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Stochastic Cramér–Rao Bound for Noncircular
Signals with Application to DOA Estimation

Jean-Pierre Delmas, Member, IEEE, and Habti Abeida

Abstract—After providing an extension of the Slepian–Bangs
formula for general noncircular complex Gaussian distribu-
tions, this paper focuses on the stochastic Cramér–Rao bound
(CRB) on direction-of-arrival (DOA) estimation accuracy for
noncircular sources. We derive an explicit expression of the CRB
for DOA parameters alone in the case of noncircular complex
Gaussian sources by two different methods. One of them consists
of computing the asymptotic covariance matrix of the maximum
likelihood (ML) estimator, and the other is obtained directly from
our extended Slepian–Bangs formula. Some properties of this
CRB are proved, and finally, it is numerically compared with the
CRBs under circular complex Gaussian and complex discrete
distributions of sources.

Index Terms—Maximum likelihood estimation, noncircular sig-
nals, stochastic CRB.

I. INTRODUCTION

DETERMINISTIC and stochastic Cramér–Rao bound
(CRBs) play an important role in parametric estimation

because the statistical performances of numerous estimation
methods are known to be comparable with these bounds under
certain mild conditions. Moreover, the stochastic CRB can be
achieved asymptotically (in the number of measurements) by
the stochastic ML method. Most of the contributions on the
stochastic CRB are dedicated to Gaussian distributions for
which a particularly convenient CRB formula was obtained
for real Gaussian distributions by Slepian [1] and Bangs [2],
which are referred to as the Slepian–Bangs formula, then
extended to circular complex Gaussian distributions (see, e.g.,
[3, rel. (B.3.25)]). As is well known, the importance of the
Gaussian CRB formulas lies in the fact that Gaussian data
are rather frequently encountered in applications. Another
important point is that under rather general conditions, the real
[resp. circular complex] Gaussian CRB matrix is the largest
of all CRB matrices among the class of arbitrary real [resp.
circular complex] distributions with given mean and covariance
matrices (see, e.g., [3, p. 293]). However, noncircular complex
signals are frequently encountered in digital communications.
For example, binary phase shift keying (BPSK) is often used,
and no closed-form expression of the CRB is available for
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these signals. Consequently, for noncircular complex signals,
we need an upper bound of this CRB, but to the best of our
knowledge, the Slepian–Bangs formula has yet to be extended
to noncircular complex Gaussian distributions.

The first contribution of this paper is to give an extended
Slepian–Bangs formula based on the work of [4]. Then, we con-
centrate on direction-of-arrival (DOA) estimation. For noncir-
cular Gaussian sources, an explicit expression of the CRB for
DOA parameters alone is derived from two different methods.
One of them is obtained in an indirect manner by an asymp-
totic analysis of the ML estimator by slight modifications of the
proof given by Stoica et al. [7], and the other is obtained directly
from our extended Slepian–Bangs formula by following along
the lines of the paper by Stoica et al. [5]. We prove that this CRB
generally outperforms the circular complex Gaussian CRB as-
sociated with the same Hermitian covariance matrix. Next, we
prove that this CRB decreases monotonically as the noncircu-
larity rate increases in the particular case of one source. Finally,
numerical comparison of the CRB under BPSK and noncircular
Gaussian distributions are given. In particular, we show that for
one source, the CRB under the BPSK distribution and under the
noncircular complex Gaussian distribution approximately coin-
cide, but for two equipowered uncorrelated BPSK sources, the
CRB under the BPSK distribution outperforms the CRB under
the noncircular complex Gaussian distribution, and the differ-
ence between them is more prominent for small DOA and phase
separations.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold uppercase and
bold lowercase characters, respectively. Vectors are by default
in column orientation, whereas , , and stand for transpose,
conjugate transpose, and conjugate, respectively. is the
Hadamard matrix product (i.e., ),
and is the ortho-complement of a projector matrix. Tr ,
det , In , , and denote the trace, the determinant,
the logarithm, and the real and the imaginary part operator,
respectively.

II. STOCHASTIC CRB FOR NONCIRCULAR GAUSSIAN SIGNALS

We consider a -variate complex Gaussian random variable
(RV) , whose structured mean

and covariance matrices

and are parameterized by
the real parameter . Considering the Fisher information
matrix, we prove the following result.
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Result 1: The Fisher information matrix corresponding to
the nonnegative definite and noncircular complex Gaussian dis-
tribution is given (elementwise) by

Tr

(2.1)

with and 1.

Proof: Because the nonsingular -variate complex
Gaussian RV is simply a -variate real Gaussian RV

, with mean and arbitrary non-neg-
ative definite symmetric covariance matrix , the real
Slepian–Bangs formula (see e.g., [3, rel. (B.3.3)]) can be
applied:

Tr (2.2)

Then, thanks to the relation with

proved in [4], using

and

in (2.2), result 1 is proved.
Remark: We note that for circular complex Gaussian RVs,

; consequently, (2.1) reduces to the circular

complex Gaussian Slepian–Bangs formula [3, rel. B.3.25].

III. APPLICATION TO DOA ESTIMATION FOR

NONCIRCULAR SOURCES

In the following, we will be concerned with the signal model

where represents the independent identically dis-
tributed -vectors of observed complex envelope at the sensor
output. is the steering matrix where each
vector is parameterized by the real scalar parameter .

and model signals transmitted by
sources and additive measurement noise, respectively.

and are multivariate independent, complex zero-mean.
is assumed circular complex Gaussian, spatially uncorrelated
with , whereas is either noncircular
complex Gaussian or complex discrete distributed and possibly
spatially correlated or even coherent with and

1We note that contrary to ��� , R is block structured, where R and R
are, respectively, Hermitian complex and symmetric complex. Consequently,
the sample matrix R is not described by a traditional 2n-variate complex
Wishart distribution.

. Consequently, this leads to the covariance
matrices of :

and

If no a priori information is available, is
generically parametrized by the

real parameters with ,
and

The parameter is supposed to be identifiable from
in the following sense:

and (3.1)

A. Indirect Derivation of the Stochastic CRB for Noncircular
Sources

To derive the stochastic CRB of the parameter alone, we
consider the asymptotic covariance of the ML estimator. We
first note that the probability density function (PDF) of that is
considered to be a -variate real Gaussian RV is given by an
expression that is similar to that of the PDF in the circular case,

provided it is expressed as a function of . From [4,

rel. (15)], we have

det

(3.2)

where

with

(3.3)

and . Then, classically (see, e.g., [6] and [7]),

after dropping the constants, the log-likelihood function can be
written as

In det Tr (3.4)

where , where the parameters
and are imbedded in the covariance matrix . In (3.4),
depends on , which is structured via (3.3). Due to these con-
straints, the ML estimation of becomes a constrained
optimization problem, which is not standard. Despite this dif-
ficulty, we prove in the following that the ML estimate of the
DOA parameters and source and noise covariance parame-
ters may be obtained in a separable form. We are restricted
here to the case where and is full column rank.

Result 2: If the sample covariance matrix is positive
definite, the joint ML estimates that maximize the log-likelihood
function (3.4) subject to the constraints (3.3) are given by the
following:
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is obtained by the minimizing with respect to

In det (3.5)

where , and are given by

(3.6)

and

Tr

where is the projection matrix
. Furthermore

(3.7)

and

(3.8)

where , and
.

Proof: Maximizing the log-likelihood (3.4) without any
constraint on the Hermitian matrix reduces to a standard
maximization problem. Its solution is given (e.g., in [6] and [7])
by the minimization of (3.5), where is given by (3.6) and

by

Tr

Because , , and then
and are all partitioned of the form

, (3.6) is also partitioned of this form, where the

matrices and are given by (3.7) and (3.8), respectively.

Finally, because and

, result 2 is proved.

Because the dimension of that parametrizes our model is
fixed, it follows from the standard statistical theory of ML esti-
mator (see, e.g., [9]) that the ML estimator of asymptotically
(in the number of measurements) achieves the CRB for esti-
mation. Consequently, an explicit expression of the CRB of
alone can be derived thanks to an asymptotic analysis of the ML
estimate of given by result 2. Thus, by adapting the proof
given in [7], the following result is proved.

Result 3: The normalized (i.e., for ) DOA-related
block of CRB for noncircular complex Gaussian (NCG) sources

is given by the explicit expression in (3.9), shown at the bottom
of the page, where .

Proof: Deriving the covariance of the asymptotic
distribution of the minimizing of the function
[see (3.5)], depending on the unknown and the statistics

is a standard problem. Its solution is given by (see, e.g.,
[5])

(3.10)

where is the gradient of , and is the
limit of the Hessian of when . Because it is
proved in result 2 that the constrained ML estimate of [i.e.,
with satisfying the constraints (3.3)] coincides with the un-
constrained ML estimate of (i.e., where is an arbitrary
Hermitian matrix), we can follow along the lines of the deriva-
tion given in [7], where is replaced
here by . and ; then,

are derived in Appendix A thanks to slight modifications
w.r.t. [7]. More precisely, [7, rel. (3.7)] is generalized to

(3.11)

and [7, rel. (3.8)] is generalized to

(3.12)

where and are, respectively, the th row of the ma-
trices

and

Remark 1: We note that for circular complex Gaussian (CG)

sources, , and . Consequently, (3.9)

reduces to

indirectly derived in [7] and then directly derived from the cir-
cular complex Stepian–Bangs formula in [5].

The next result compares the CRBs and associ-
ated with sources with the same first covariance matrix .

(3.9)
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Result 4: The DOA-related block of CRB for noncircular
complex Gaussian sources is upper bounded by the associated
CRB for circular complex Gaussian sources corresponding to
the same first covariance matrix .

(3.13)

Proof: First, from [7, lemma A.4], we have

with and

, and this inequality applies to the transpose

of these matrices: . Then, because
, we have, thanks to a standard result of

linear algebra (see, e.g., [3, App. A, result R.19],
. This inequality is extended to the associated

real symmetric matrices ;
then, by inversion,

.
In the particular case of one source, we prove the following:
Result 5: The CRB of for a noncircular complex Gaussian

source decreases monotonically as the noncircularity rate in-
creases and is given by the expression

(3.14)
where the noncircularity rate is defined by

and satisfies . is the circularity
phase of (it will be used in Section III-C). The SNR is

defined by , and is the purely geometrical

factor with .
Proof: First, note that the structure of the inverse of

in (3.9) is preserved, i.e., with

and .
With and ,
(3.14) follows thanks to straightforward but tedious calcula-
tions. The monotony of with is proved in Appendix B.

Consequently, for one source, the CRB decreases from
( , circular case) to
( , unfiltered BPSK case).

B. Direct Derivation of the Stochastic CRB for Noncircular
Sources

To directly prove result 3 from the Fisher information matrix
(2.1), we first note that thanks to the proof of result 2, the con-
strained ML estimate of coincides with the unconstrained
ML estimate of . Consequently the associated CRB’s of
coincide for these two models. Using the unconstrained model,
let with here where

Fig. 1. Ratio r = C = C as a function of the

noncircularity rate for different values of DOA separation (��) for � = �=2
and � = �=3.

With this unconstrained model, we can follow along the lines of
the derivation given in [5] where is re-
placed here by because the key point
of the derivation, i.e., the relation vec where is a
constant nonsingular complex matrix, is preserved. In addition,
(3.9) is proved in Appendix C thanks to slight modifications of
the direct derivation given in [5].

We note that the validity conditions of result 2 are “
and is full column rank,” whereas the identifiability condition
(3.1) does not impose such conditions if a priori knowledge
is available. For example, in the case of a uniform linear
array and independent sources of maximum noncircularity
rates ( ), it is shown in the simulations of
[1] that up to sources can be identified. In
these cases, we have to resort to the CRB derived from the
closed-form expression of the asymptotic minimum variance for
complex noncircular Gaussian signals [3]. This remark extends
to noncircular Gaussian signals; the discussion considered in
[2] extends to circular Gaussian signals.

C. Illustrative Examples

The purpose of this section is to illustrate results 3–5 and
to compare these CRBs with the CRB associated with BPSK
distributed sources. We consider throughout this section one
or two independent and equipowered sources with identical
noncircularity rate. These sources impinge on a uniform linear
array of sensors separated by a half-wavelength for which

, where
with , which are the DOAs relative to the normal of array
broadside.

The first experiment illustrates results 3 and 4. We consider
two noncircular complex Gaussian sources with
and SNR 20 dB. Figs. 1–3 exhibit the dependence of
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Fig. 2. C as a function of the circularity phase separation for

different values of DOA separation (��) for � = � = 1.

Fig. 3. C and C as a function of the DOA separation

for � = � = 1 and � = �=2 and � = �=3.

2 with the noncircularity rate , the circu-
larity phase separation , and the DOA separation ,
respectively. Fig. 1 shows that decreases as the
noncircularity rate increases (this extends to two equipowered
sources result 5 proved in the one source case). Furthermore,
this decrease is more prominent for low DOA separations. Fig. 2
shows that is sensitive to the circularity phase sep-
aration for low DOA separations, and Fig. 3 illustrates the in-
equality (3.13) of result 4. It shows that the difference between
these two values is very sensitive for very low DOA separations
only. Fig. 4 compares the noncircular complex Gaussian CRB

with the noncircular complex Gaussian CRB

2All the CRBs are computed for T = 1. That means that the actual CRBs
associated with the signal model defined in Section III are obtained from the
results given in this section by dividing by T .

Fig. 4. Ratio r = C = C as a function of the

noncircularity rate for different values of DOA separation (��) for � = �=2
and � = �=3.

Fig. 5. Ratio r = C = C as a function of the noncircularity rate
� for different values of the SNR r .

Fig. 6. C , C , and C as a function of the SNR.
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Fig. 7. C (o o o), and C , C ,

C as a function of the SNR for a DOA separation of 0:1rd,

� = � = 1 and � = �=2, � = �=3.

under the a priori information that the two sources are indepen-
dent,3 given in [11], by a nonexplicit expression. Fig. 4 shows
that this a priori information is quite informative, but this infor-
mation gain decreases as the noncircularity rate increases. This
is particularly prominent for low DOA separations.

The second experiment illustrates result 5, where a noncir-
cular complex Gaussian source and are considered.
Fig. 5 shows that the CRB decreases monotonically as the
noncircularity rate increases but it is relatively insensitive to the
increase of , except for very low SNR (i.e., for ).

The two last experiments compare the numerical values
of the noncircular complex Gaussian CRB 4 with
those of the CRB associated with several BPSK
distributed sources. Because the associated PDF of is a
mixture of Gaussian PDFs, this latter CRB appears to
be prohibitive to compute, and we use a numerical approx-
imation derived from the strong law of large numbers, i.e.,

with

In In

where

with

where are given by the dyadic expansion
, for

independent unfiltered (i.e., ) BPSK sources

3We note that the explicit expression (3.9) does not take account of this a
priori information because it has been derived without any constraint on R
and R .

4We note that in the one source case,C andC coincide.

Fig. 8. C (o o o) and C as a function of the

circularity phase separation for different values of DOA separation (��) for
SNR = 20 dB.

Fig. 9. C (o o o) and C as a function of the DOA

separation for different values of circularity phase separation (��) for SNR =

20 dB.

for which , where, here,
.

In the third experiment, we consider the one source case
where . Fig. 6 compares , , and .
This figure shows that the CRBs under the BPSK distribution
and under the noncircular complex Gaussian distribution (with

) approximately coincide. They outperform the CRB
under the circular complex Gaussian distribution for low SNR
only.

The last experiment illustrates the sensitivity of the CRB of
the DOA to the distribution of the sources for two sources with

when the a priori information that the two sources
are independent are taken into account. Figs. 7–9 exhibit the
difference between 5 (for ) and

5We note that comparing directlyC toC would be unfair because
these CRBs are not associated with the same a priori information.
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Tr

Tr

as a function of the SNR, the circularity phase
separation , and the DOA separation , respec-
tively. Fig. 7 shows that for the same a priori information,

slightly outperforms for all SNRs

but tremendously outperforms the CRBs and

, which do not take account of this a priori infor-

mation. Figs. 8 and 9 show a weak sensitivity of
to the circularity phase separation and to the DOA
separation w.r.t. , which is very sensitive.

They also show that the difference between (for

) and increases as the circularity
phase separation or the DOA separation decreases.

IV. CONCLUSION

This paper has provided an extension of the Slepian–Bangs
formula for general noncircular complex Gaussian distributions
and has then focused on the stochastic CRB on DOA estimation
accuracy for noncircular Gaussian sources. An explicit expres-
sion of the CRB for DOA parameters alone in the case of noncir-
cular complex Gaussian sources by two different methods has
been derived. Some properties of this CRB have been proved,
and finally, it has been numerically compared with the CRBs
under BPSK distribution.

An issue that was not addressed in this paper is the stochastic
CRB of BPSK or QPSK distributed sources and the comparison
of these CRBs with those of the noncircular or circular complex
Gaussian distribution. A paper has just been submitted to deal
with this issue.

APPENDIX A
PROOF OF (3.9)

All the steps of the derivation of [7] apply with slight
modifications. For the stochastic gradient and the deterministic
hessian calculations, [7, rel. B(.16)] and [7, rel. B(.15)] apply
where and are replaced, respectively, by and .
Using the partitioning of , , and , (3.11) and (3.12)
follow.

For the derivation of (3.9) from (3.10), all the steps of [7]
apply, to prove that

, except that here, four terms are concerned from the
expression of (3.11).

APPENDIX B
PROOF OF THE MONOTONY OF WITH

Because (3.14) may be written as the following function of

with

and

and that , is a
decreasing function of .

APPENDIX C
INDIRECT PROOF OF (3.9)

All the steps of the direct derivation of [5] apply, where [5,
rel. (15)] is replaced by

... and

...

and [5, rels. (16)–(18)] become, respectively

with

and

and

Consequently, [5, rel. (30)] becomes the first equation at the
top of the page. Then, thanks to

, [5, rel. (32)] must be re-

placed by the second equation at the top of the page. Exploiting

the structure of , (3.9) is straightforwardly

deduced.
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