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Asymptotic Eigenvalue Distribution of Block Toeplitz more particularly the lowest nonzero eigenvalue) of block Toeplitz ma-
Matrices and Application to Blind SIMO Channel trices is highly justified and constitutes the subject of this correspon-
Identification dence.
This correspondence is organized as follows. In Section Il, results on
Houcem GazzghStudent Member, IEEE asymptotic equivalence of Toeplitz matrix sequences as well as Szegé’s
Phillip A. Regalig Fellow, IEEE and theorem are reviewed for convenience of the reader and in order to fix
Jean-Pierre Delmaslember, IEEE notations. In Section I, we propose a new proof of Szegd’s theorem

extended to block Toeplitz matrices with non-Toeplitz blocks where the

) _ _ number of blocks tends to infinity. We address then a specific class of

he ﬁ?;éﬁ?ﬂsgeﬂoas I—Itzfncilirtei;?] ?E)aégﬁtzthni;t?&eisaﬁzﬂqerﬁotictr?gi%vdﬂrerm block Toeplitz matrices, that of SIMO channel covariance matrices. In
transform of its entries. This result was later extended to block Toeplitz Section IV, |mpllcat|on§ f‘?r blind channgl |dent|f|cat|on are discussed
matrices, i.e., covariance matrices of multivariate stationary processes. and the case of band-limited channels is particularly addressed.

The present work gives a new proof of Szegd’'s theorem applied to block

Toeplitz matrices. We focus on a particular class of Toeplitz matrices, those II. NOTATION AND PREVIOUS RESULTS

corresponding to covariance matrices of single-input multiple-output

(SIMO) channels. They satisfy some factorization properties that lead to Let {tx}k=.. —1,0.1, .. be an absolutely summable infinite com-

a simpler form of Szegd's theorem and allow one to deduce results on the plex sequence (i'eZk |tx| < oo) so that the associatetk-periodic

asymptotic behavior of the lowest nonzero eigenvalue for which an upper . s Likw . .
bound is developed and expressed in terms of the subchannels frequencyFOurler transformt (w)= Zk fre is well defined. We define the

responses. This bound is interpreted in the context of blind channel infinite matrix sequenceT’,, (¢)},.>1 whereT",, (¢) is then x n Toeplitz
identification using second-order algorithms, and more particularly in the  matrix given by
case of band-limited channels.

Index Terms—Asymptotic eigenvalue distribution, band-limited chan- to to1 ot
nels, blind identification, block Toeplitz matrices, multivariate processes,

second-order statistics algorithms. t

T.(t)= o ey

I. INTRODUCTION thon tng - to

In a celebrated result appearing in [1], Szeg0 states that the eigen-
values of a sequence of Hermitian Toeplitz matrices are asymptoticallyConsider a sequence »fx n matricesA,,. To study the asymptotic
distributed like the samples of the Fourier transform of its entries. Tleguivalence of sequences of such matrices, two norms have been intro-
lowest/highest eigenvalues are decreasing/increasing and convergaued [5]. The strong norifpd,, || and the weak norrfd., | are defined,
the minimum/maximum of this Fourier transform. The application ofespectively, as the spectral norm
this result to covariance matrices of scalar statiohgpyocesses is
straightforward. Several extensions have since been made (see [2]). |4, |*= max 2""AT A, 2
The mostimportant extends Szeg6's theorem to block Toeplitz matrices [l=ll=1
with non-Toeplitz blocks where the number of blocks tends to infinity
[3], [4]. However, the proof made therein relies on sophisticated matand as the normalized Frobenuis norm
ematics. In this correspondence, we suggest a simpler proof than that in
[3], [4] of the extension of the Szeg® theorem to block Toeplitz struc- S )
tured matrices. We use the asymptotic equivalence of matrix sequences |4n] ~n Z Z lai. ;I
and more particularly the result established by Gray in [5] on asymp- ==l
totic equivalence of Toeplitz matrix sequences and circulant matrix se-
quences. We focus then on a special class of block Toeplitz matricgs{4) (resp.,Ax(A)) refers to thekth largest singular value (resp.,
frequently encountered in signal processing, to give a simpler form @genvalue) of the matrix (resp., the square matdixJ,. . represents
the Szegd theorem and deduce results about the lowest nonzero eiffivec-permutation matrix [8] such thiétc(4) = K. Vec(A”) for
value, which expresses the conditioning with respect to inversion ®f 7 X s matricesA. It satisfiesk,,, = K7 = K ..
such matrices. The following definitions and results, necessary for Section Ill, are
We target in particular second-order statistics based blind identifigg&called.
tion algorithms of single-input multiple-output (SIMO) channels where pafinition 1: Asymptotic equivalence [5].

channel output covariance matrices are manipulated in such a way thag,.o matrix sequencefA, } and{B,},n = 1, 2, ... are said to

the performance of the algorithms depends heavily on how well-congljs asymptotically equivalent and noted., } ~ {B.,} if
tioned the matrix is [6], [7]. Therefore, the interest in eigenvalues (and

IM < oc suchthavn, [|A.|| < M and||B.|| < M (1)
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exists and is finite for any positive integerthen We supposgt;”“}, u, v = 1, ..., c to be a finite set of absolutely
N summable infinite sequencésSo, the Fourier transform
. 1 8 R . ]- 5 i hew
nlgllo g ,; )\I.(An) = nlglio g I; AI,(Bn tu, L(w)ﬁ Ztlz:, uefzkw
- - k

can be associated with each sequence. Using the vec-permutation ma-
Lemma 2 [5]: For all absolutely summable sequences. g [8], we have

{tr}x=_. —1.0,1, ., there exists a sequence of circulant ma-
trices {C, (¢)} asymptotically equivalent t§T,(¢)} and given by T ({t""V =K, .T.({t""1K. ., = K,L,EZL({t“"“}K;fC
C,.(t)=UID, (t)U, whereD, (t) is a diagonal matrix with it&th

H ! u, v - u, v i
entry given by so that the matrice®, ({t*'”}) and7, ({t* V}) are similar and hence,

equivalent from an eigenvalue point of view. However, the formulation
2m(k — 1) in (4) is preferred as it allows one to handle Toeplitz blocks for which
—) results recalled in Section Il can be used. Notice that{t*'“}) is
Hermitian if and only if

T,(t"") :Tf(z‘“"")./ wo=1 ..., ¢

(Dn(f))k,k =t <

n
andU,, is the unitary discrete Fourier transform (DFT) matrix

1 _izﬂ_gk—lggz—lz

Un)k,1 = ﬁe E . or equivalently

We will make use of the fact that the eigenvector€bf(t) are in- " (w) = (" (w))" wnv=1L..,c
dependent of the sequen¢g, } and that its eigenvalues are equally
spaced samples of the Fourier transforfwr). We finally recall the B. Asymptotic Distribution of Eigenvalues
Szegbd result for a Toeplitz matrix that we will extend in Section Il to

. . Lemma 2 extends straightforwardly to the block Toeplitz matrices in
the block Toeplitz matrices:

the following.
Theorem 1—Szeg0's The_orem [1[5‘” all ab§olutely summable se- Lemma 3: For all absolutely summable sequences
quencesty tr=... —1,0,1,..., if Ty (¢t) is Hermitian, then for all func-
tions F' continuous orimin,, #(w), max,, t(w)] {0 " Ye=. —1,0,1, ...

n

1 1/ there exists a sequence of matricgs,({t**})} asymptotically
Jim > FO(Ta(t))) / F(t(w))dw. equivalent to{ 7, ({+*-*})} and given by
k=1

~ o
Cal({t""}} = U Do ({£" "D

Theorem 2 [1], [9]: For all absolutely summable sequenceghereis,, is annc x nc unitary matrix independent &, ({t***}) and

-

{te}r=..,—1,0,1,.., if T\ (t) is Hermitian, then, for any, the lowest whereD,, ({t**}) is the following matrix:
(resp., largest)eigenvalues dI",, (¢) are decreasing (resp., increasing) . - .
with » and converge tmin,, #(w) (resp.max., (w)). D,(t>") Dn(t"") -+ Dn(t"°)

D, ") Dn(t2’2) Dn(tz’“)
IIl. BLOCK TOEPLITZ MATRICES Dn({t""})= : : )
A. Definitions D, (+" 1) D, (+°2) .- D)

To extend the preceding results to block Toeplitz matrices, we definereD,, (" *) is a diagonal matrix defined as in Lemma 2.

the block Toeplitz matrix . . N . . .
Notice thatC,({¢*’”}) is no longer a circulant matrix, nor is

T, T, --- T_(-y D.({t*"}) diagonal.
. . We next prove a result on the asymptotic eigenvalue moments of
Ti({t" ")) = T, : - T (3) block Toeplitz matrices.
: K : Lemma 4: For all integerss > 1
Tnfl Tnfz e TO cn
where (T4)i—_(n_1)....n_1 arec x ¢ matrices (not necessarily Jim — > Ni(T.({t""})
Toeplitz) of entries” "=(T )u,v. v, v =1, ..., ¢. We consider the k=1
associated matrix _ L/ Z $E k2 ()R ks () R R () du
T, (t"") T.(t"?) T, (t°) 2T Sen T
Tn (t2‘1) 11:77 (t2’2) . Tn (tz‘c) (6)
T.({t""H= . . (4) .
: : Proof: BecauseZ, ({t*'*}) andC, ({t*'“}) are asymptotically
T.(t"") T.(t"%) -+ To(t"") equivalent, thanks to Lemma 1, we have

o

H 1 - ] u, v _ N 1 — ] u, v
lim —gka({t 1) = lim Ek;mcn({t h)-

n—oo CN

u, v w, v . u, v :
T ol p

whereT,, (t*'?), u, v =1, ..., c are then x n the Toeplitz matrices

w, v . . w. v 2The Szego theorem [1], as well as the extensions in [4], [3], [10], were proved
t ’ ' tf(nfz) . under weaker hypotheses on the entries of the Toeplitz matrices. The associ-
. ated sequences are there supposed to be only square summable. In this case, the
. . . Fourier transform is defined differently and the Szego theorem and its extension
[ St I ty" are more complicated to prove.

n—1 n—2
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Because\; (C,({t**})) are all the eigenvalues @, ({t*'}), the C. A Class of Block Toeplitz Matrices
preceding summation equals the traceCgf({t*"}), i.e., that of

N . : We investigate the following special case of block Toeplitz matrices.
D, ({t*¥}). This can be easily proven to be equal to

Hypothesis H1: T'(w) has rankl, for all w.
! . . ZTI'k ko k 27l'k k. k Zﬂ'k
> >tk <T> g <T> sttt < - ) This is equivalent to having for ab
ks<e k=0 ) ) )

(St ese T(w) = [t'(w), ..., ()] |T(T ()| (w), ... £(w)]

and so
Lo where[t! (w), ..., t*(w)]T and[t'* (w), ..., t°(w)]T are unit-norm
WIEI; - Z (Tt )) left and right singular vectors, respectively, associated with the unique
T k=t nonzero singular value @ (w). As this singular value is of multiplicity
1 ne1 _— one, itis, as well as the associated singular vectors, a continuous func-
= lim = Z Z o ke < il ) tion of T(w) [12, p. 14, Theorem 1.2 8jvhich, in turn, is a continuous
n function ofw by construction. Hence, by redefining(w) andt'* (w)

1<ky, ., ks<c k=0
to be, respectively,

. k2 ks @ thsr k1 ﬂ
n /7 n VITe(T(w) [t (w) and /| Te(T(w)|t"™ (w).
n—1 <

. 1 ki, k
= E lim — E tre e
n—oo N
c k=0

1<k, s ko<

1/ cro 7L
koo <ﬁ) ek <ﬁ) [t (w),....t(w)]" #0
n

" and
/1 ree N7
Thanks to the definition of the Riemann integral where the continuity of [t (w), ... 7 (w)]” #0
the 2w-periodic Fourier transform guarantees the existence, the pragf a|| «, such that" ”(w) = t*“(w)t'*(w), forallu, v =1, ..., c.

Qﬁk> H1 is equivalent to the following: there exist continuous functions

n t*(w) andt’™ (w), with

is complete. L As t“(w) and #'“(w) are continuous, the infinite sequences
If we let {tZ}/?:...,fl,o,l,,,, and{t'; K10, obt.ained as the inverse
L1 ) Fourier transforms of" (w) andt'" (w), respectivelyx = 1, ..., ¢,
o (w) et (w) are square summable and not identically zéd.is equivalent to
T(w)= ; : having
oM w) - 0 (w) ter =t 2> 0ty i=...,=1,0,1,...
k

(Hermitian for allw if 7,,({#**“}) is Hermitian), the summation in
the right-hand side of (6) is nothing but the trace(#%w))” whose I-€.,
eigenvalues are those B¥w ) to the power ofs. Consequently, (6) is

u, v u w u v A T
equivalent o t =ttty e s e, ]
Lo 1 & Consequently, the hypothedi is equivalent to
lim — M (Tt ))) = —/ Ao (T(w)) dw. T
n—oo N ,; Q'TT -7 _ T(n)(fl) T(n)(tll) 1
Hence, for any polynomiaP, we have T.({t" "} = : : ©)

1 Ty (t9) ] LTy (')

) cn ) . B 1 — c ' ‘ '
nlglioﬁépo"“(]"({t ) = ﬁ/ﬂ ZP[)‘“‘(T(“]))M“" where T,y (t*) (resp., T¢y(t'™)), v = 1,...,c, denotes the

u=t n rows Toeplitz matrix of first row[..., t“,, t&, t¥, ...] (resp.,
Invoking the Stone—Weierstrass approximation theorem (recallgd., +'*,, #'5, #'Y, ...]). Furthermore, if 7,({t***}) is Hermi-

in [5]), whenT'(w) is Hermitian for allw, this relation extends to tian and positive semidefinitefi1 is fulfilled iff '} = (t*,)",
all functionsF' continuous offmin, A.(T(w)), max, \(T(w))]. w=1,...,cor equivalentlyT',,,(¢'") = T(,(t"), e,
Thus, the following result extends Szegé'’s theorem to block Toeplitz Y
matrices. Ty (t')] [Tim(t')

Theorem 3: Assume thaf,, ({t**}) is Hermitian; then for all con- T.({t""}H = : : : (10)
tinuous functionst’ T (t9) T o) (t%)

o1 — w, v _ 1" = ) y This preceding condition is frequently encountered in signal pro-
nlggo n ;F(kk(z’({t h)) = 27 /_,r ;F[/\,‘,(T(u))] du. cessing applications because (10) represents the covariance matrix

of a c-variate stationary process obtained by filtering a white scalar
Added to the fact that, for a#t, the eigenvalues df,, ({+* *}) lie stationary process. However, we note that this factorization and thus

in [minw Ae(T(w)), maxe A1 (T(w))] [4, Theorem 3.1], Theorem 3 H1 is not satisfied for covariance matrices of more generzriate

implies that (see [4], [11]) for any integérthe lowest (resp., largest) statlonary_processes. I_n the same way, 9) represent_s the cross-covari-
I eigenvalues are convergentirand ance matrix of twa:-variate stationary processes obtained by filtering

. u, v R ) 3The uniqueness of the left singular vector is guaranteed by limiting the
,,,15”{;, Aen—141(To ({t"7})) = man Ae(T(w)) 7 domain of the associated Givens parameterization. So, the application of [12,
. . w. v p. 14, Theorem 1.2.8] implies the continuity of the individual components of
Jim N(7, ({7 7})) = max A (T(w)). (8)  [t*(w). .... t(w)]T. The same holds fd¢'*(w), ..., #<(w)]”.
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ht oK) is thecn x (n + m) filtering matrix and0 is the c-dimensional null
vector. Alternatively, the data set can be arranged space/phase by
b2 I ) space/phase in the vectey, (k)=K . ., (k). It is straightforwardly
proved thate,, (k) = n(h)sm+1(k) where
s(ky ———
rH,(h")
H,(h)= :
H,(h°
" L (h°)
and
- uT
Fig. 1. Single-input multiple-output (SIMO) channel. g h“g 8
H,(h")= o
H { [ 0---0 A"
*? o . (] *
;e l l ‘i l 1‘ . is then x (n + m) filtering matrix associated with theth filter, v =
' ' ‘ ' 1, ..., ¢
k “““““““ b , R.=E[z, (ke (k) =K. .R,K, . =0 H,(h)H(h)
h i
___________________________ mo

is hence a block Toeplitz structured matrix that fulfilldl
Fig. 2. Channel response with small heading and trailing terms. and can be written, with respect to notation of Section IIl, as
R, = o27,,({h*h" }). The application of theorem 4 B, implies

a white complex-valued scalar stationary process. With the hypothetshlgIt for all continuous functions’, we have

H1, the following theorem is straightforwardly proved.

Theorem 4: Assume thatZ,, ({t*'“}) is Hermitian and fulfillsH1, nlglic n ZF(/\k (R.))
then for all continuous functiong

1
=(c—1F h*(w) dw. (11
lim —ZF(M:&U“’“}))) Ry ( 3 ) *

u=1
n—oso

=(c—1F(0)+ 1 /T F Ztuy “(w) | dw. . If n+m < cn, we Ietag,,”), k=1, ..., n+m,bethekth Iargge.st
2n J_, singular value ofz., (k) (and of H,,(h)), so that\,(R..) = (¢.)?
fork=1,...,n+mand\.(R,) = 0fork > n + m. Then (11)
gives
IV. APPLICATION TO SIMO CHANNEL IDENTIFICATION
n+m
A. Results for the SIMO Channel Filtering Matrix (c—1)F(0) + lim 1 Z F (U](:z)2>
An m-order SIMO channel, as depicted in Fig. 1, is a setfiers B =t
hi=[hi, ..., k)T, i =1, ..., ¢, driven by a common scalar input 1 y
s(k), related to the-dimensional vector output(k) by = (e=DFO0) + ﬁ/ 21 " (w)[* ) duw.

~ 1 c T
2= (®), .-, 2] = GR)amss (F) So, the following theorem is proved.
With 81 (B)Z[s(k), ..., s(k — m)]* andG(h)=[R(0). .. h(m)]
whereh(k)=[hi .. hk] ThIS setting corresponds to a multisensor
reception or a polyphase representation of an oversampled signal, or
a possibly hybrid situation. The SIMO channel orderis defined as I 1 iy Flsm)y= L
the maximum order among those of the different filtafs .. h°. n nthe Z (U"’ ) -
successive output observations are stacked, time by time, into

Theorem 5: For all continuous functiong’

k=1

2, (k=[e" (k)...a" (k= (n— 1))
. It is |nterest|ng to study the asymptotic behavior of the smallest
and the covariance matrix is defined &, =FE[z!,(k)z), (k)]. gingular values"), . However, it cannot be written a% (R, ) or

If/ |nput2s( :) is Hzero mean and white with variance® then Ane_ig1(R.), for some fixed! and hence we can apply neither (7)
R, = 0.G.(h)G, (h), where nor (8). Only the following is proved.

Gh) 0---0 Theorem 6: If min, o\ converges im, then
0 Gh) - 0

G, (h)= . .
: lim (mm 0'( )> < 0, min E [he(w)]? | . (13)
n—oo k w ’
0---0 G(h) u=1
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Fig. 3. Respectively, path delay8,1.03417,1.18267,1.36057",1.87807,1.90397,2.16897,2.24607',3.33377,3.43017,3.70097, and 47 and
attenuationd , 0.9868,—0.3123, —0.3661, —0.6635, 0.6918, —0.4045, 0.5188, —0.4929, —0.7333, —0.0459, and0.6. The upper bound in (13) equals
0.0851.

Proof: The proof is inspired by that of [4, Corollary 3.9]. We There exists an integé¥ such that for alk > N and allk, aﬁ,") >

consider the real function ming o™ > b and henceF(s\") = 0. Consequently, the left-hand
side of (12) equal®. The right-hand side, however, equals

1 * 1
Hw)=o, o | Py =5 | P(t(w)) du
27 -7 2m wE[—m, +7] and t(w)<b
1
andm = min,, t(w). We assumenin, o." to be convergent to the > 5 F(t(w))dw
limit £ whenn — oo. Suppose that. > m,. There existz andb wel=m. Fr] and H{w)<a
such thatn; < a < b < £. We define the functioF'(z) = 1 if _1 dw > 0
v <a,F(x)=0if « > b. Forz € [a, b], F(«) is chosen so thaF 27 Juwelon, 4n] and tw)<a

is continuous and positive. Consequently, we must have< m;. O
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Fig. 4. Frequency responsk(w). Respectively, path delay$,0.04707,0.54617,1.00937,1.08587",2.94927,3.5756, and 47" and attenuations
1,0.8381,0.4418,0.3689,0.8672,0.6775, —0.6518, and0.4. The upper bound in (13) equal)690.

B. Implications for Blind SIMO Channel Identification nonzero eigenvalue is critical to the performance of the blind identi-
fication algorithm.

The covariance matriR,, contains channel phase information and is We point out that in this context (blind SIMO channel identification),
used to deduce the channel coefficielts), the so-called identifica- the herein proved result (Theorem 3) can be considered more appro-
tion problem, for which a variety of second-order algorithms (amongriate than that of [16]-[19]. The asymptotic results proved therein are
them the subspace (SS) [13], the linear prediction (LP) [14], and thetablished for block Toeplitz matrices with Toeplitz blocks (BTTB)
outer product decomposition (OPD) [15] algorithms) has been develhere both the size and number of blocks tend to infinity; while in this
oped. They all implicitly or explicitly need inversion of the channetorrespondence, only the size of the bloekiends to infinity. This is
output covariance matrix and hence their performance depends largalyre relevant for stationary processes whenmefers to the observa-
on how well conditioned the matrix is [6], [7]. Hence, its smallestion time and- refers to the size of the antenna array and/or the amount
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Fig. 5. Frequency respongdw). Respectively, path delays 0.06117",0.79497",0.79537,1.08887',1.67467,1.7804,1.8640,2.4152,2.9871,3.7273,
and47 and attenuationd, 0.4952,0.6583, —0.8267, —0.9669, 0.8591,0.8911,—0.6676, 0.5272, —0.0201,0.4824, and0.4. The upper bound in (13)
equals).3033.

of oversampling which naturally are not intended to take large valugmmmon) and: > m. Under such condition&7,, (k) has full column

However, for other applications such as image processing, covarianaek [20] and the left-hand side of (13) expresses the square root of the

matrices of the involved two-dimensional (2-D) stationary processasymptotic lowest nonzero eigenvalueRf. When observed over fi-

are BTTB. The number and size of blocks refer to the spatial samplage time intervals and in the presence of noise, the above is insufficient

of the process, possibly large. In this context, results in [16]-[19] apnd the channel needs to exhibit enodgrersityto allow for accurate

pear better adapted. response estimation. Channel diversity has often been described as the
Channel blind identifiability from its second-order statistics (i.egloseness in th&€ plane of the zeros of the subchannels transfer func-

R,,) requires the SIMO channel to be zero-coprime (i.e.,Zh@ans- tions [21]. This definition is rather subjective and counterexamples can

forms of the sequencds;, k¥ = 1, ..., m} do not have any zero in be found where a channel has closer zeros while its covariance matrix
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is better conditioned. We, therefore, suggest the left-hand side of (1ipath channels with @ symbol period delay spre&dChannels for

as an algorithm-independemieasureof the channel diversity. Indeed, which the upper bound of (13) was we&k0.1), such as in Fig. 3,

it approximates well the square root of the lowest nonzero eigenvalvere systematicallgbsolutely nonidentifiablfein the sense given in

of R,, for practical values ofi. Section IV-B. On the contrary, however, when the upper bound of (13)
The upper bound in (13) is better suited to assess channel blinds not weak, no conclusion could be made. An order with which reli-

(un)identifiability under practical observation conditions. In fact, irable identification can be performed may exist (Fig. 4) or not (Fig. 5).

cases where the right-hand side in (13) is small, the channel output

covariance matrix is poorly conditioned and blind algorithms are ex- V. CONCLUSION

pected to fail to identify the channel if its output is observed over a ) ) o )

limited time duration. This bound has also the advantage of giving a¥/& have given a new and simpler proof, inspired by that in [5],

spectral interpretation of channel diversity. of Szeg®’s theorem extension to block Toeplitz matrices [2]. Block
This bound has a further interpretation in the practical case when tHREPIitz matrices are encountered in signal processing as covariance

channel response includes small heading and/or trailing terms (Fig. Pptrices that _always venfy some factorization properties. We explmted

The wholem-order channel respongecan be written as the sum of anthese properties to get a simpler form of Szegé's theorem extension and

m’-order effective responde,,., m’ < m, and a perturbation vector derive results about the asymptotic behavior of their lowest nonzero

due to the small trailing terms [22]. If we I8t , (w) be the Fourier eigenvalue. Application to SIMO channels can help justifying cases

transform associated with the subchannet 1, ..., c of h,,,, then  Where the channel covariance matrix is poorly conditioned resulting in
¢ ¢ ' poor performance of the blind identification algorithms; as is shown to
ST )P = > g (w)]? be practically the case of fractionally spaced band-limited channels.
u=1 u=1

i.e., the bound in (13) is approximately the same when evaluated for
h or h,,,. When this bound is weak, it implies poor diversity of the ] ] ]
whole response as well as the effective response. In such a case, th&l U- Grenander and G. Szegdoeplitz Forms and Their Applica-
channel will not be identifiable whatever the assumed channel order;,, tions - New York: Chelsea, 1984,
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Index Terms—Hypothesis testing, mismatched classification, prepro-  1h€ Preprocessing approach is motivated by the infamous
cessing. Kailath—-Duncan theorem [10], [11]. This theorem draws an analogy
between the likelihood ratio functions for two binary detection
problems. In one problem, the signal to be detected is deterministically
. INTRODUCTION known while in the other problem, it is a sample function of a finite-en-

We study a binary hypothesis testing problem in which a classifiéfgy random process that is not necessarily Gaussian. In both cases,
was designed for clean signals but the observed signals are noisy.tgsignals and noise are continuous-time processes, and the noise is
assume zero-mean Gaussian discrete-time signals and an additiveastgumed to be a zero-mean Gaussian white process. The signal and
tistically independent zero-mean Gaussian discrete-time noise proc88ése are assumed statistically independent. The theorem shows that
These mismatched conditions may result in significant performané€ likelihood ratio for detecting the random signal has a similar form
degradation especially at low signal-to-noise ratio (SNR). as that of the likelihood ratio for detecting the deterministic signal.

The optimal classifier for the clean signals compares the likelihodde former likelihood ratio can formally be obtained from the latter by
ratio of these signals to a threshold that depends on the optimality éaplacing the deterministic signal with the MMSE causal estimator of
terion. When the observed signals are noisy, the classifier must usetfiesignal random process, and by interpreting the correlator integral
likelihood ratio for the noisy signals and a different threshold may (s an Ito integral. Thus, this theorem shows that the optimal detector

required. Under the Gaussian regime considered here, the likelihdgtithe signal random process is an estimator—correlator receiver in
which the signal is first estimated from the observed process and then
the estimated signal is applied to the correlation detector as if it were
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