs). Although the determin-
istic CRB is known not to be achievable in the general case [1],
[2], the stochastic CRB can be achieved asymptotically (in the
number of measurements ) by several high resolution methods,
such as stochastic maximum likelihood (ML). The stochastic
and deterministic CRBs for the DOA parameters alone have
been derived for circular complex Gaussian sources under uni-
form white noise field in [2]–[5] and [1], respectively. Then,
the stochastic CRB has been derived under nonuniform white
and arbitrary unknown parametrized noise fields in [6] and [7],
respectively. The general case of an arbitrary unknown noise
covariance is particularly important in mobile communications
because the dominant noise is external in radio frequency sys-
tems [8] and consequently its presence introduces correlation
between the noise processes of the different sensors and because
there is normally no signal-free samples available that could be
used for estimating the noise covariance. In these applications,
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noncircular complex signal with discrete distributions are fre-
quently encountered (e.g., binary phase shift keying and offset
quadrature phase shift keying are frequently encountered), but
the associated stochastic CRB appears to be prohibitive to com-
pute. Because under rather general conditions, the noncircular
complex Gaussian CRB matrix is the largest of all CRB matrices
among the class of arbitrary noncircular complex distributions
with given covariance matrices (see, e.g., [9, p. 293]), we need
an explicit expression of the stochastic CRB under noncircular
Gaussian distributions of the sources and arbitrary unknown
noise fields which can be used as an upper bound of the sto-
chastic CRB under these discrete distributions. Consequently,
this expression appears to be both an extension of results [6]
and [7] to general noncircular complex Gaussian distributions
and result [10] to nonuniform white and arbitrary unknown pa-
rametrized noise fields.

In this paper, we derive closed-form expressions of this sto-
chastic CRB for DOA parameters alone. Our derivation is in-
spired by the proof presented in [6], [7] applied to the extended
Slepian–Bangs formula [10]. But, due to the noncircularity of
the sources, the key point of this proof, i.e., that the number of
terms of the extended source covariance matrix is equal to the
number of real and imaginary parts of both sources covariance
matrices, is not valid. Consequently, to retain the main features
of the proof given in [6], [7], we must first prove that the sto-
chastic CRB for the DOA parameter is insensitive to the con-
straints on this extended covariance matrix. This points will be
derived from the study of the ML DOA estimation.

This paper is organized as follows. The array signal model is
formulated in Section II. Based on this model, explicit closed-
form expressions of the stochastic CRBs are derived in Sec-
tion III. Then we consider parameter identifiability and analyze
some properties of the obtained bounds in Section IV. Finally,
Section V presents some illustrative examples, and Section VI
concludes the paper.

The following notations are used throughout the paper. Ma-
trices and vectors are represented by bold upper case and bold
lower case characters, respectively. Vectors are by default in
column orientation, while , and stand for transpose, con-
jugate transpose and conjugate respectively. Symbols and
stand for the Hadamard and the Kronecker product, respectively.

is the vectorization operator that turns a matrix into a
vector by stacking the columns of the matrix one below another,
the vec-permutation matrix transforms to for
any square matrix and is the ortho-complement of a projector
matrix. , , , and denote the trace, the
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determinant, the logarithm, the real and the imaginary part op-
erators, respectively.

II. ARRAY SIGNAL MODEL

Let an array of sensors receive ( ) narrowband
signals impinging from the sources with unknown DOAs. The

1 array snapshot complex vectors can be modeled as

where is the full column rank steering
matrix where each vector is parameterized by the scalar DOA
parameter and .
and model signals transmitted by sources and additive
measurement noise respectively. and are multivariate in-
dependent, complex zero-mean. is assumed circular complex
Gaussian, spatially uncorrelated or correlated with unknown
covariance matrix , while is noncircular
complex Gaussian, and possibly spatially correlated or even
coherent with and . This leads
to the covariance matrices of

(2.1)

where the vector of unknown real parameters collects the
DOAs and nuisance parameters. These covariance matrices
are classically estimated by and

, respectively. Let us consider the
following general noise model introduced in [13] and used
in [7]:

where is the vector of real unknown co-
efficients which are used to parameterize the noise covariance
matrix. If no a priori information is available concerning the
spatial covariance of the sources, and are generically
parameterized by the real parameters

Thus, the vector of unknown

real parameters can be written as .
This parameter is supposed identifiable from

, in the following sense:

The probability density function (pdf) of presented in the case
of uniform white noise in [10] is preserved, and expressed as a

function of as

(2.2)
where

with

(2.3)

III. STOCHASTIC CRBS

To derive the stochastic CRB of the parameter alone,
two approaches could be considered. One of them consists
in computing the asymptotic covariance matrix of the ML
estimator, and the other is obtained directly from the extended
Slepian–Bangs formula derived in [10]. The first approach
has been successfully used in the case of uniform white noise
fields in [2] and [10], where a closed-form expression of the
log-likelihood function concentrated with respect to the full set
of the signal and noise nuisance parameters was available [11].
In the case of nonuniform white and linearly parameterized
noise fields, such property has appeared to be impossible to
obtain in [6] and [14], respectively. Consequently, we con-
centrate on the second approach. To adapt the proofs given in
the circular Gaussian case in [3], [6] and [7] in the uniform
white, nonuniform white and arbitrary unknown parameterized
noise field respectively, to the noncircular case, the key point

where is a constant nonsingular matrix must
be preserved. Because is structured [see (2.3)], we must
first prove that the stochastic CRB for the DOA parameter is
insensitive to the constraints on . To prove such a property,
we consider the ML estimation of .

A. Maximum Likelihood Estimation

We first note that the log-likelihood function associated with
the PDF (2.2) can be classically written (see e.g., [12] and [2])
after dropping the constants as

(3.1)

with where the parameter
is embedded in the covariance matrix . Due to the structures
of and in (see (2.3)), the ML estimation of
becomes a constrained optimization problem which is not stan-
dard. Despite this difficulty, we prove in Appendix A in the fol-
lowing lemma.

Lemma 1: If the sample covariance matrix is positive
definite, the joint constrained and unconstrained ML estimates
which maximize the log-likelihood function (3.1) coincide.

B. Stochastic Cramer–Rao Bound Expressions

From the previous lemma, the stochastic CRB for the
signal DOAs associated with the constrained and uncon-
strained array signal models coincide. Using the unconstrained
model, let with here contains the

real parameters of the unconstrained matrices , i.e.,
.

With this unconstrained model, we can follow along the lines
of the derivation given in [7] where
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is replaced here by because the key
point of the derivation, i.e., the relation where

is a constant nonsingular complex matrix is preserved. By
adapting the proof given in [7], the following result is proved
in Appendix B.

Result 1: The normalized (i.e., for ) DOA-related
block of CRB for noncircular complex Gaussian (NCG) sources
in the presence of an arbitrary unknown (AU) noise field is given
by the following explicit expression:

(3.2)

using real matrices

(3.3)

(3.4)

with

where the vector contains one in the th position and zeros
elsewhere and ,

, , ,

, ,

,
and .

When the noise is spatially uncorrelated with different
sensor noise variances (nonuniform white noise), i.e.,

. Result 1 takes the following
form that is proved in Appendix C.

Result 2: For noncircular complex Gaussian sources, the
normalized DOA-related block of CRB under the nonuniform
(NU) white noise assumption is given by the following explicit
expression:

(3.5)

using real matrices

(3.6)

(3.7)

C. Single Source Case

In the particular case of one signal source, it is shown in Ap-
pendix D that the stochastic CRB given by Result 2 can be sim-
plified to

Result 3: The CRB of for a noncircular complex Gaussian
source corrupted by nonuniform white noise field is given by the
expression

(3.8)

where the noncircularity rate is defined by
and satisfies ( is the cir-

cularity phase of ). The SNR is defined as in [6, rel.

(48)] by

where , and is the noise dependant factor

with and .
Expression (3.8) is similar to those given in the uniform

white noise case [10, rel. (3.14)], except that here, the term
given in Result 3 is not a purely geometric factor. Con-

sequently, similarly as in the uniform white noise case [10,
Result 5], the stochastic CRB decreases monotonically as the
SNR increases and as the noncircularity rate increases from

( , cir-
cular case) to
( ). We note that an expression of has
already been given [6, rel. (46)], but with a more intricate
expression.

We note, that Result 1 cannot be simplified in the case of
one signal source because here the expression of the product

is very intricate.

IV. DISCUSSION

In this section, we consider parameter identifiability and com-
parisons of our derived expressions to well known results on the
stochastic and deterministic CRBs.

A. Parameter Identifiability

An issue of great importance is the parameter identifiability.
That is, how many parameters, can be uniquely estimated from

and . Naturally, the necessary condition (see, e.g., [7,
rel. (45)]) derived from the non singularity of the Fisher in-
formation matrix associated with the unconstrained model, i.e.,
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is not sufficient. For example, a
more severe necessary condition is that the number of unknown
real-valued parameters is no more than the number of indepen-
dent equations. It follows from (2.1), that this is equivalent to

Consequently in the case of noncircular signals, the number
of real-valued unknown coefficients which are used to parame-
terize the noise covariance can be larger than in the standard
circular case.

B. Comparisons Between CRBs

Consider the situation when the source signals are circular
complex Gaussian (CG) while yet, not using this, therefore

and consequently , and

. Then our general stochastic CRB formulae given
by Results 1 and 2 simplify to the well known bounds in the
circular complex case

where

(4.1)

in the case of arbitrary unknown noise field and

where

(4.2)

in the case of nonuniform white noise field, both derived from
the circular complex Slepian–Bangs formula in [7] and [6], re-
spectively. Consequently

Next, let us consider the situation when the noise is uniform
and spatially white ( ) while yet, not using this, the noise is

modeled using parameters. Comparing (3.2) and (3.5)
under these conditions with

(4.3)

obtained in [10], we have because is
nonnegative definite

For uniform white noise field and now if this a priori knowl-
edge is taken into account . Hence becomes
an 1 vector and . From (B.5),
we obtain

because the column space of is generated by the column
space of . Therefore, as expected, our general stochastic CRB
formulas (3.2) and (3.5) simplify to (4.3) in the uniform white
case.

The next result compares the CRBs [resp.
] and [resp. ] associated

with Gaussian sources with the same first covariance matrix
.

Result 4: The DOA-related block of CRB for noncircular
complex Gaussian sources is upper bounded by the associated
CRB for circular complex Gaussian sources corresponding to
the same first covariance matrix and the same arbitrary noise
covariance matrix

(4.4)

Proof: For , this result is proved in [10] and
for a single source corrupted by nonuniform white noise, this
result is a consequence of Result 3. For an arbitrary number of
sources and an arbitrary noise covariance matrix , we have to
elaborate a little bit because the structure of the matrices and

(see (3.3) (3.4), (3.6) (3.7) and (4.1) (4.2)) are very intricate.
Consider the ML estimate of derived under the circular

Gaussian distribution for an arbitrary noise covariance matrix
. By the asymptotic efficiency of the ML estimator, its

asymptotic covariance matrix satisfies:

This ML.CG estimator is given by a second-order algorithm
built from . To proceed, we need the following lemma that
is proved in Appendix E.

Lemma 2: All DOAs consistent estimates given by second-
order algorithms based on only, that do not suppose ex-
plicitly the sources to be spatially uncorrelated, are robust to the
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noncircularity of the Gaussian sources, i.e., the asymptotic per-
formances are those of the standard complex circular Gaussian
case.

Consequently, if the ML.CG estimator is used under noncir-
cular Gaussian sources with the same noise covariance , the
asymptotic covariance matrix of its DOAs es-
timate which is based on only, is preserved.

This observation, along with the general CRB inequality, im-
plies that

and the proof is complete.
Let us now compare the stochastic and asymptotic determin-

istic CRBs in the case of colored or nonuniform white noise
field for noncircular complex source signals. First, we note that
the following expression of the asymptotic deterministic CRB
proved in [6] in the circular case remains valid in the noncircular
case as well

(4.5)

We prove in Appendix F, the following result.
Result 5: If is nonsingular

We note that may be singular when and are nonsin-
gular, for example when the sources are uncorrelated with non-
circularity rate equals to 1. We prove in Appendix E that this
result extends to this particular case.

V. ILLUSTRATIVE EXAMPLES

The purpose of this section is to illustrate Results 1-4 and to
compare these stochastic CRBs to the stochastic CRBs under
circular complex Gaussian distributed source signals as well
with the deterministic CRB. We consider throughout this section
one or two independent and equipowered sources with identical
noncircularity rate ( ). These sources impinge on a uni-
form linear array of separated by a half-wave-
length for which where

with , the DOAs relative to the normal of array
broadside. We assume that the noise field is modeled by the three
following covariance matrices , . The first two
models and the third model come from [7] and [6], respectively.

Fig. 1. CRB (� ), CRB (� ) and CRB (� ) as a function of �
for the first and second models with �� = 0:1 rd, SNR = 0 dB and �� =
0:52 rd.

Fig. 2. CRB (� ), CRB (� ) and CRB (� ) as a function of the
SNR for two values of the DOA separation with �� = 0:52 rd.

In the first two colored noise field models, where
is the “color” parameter and the signal-to-noise (SNR) is defined
by and in the nonuniform white noise field model

and the SNR is defined by .
In Figs. 1 and 2, we consider two sources and compare the sto-

chastic CRBs under circular and noncircular (with
) complex Gaussian distributed source signals to the determin-

istic CRB. The first two and the third noise field models are
used in Figs. 1 and 2 respectively. Fig. 1 shows the bounds

, and 1 plotted against
for and . Compared to

1All the CRBs are computed for T = 1. Note that you find by simulation
that the different CRBs depend on � , � , � , � by only �� = � � � and
�� = � �� for two equipowered sources with identical noncircularity rates.
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Fig. 3. Ratio r = CRB (� )=CRB (� ) as a function of the
noncircularity rate � for different values of the SNR.

Fig. 4. Ratio r = CRB (� )=CRB (� ) as a function of the
noncircularity rate for different values of DOA separation with SNR = �5 dB
and �� = 0:52 rd.

[7, Fig. 1], we note a similarity of behavior of these CRBs. We
note that when decreases all the CRBs approach zero because

becomes singular. When , the two first noise model
transform to the uniform white noise model and each of the three
CRBs associated with the two models merges. Fig. 2 that dis-
plays these bounds versus the SNR for two DOA separations
shows that the difference between ,
increases as the DOA separation and the SNR decrease. In these
two figures, we see that the stochastic CRB under noncircular
complex Gaussian distributed sources is visibly larger that the
deterministic CRB. From Fig. 2, this difference between these
bounds is more prominent for low DOA separations and SNRs
and these bounds coincide for high SNRs.

In Figs. 3–5, we compare the noncircular Gaussian CRB
with the circular Gaussian CRB by means of the ratio

for the third noise model.
Fig. 3 illustrates Result 3 where a single source is considered.

Fig. 5. Ratio r = CRB (� )=CRB (� ) as a function of the DOA
separation for different values of SNR with � = � = 1 and �� = 0:52 rd.

It shows that decreases monotonically as the
noncircularity rate increases but is relatively insensitive to this
increase except for very low SNR ( ).

Figs. 4 and 5 consider two sources and examine the depen-
dence of the ratio with the noncircularity rate , the
DOA separation and the SNR. Fig. 4 shows
that decreases as the noncircularity rate increases
(this extends to two equipowered and independent sources a
property proved in the one source case). Furthermore this de-
crease is more prominent for low DOA separation. Fig. 5 shows
that decreases as the DOA separation and the SNR decreases
and the difference of order of magnitude between
and is quite significant for low DOA separations
and SNRs.

VI. CONCLUSION

In this paper, the stochastic CRBs of the DOA parameter esti-
mates for noncircular complex Gaussian sources in the general
case of an arbitrary unknown Gaussian noise field is considered.
New closed-form expressions of these bounds have been pre-
sented. Compared with the deterministic CRB and the circular
complex Gaussian CRB, some properties have been proved and
some numerical examples with particular noise fields have been
exhibited. They show that the difference between the noncir-
cular and circular complex Gaussian CRB may be quite signif-
icant, particularly for low DOA separations and SNR’s. Con-
sequently our derived noncircular complex Gaussian CRB pro-
vides a tighter upper bound on the CRB under noncircular com-
plex discrete distribution compared to the standard circular com-
plex Gaussian CRB.

APPENDIX I
PROOF OF LEMMA 1

Maximizing the log-likelihood (3.1) without any constraint
on the Hermitian matrix reduces to a standard maximiza-
tion problem, whose derivation follows the steps in [12]. A nec-
essary condition for an extremum of (3.1) with respect to is
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that the partial derivatives of (3.1) with respect to the entries of
be equated to zero. Jaffer [12]shows that this condition is

equivalent to [12, rel. (4)], which is preserved here, where
is replaced by . It yields here

(A.1)

In order to obtain an expression of , we need an expres-
sion for the inverse of . We omit the dependence of on

to simplify the notation and define

with

where . From the matrix inversion lemma (see
e.g., [2, Lemma A.3]), we obtain

and after some straightforward calculations

Using this relation, the condition (A.1) becomes

(A.2)

Inserting the expression of in (A.2) we get

Consequently, the ML estimates of is given by

(A.3)

with

Because and are partitioned as

with and

, the unconstrained ML estimates of
(A.3) is partitioned as well. Consequently, the joint constrained
and unconstrained ML estimate of coincide.

APPENDIX II
PROOF OF RESULT 1

Based on the Fisher information matrix given here by the ex-
tended Slepian–Bangs formula derived in [10]

all the steps of the derivation of [7] apply where the [7, rel. (19)]
is replaced by

...

...

Then, [7, rels. (20) and (22)] become, respectively

Consequently, [7, rels. (17), (31), (39), (40)] become

(B.4)

with

(B.5)

(B.6)

with ,

and where

, . Exploiting the similar

structure of and , we obtain the first

equation shown at the bottom of the next page. This gives,
after some straightforward calculations

(B.7)
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Finally, adapting the same calculations used to derive the
closed-form expression of , to matrices (B.5) and

(B.6). [7, rels. (43) and (44)] are replaced by (3.3) and
(3.4), respectively.

APPENDIX III
PROOF OF RESULT 2

All the steps of the derivation of [7, Section V.1] apply where
here

with . Inserting this into (B.5) and (B.6), [7,
rels. (54) and (56)] and [7, rel. (55)] are replaced, respectively,
by the second equation shown at the bottom of the page. Fol-
lowing the last steps of [7, Sec. V.1] and rewriting [7, rel. (59)]
as and , Result 2 is
proved.

APPENDIX IV
PROOF OF RESULT 3

In the single source case, the two covariance matrices must
be rewritten as

Consequently thanks to the matrix inversion lemma, we get

(D.8)

with and where
is a real constant. In the case of

nonuniform white noise field, the proof follows along the lines
of [6, App. D]. Using with is a real-valued
diagonal matrix, the matrix (3.6) becomes

because is a real-valued diagonal ma-
trix and consequently is
a real row vector. Using the structure of and (D.8), (3.8)
follows thanks to straightforward but tedious calculations.

APPENDIX V
PROOF OF LEMMA 2

Based on the assumptions of the lemma, the Jacobian matrix
of the mapping that associates the estimate to

satisfies the constraint (see [15])

and because the covariance matrix of the asymp-
totic distribution of is given by simple al-
gebraic manipulations of

which is a simple exten-
sion of the expression of given in [16] for
and for an arbitrary second-order distribution:

with , the first term of
which contains disappears in the expression of the

covariance of the asymp-
totic distribution of .
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APPENDIX VI
PROOF OF RESULT 5

Applying [2, rel. (4.3)] to the relation ,
we have

is positive definite
(F.9)

and the left upper block of (F.9)

is positive definite as well.

Consequently thanks to (4.5) and (B.7).
Because is positive definite (see [7, rel. (18)]), Result 4
follows from applied to (B.4).

In the particular case where the sources are uncorrelated with
noncircularity rate equals to 1, where and are
diagonal with and

Result 4 extends by applying now [2, rel. (4.3)] to the relation
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