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Abstract—Szegö’s theorem states that the asymptotic behavior of
the eigenvalues of a Hermitian Toeplitz matrix is linked to the Fourier
transform of its entries. This result was later extended to block Toeplitz
matrices, i.e., covariance matrices of multivariate stationary processes.
The present work gives a new proof of Szegö’s theorem applied to block
Toeplitz matrices. We focus on a particular class of Toeplitz matrices, those
corresponding to covariance matrices of single-input multiple-output
(SIMO) channels. They satisfy some factorization properties that lead to
a simpler form of Szegö’s theorem and allow one to deduce results on the
asymptotic behavior of the lowest nonzero eigenvalue for which an upper
bound is developed and expressed in terms of the subchannels frequency
responses. This bound is interpreted in the context of blind channel
identification using second-order algorithms, and more particularly in the
case of band-limited channels.

Index Terms—Asymptotic eigenvalue distribution, band-limited chan-
nels, blind identification, block Toeplitz matrices, multivariate processes,
second-order statistics algorithms.

I. INTRODUCTION

In a celebrated result appearing in [1], Szegö states that the eigen-
values of a sequence of Hermitian Toeplitz matrices are asymptotically
distributed like the samples of the Fourier transform of its entries. The
lowest/highest eigenvalues are decreasing/increasing and converge to
the minimum/maximum of this Fourier transform. The application of
this result to covariance matrices of scalar stationary1 processes is
straightforward. Several extensions have since been made (see [2]).
The most important extends Szegö’s theorem to block Toeplitz matrices
with non-Toeplitz blocks where the number of blocks tends to infinity
[3], [4]. However, the proof made therein relies on sophisticated math-
ematics. In this correspondence, we suggest a simpler proof than that in
[3], [4] of the extension of the Szegö theorem to block Toeplitz struc-
tured matrices. We use the asymptotic equivalence of matrix sequences
and more particularly the result established by Gray in [5] on asymp-
totic equivalence of Toeplitz matrix sequences and circulant matrix se-
quences. We focus then on a special class of block Toeplitz matrices,
frequently encountered in signal processing, to give a simpler form of
the Szegö theorem and deduce results about the lowest nonzero eigen-
value, which expresses the conditioning with respect to inversion of
such matrices.

We target in particular second-order statistics based blind identifica-
tion algorithms of single-input multiple-output (SIMO) channels where
channel output covariance matrices are manipulated in such a way that
the performance of the algorithms depends heavily on how well-condi-
tioned the matrix is [6], [7]. Therefore, the interest in eigenvalues (and
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1Throughout the correspondence, stationary processes denote second-order
stationary processes.

more particularly the lowest nonzero eigenvalue) of block Toeplitz ma-
trices is highly justified and constitutes the subject of this correspon-
dence.

This correspondence is organized as follows. In Section II, results on
asymptotic equivalence of Toeplitz matrix sequences as well as Szegö’s
theorem are reviewed for convenience of the reader and in order to fix
notations. In Section III, we propose a new proof of Szegö’s theorem
extended to block Toeplitz matrices with non-Toeplitz blocks where the
number of blocks tends to infinity. We address then a specific class of
block Toeplitz matrices, that of SIMO channel covariance matrices. In
Section IV, implications for blind channel identification are discussed
and the case of band-limited channels is particularly addressed.

II. NOTATION AND PREVIOUS RESULTS

Let ftkgk=...;�1; 0; 1; ... be an absolutely summable infinite com-
plex sequence (i.e.,

k
jtkj < 1) so that the associated2�-periodic

Fourier transformt(w)=̂
k
tke

�ikw is well defined. We define the
infinite matrix sequencefTTTn(t)gn�1 whereTTTn(t) is then�n Toeplitz
matrix given by

TTTn(t)=̂

t0 t�1 � � � t�(n�1)

t1
. . .

. . . t�(n�2)
...

. . .
...

tn�1 tn�2 � � � t0

:

Consider a sequence ofn�n matricesAAAn. To study the asymptotic
equivalence of sequences of such matrices, two norms have been intro-
duced [5]. The strong normkAAAnk and the weak normjAAAnj are defined,
respectively, as the spectral norm

kAAAnk
2=̂ max

kxxxk=1
xxx
H
AAA
H
n AAAnxxx

and as the normalized Frobenuis norm

jAAAnj
2=̂

1

n

n

i=1

n

j=1

jai; j j
2
:

�k(AAA) (resp.,�k(AAA)) refers to thekth largest singular value (resp.,
eigenvalue) of the matrix (resp., the square matrix)AAA.KKKr; s represents
the vec-permutation matrix [8] such thatVec(AAA) =KKKr; sVec(AAA

T ) for
all r � s matricesAAA. It satisfiesKKKr; s = KKK

�1
s; r = KKK

T
s; r .

The following definitions and results, necessary for Section III, are
recalled.

Definition 1: Asymptotic equivalence [5].
Two matrix sequencesfAAAng andfBBBng, n = 1; 2; . . . are said to

be asymptotically equivalent and notedfAAAng � fBBBng if

9M <1 such that8n; kAAAnk �M andkBBBnk �M (1)

lim
n!1

jAAAn �BBBnj = 0: (2)

Lemma 1 [5]: If fAAAng � fBBBng and if

lim
n!1

1

n

n

k=1

�
s
k(AAAn)
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exists and is finite for any positive integers, then

lim
n!1

1

n

n

k=1

�
s
k(AAAn) = lim

n!1

1

n

n

k=1

�
s
k(BBBn:

Lemma 2 [5]: For all absolutely summable sequences
ftkgk=...;�1; 0; 1; ..., there exists a sequence of circulant ma-
trices fCCCn(t)g asymptotically equivalent tofTTTn(t)g and given by
CCCn(t) = UUU

H
nDDDn(t)UUUn whereDDDn(t) is a diagonal matrix with itskth

entry given by

(DDDn(t))k;k = t
2�(k� 1)

n

andUUUn is the unitary discrete Fourier transform (DFT) matrix

(UUUn)k; l =
1p
n
e
�i2�

:

We will make use of the fact that the eigenvectors ofCCCn(t) are in-
dependent of the sequenceftkg and that its eigenvalues are equally
spaced samples of the Fourier transformt(w). We finally recall the
Szegö result for a Toeplitz matrix that we will extend in Section III to
the block Toeplitz matrices:

Theorem 1—Szegö’s Theorem [1]:For all absolutely summable se-
quencesftkgk=...;�1; 0; 1; ..., if TTTn(t) is Hermitian, then for all func-
tionsF continuous on[minw t(w); maxw t(w)]

lim
n!1

1

n

n

k=1

F (�k(TTTn(t))) =
1

2�

�

��

F (t(w))dw:

Theorem 2 [1], [9]: For all absolutely summable sequences
ftkgk=...;�1; 0; 1; ..., if TTTn(t) is Hermitian, then, for anyl, the lowest
(resp., largest)l eigenvalues ofTTTn(t) are decreasing (resp., increasing)
with n and converge tominw t(w) (resp.,maxw t(w)).

III. B LOCK TOEPLITZ MATRICES

A. Definitions

To extend the preceding results to block Toeplitz matrices, we define
the block Toeplitz matrix

T 0n(ftu; vg) =

TTT 0 TTT�1 � � � TTT�(n�1)

TTT 1

. . .
. . . TTT�(n�2)

...
. . .

...
TTTn�1 TTTn�2 � � � TTT 0

(3)

where (TTT k)k=�(n�1); ...;n�1 are c � c matrices (not necessarily
Toeplitz) of entriestu; vk =̂(TTT k)u; v; u; v = 1; . . . ; c. We consider the
associated matrix

Tn(ftu; vg)=̂

TTTn(t
1;1) TTTn(t

1;2) � � � TTTn(t
1; c)

TTTn(t
2;1) TTTn(t

2;2) � � � TTTn(t
2; c)

...
...

TTTn(t
c;1) TTTn(t

c;2) � � � TTTn(t
c; c)

(4)

whereTTTn(t
u; v); u; v = 1; . . . ; c are then�n the Toeplitz matrices

t
u; v
0 t

u; v
�1 � � � t

u; v

�(n�1)

t
u; v
1

. . .
. . . t

u; v

�(n�2)

...
. . .

...
t
u; v
n�1 t

u; v
n�2 � � � t

u; v
0

:

We supposeftu; vk g, u; v = 1; . . . ; c to be a finite set of absolutely
summable infinite sequences.2 So, the Fourier transform

t
u; v(w)=̂

k

t
u; v

k e
�ikw

can be associated with each sequence. Using the vec-permutation ma-
trix KKKr; s [8], we have

T 0n(ftu; vg = KKKn; cTn(ftu; vgKKKc; n =KKKn; cTn(ftu; vgKKK�1
n; c

so that the matricesT 0n(ftu; vg) andTn(ftu; vg) are similar and hence,
equivalent from an eigenvalue point of view. However, the formulation
in (4) is preferred as it allows one to handle Toeplitz blocks for which
results recalled in Section II can be used. Notice thatTn(ftu; vg) is
Hermitian if and only if

TTTn(t
v; u) = TTT

H
n (tu; v); u; v = 1; . . . ; c

or equivalently

t
v; u(w) = (tu; v(w))�; u; v = 1; . . . ; c:

B. Asymptotic Distribution of Eigenvalues

Lemma 2 extends straightforwardly to the block Toeplitz matrices in
the following.

Lemma 3: For all absolutely summable sequences

ftu; vk gk=...;�1; 0; 1; ...

there exists a sequence of matricesfCn(ftu; vg)g asymptotically
equivalent tofTn(ftu; vg)g and given by

Cn(ftu; vgg = UH
n Dn(ftu; vg)Un

whereUn is annc�nc unitary matrix independent ofTn(ftu; vg) and
whereDn(ftu; vg) is the following matrix:

Dn(ftu; vg)=̂

DDDn(t
1;1) DDDn(t

1;2) � � � DDDn(t
1; c)

DDDn(t
2;1) DDDn(t

2;2) � � � DDDn(t
2; c)

...
...

DDDn(t
c;1) DDDn(t

c;2) � � � DDDn(t
c; c)

(5)

whereDDDn(t
u; v) is a diagonal matrix defined as in Lemma 2.

Notice that Cn(ftu; vg) is no longer a circulant matrix, nor is
Dn(ftu; vg) diagonal.

We next prove a result on the asymptotic eigenvalue moments of
block Toeplitz matrices.

Lemma 4: For all integerss � 1

lim
n!1

1

n

cn

k=1

�
s
k(Tn(ftu;vg))

=
1

2�

�

�� 1�k ; ...; k �c

t
k ; k (w)tk ; k (w) . . . tk ; k (w)dw

(6)

Proof: BecauseTn(ftu; vg) andCn(ftu; vg) are asymptotically
equivalent, thanks to Lemma 1, we have

lim
n!1

1

cn

cn

k=1

�
s
k(Tn(ftu;vg)) = lim

n!1

1

cn

cn

k=1

�
s
k(Cn(ftu; vg)):

2The Szegö theorem [1], as well as the extensions in [4], [3], [10], were proved
under weaker hypotheses on the entries of the Toeplitz matrices. The associ-
ated sequences are there supposed to be only square summable. In this case, the
Fourier transform is defined differently and the Szegö theorem and its extension
are more complicated to prove.
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Because�sk(Cn(ft
u; vg)) are all the eigenvalues ofCsn(ft

u; vg), the
preceding summation equals the trace ofCsn(ft

u; vg), i.e., that of
Ds
n(ft

u; vg). This can be easily proven to be equal to

1�k ; ...; k �c

n�1

k=0

t
k ; k 2�k

n
t
k ; k 2�k

n
. . . tk ; k 2�k

n

and so

lim
n!1

1

n

cn

k=1

�
s
k(Tn(ft

u; vg))

= lim
n!1

1

n
1�k ; ...; k �c

n�1

k=0

t
k ; k 2�k

n

� tk ; k 2�k

n
. . . tk ; k 2�k

n

=
1�k ; ...; k �c

lim
n!1

1

n

n�1

k=0

t
k ; k 2�k

n

� tk ; k 2�k

n
. . . tk ; k 2�k

n
:

Thanks to the definition of the Riemann integral where the continuity of
the2�-periodic Fourier transform guarantees the existence, the proof
is complete.

If we let

TTT (w)=̂

t1; 1(w) � � � t1; c(w)
...

...
tc; 1(w) � � � tc; c(w)

(Hermitian for allw if Tn(ft
u; vg) is Hermitian), the summation in

the right-hand side of (6) is nothing but the trace of(TTT (w))s whose
eigenvalues are those ofTTT (w) to the power ofs. Consequently, (6) is
equivalent to

lim
n!1

1

n

cn

k=1

�
s
k(Tn(ft

u; vg)) =
1

2�

�

��

c

u=1

�
s
u(TTT (w))dw:

Hence, for any polynomialP , we have

lim
n!1

1

n

cn

k=1

P (�k(Tn(ft
u; vg))) =

1

2�

�

��

c

u=1

P [�u(TTT (w))] dw:

Invoking the Stone–Weierstrass approximation theorem (recalled
in [5]), whenTTT (w) is Hermitian for allw, this relation extends to
all functionsF continuous on[minw �c(TTT (w)); maxw �1(TTT (w))].
Thus, the following result extends Szegö’s theorem to block Toeplitz
matrices.

Theorem 3: Assume thatTn(ftu; vg) is Hermitian; then for all con-
tinuous functionsF

lim
n!1

1

n

cn

k=1

F (�k(Tn(ft
u; vg))) =

1

2�

�

��

c

u=1

F [�u(TTT (w))]dw:

Added to the fact that, for alln, the eigenvalues ofTn(ftu; vg) lie
in [minw �c(TTT (w)); maxw �1(TTT (w))] [4, Theorem 3.1], Theorem 3
implies that (see [4], [11]) for any integerl, the lowest (resp., largest)
l eigenvalues are convergent inn and

lim
n!1

�cn�l+1(Tn(ft
u; vg)) = min

w
�c(TTT (w)) (7)

lim
n!1

�l(Tn(ft
u; vg)) = max

w
�1(TTT (w)): (8)

C. A Class of Block Toeplitz Matrices

We investigate the following special case of block Toeplitz matrices.

Hypothesis H1:TTT (w) has rank1, for all w.

This is equivalent to having for allw

TTT (w) = [t1(w); . . . ; tc(w)]T jTr(TTT (w))j[t01(w); . . . ; t0c(w)]

where[t1(w); . . . ; tc(w)]T and[t01(w); . . . ; t0c(w)]T are unit-norm
left and right singular vectors, respectively, associated with the unique
nonzero singular value ofTTT (w). As this singular value is of multiplicity
one, it is, as well as the associated singular vectors, a continuous func-
tion ofTTT (w) [12, p. 14, Theorem 1.2.8]3 which, in turn, is a continuous
function ofw by construction. Hence, by redefiningtu(w) andt0u(w)
to be, respectively,

jTr(TTT (w))jtu(w) and jTr(TTT (w))jt0u(w):

H1 is equivalent to the following: there exist continuous functions
tu(w) andt0u(w), with

[t1(w); . . . ; tc(w)]T 6= 000

and

[t01(w); . . . ; t0c(w)]T 6= 000

for all w, such thattu; v(w) = tu(w)t0v(w), for all u; v = 1; . . . ; c.
As tu(w) and t0u(w) are continuous, the infinite sequences

ftukgk=...;�1; 0; 1; ... andft0ukgk=...;�1;0; 1; ..., obtained as the inverse
Fourier transforms oftu(w) andt0u(w), respectively,u = 1; . . . ; c,
are square summable and not identically zero.H1 is equivalent to
having

t
u; v
i = t

u
i � t

0v
i =̂

k

t
u
kt
0v
i�k; i = . . . ; �1; 0; 1; . . .

i.e.,

t
u; v
i = [. . . ; tu�1; t

u
0 ; t

u
1 ; . . .][. . . ; t

0v
i+1; t

0v
i ; t

0v
i�1; . . .]

T
:

Consequently, the hypothesisH1 is equivalent to

Tn(ft
u; vg) =

TTT (n)(t
1)

...
TTT (n)(t

c)

TTT (n)(t
01)

...
TTT (n)(t

0c)

T

(9)

where TTT (n)(t
u) (resp., TTT (n)(t

0u)), u = 1; . . . ; c; denotes the
n rows Toeplitz matrix of first row[. . . ; tu�1; t

u
0 ; t

u
1 ; . . .] (resp.,

[. . . ; t0
u
�1; t

0u
0 ; t

0u
1 ; . . .]). Furthermore, if Tn(ftu; vg) is Hermi-

tian and positive semidefinite,H1 is fulfilled iff t0
u
k = (tu�k)

�,
u = 1; . . . ; c or equivalentlyTTT (n)(t

0u) = TTT
�
(n)(t

u), i.e.,

Tn(ft
u; vg) =

TTT (n)(t
1)

...
TTT (n)(t

c)

TTT (n)(t
1)

...
TTT (n)(t

c)

H

: (10)

This preceding condition is frequently encountered in signal pro-
cessing applications because (10) represents the covariance matrix
of a c-variate stationary process obtained by filtering a white scalar
stationary process. However, we note that this factorization and thus
H1 is not satisfied for covariance matrices of more generalc-variate
stationary processes. In the same way, (9) represents the cross-covari-
ance matrix of twoc-variate stationary processes obtained by filtering

3The uniqueness of the left singular vector is guaranteed by limiting the
domain of the associated Givens parameterization. So, the application of [12,
p. 14, Theorem 1.2.8] implies the continuity of the individual components of
[t (w); . . . ; t (w)] . The same holds for[t (w); . . . ; t (w)] .
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Fig. 1. Single-input multiple-output (SIMO) channel.

Fig. 2. Channel response with small heading and trailing terms.

a white complex-valued scalar stationary process. With the hypothesis
H1, the following theorem is straightforwardly proved.

Theorem 4: Assume thatTn(ftu; vg) is Hermitian and fulfillsH1,
then for all continuous functionsF

lim
n!1

1

n

cn

k=1

F (�k(Tn(ft
u; vg)))

= (c� 1)F (0) +
1

2�

�

��

F

c

u=1

t
u; u(w) dw:

IV. A PPLICATION TOSIMO CHANNEL IDENTIFICATION

A. Results for the SIMO Channel Filtering Matrix

An m-order SIMO channel, as depicted in Fig. 1, is a set ofc filters
hhh
i=̂[hi0; . . . ; h

i
m]T , i = 1; . . . ; c, driven by a common scalar input

s(k), related to thec-dimensional vector outputxxx(k) by

xxx(k)=̂[x1(k); . . . ; xc(k)]T = GGG(hhh)sssm+1(k)

with sssm+1(k)=̂[s(k); . . . ; s(k � m)]T andGGG(hhh)=̂[hhh(0) . . .hhh(m)]
wherehhh(k)=̂[h1k . . . h

c
k]
T . This setting corresponds to a multisensor

reception or a polyphase representation of an oversampled signal, or
a possibly hybrid situation. The SIMO channel orderm is defined as
the maximum order among those of the different filtershhh

1 . . .hhhc. n
successive output observations are stacked, time by time, into

xxx
0

n(k)=̂[xxxT (k) . . .xxxT (k � (n� 1))]T

and the covariance matrix is defined asRRR0n=̂E[xxx0n(k)xxx
0H
n (k)].

If input s(k) is zero-mean and white with variance�2s then
RRR
0

n = �2sGGGn(hhh)GGG
H
n (hhh), where

GGGn(hhh)=̂

GGG(hhh) 000 � � � 000

000 GGG(hhh) � � � 000
...

000 � � � 000 GGG(hhh)

is thecn � (n + m) filtering matrix and000 is thec-dimensional null
vector. Alternatively, the data set can be arranged space/phase by
space/phase in the vectorxxxn(k)=̂KKKc; nxxx

0

n(k). It is straightforwardly
proved thatxxxn(k) = HHHn(hhh)sssm+1(k) where

HHHn(hhh)=̂

HHHn(hhh
1)

...
HHHn(hhh

c)

and

HHHn(hhh
u)=̂

hhh
u 0 � � � 0

0 hhh
u � � � 0

...
0 � � � 0 hhh

u

is then� (n+m) filtering matrix associated with theuth filter, u =
1; . . . ; c.

RRRn=̂E[xxxn(k)xxx
H
n (k)] = KKKc; nRRR

0

nKKKn; c = �
2
sHHHn(hhh)HHH

H
n (hhh)

is hence a block Toeplitz structured matrix that fulfillsH1
and can be written, with respect to notation of Section III, as
RRRn = �2sTn(fh

uhv g). The application of theorem 4 toRRRn implies
that for all continuous functionsF , we have

lim
n!1

1

n

cn

k=1

F (�k(RRRn))

= (c� 1)F (0) +
1

2�

�

��

F �
2
s

c

u=1

jhu(w)j2 dw: (11)

If n+m � cn, we let�(n)k ; k = 1; . . . ; n+m; be thekth largest
singular value ofGGGn(hhh) (and ofHHHn(hhh)), so that�k(RRRn) = (�

(n)
k )2

for k = 1; . . . ; n +m and�k(RRRn) = 0 for k > n +m. Then (11)
gives

(c� 1)F (0) + lim
n!1

1

n

n+m

k=1

F �
(n)
k

= (c� 1)F (0) +
1

2�

�

��

F �
2
s

c

u=1

jhu(w)j2 dw:

So, the following theorem is proved.

Theorem 5: For all continuous functionsF

lim
n!1

1

n

n+m

k=1

F �
(n)
k =

1

2�

�

��

F �s

c

u=1

jhu(w)j2 dw:

(12)

It is interesting to study the asymptotic behavior of the smallest
singular value�(n)n+m. However, it cannot be written as�l(RRRn) or
�nc�l+1(RRRn), for some fixedl and hence we can apply neither (7)
nor (8). Only the following is proved.

Theorem 6: If mink �
(n)
k converges inn, then

lim
n!1

min
k

�
(n)
k � �s min

w

c

u=1

jhu(w)j2 : (13)
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(a)

(b)

Fig. 3. Respectively, path delays0; 1:0341T; 1:1826T; 1:3605T;1:8780T;1:9039T;2:1689T;2:2460T;3:3337T;3:4301T;3:7009T; and 4T and
attenuations1; 0:9868;�0:3123; �0:3661; �0:6635; 0:6918; �0:4045; 0:5188; �0:4929; �0:7333; �0:0459; and0:6. The upper bound in (13) equals
0:0851:

Proof: The proof is inspired by that of [4, Corollary 3.9]. We
consider the real function

t(w)=̂�s

c

u=1

jhu(w)j2

andmt=̂minw t(w). We assumemink �
(n)
k to be convergent to the

limit L whenn ! 1. Suppose thatL > mt. There exista andb
such thatmt < a < b < L. We define the functionF (x) = 1 if
x � a, F (x) = 0 if x � b. Forx 2 [a; b], F (x) is chosen so thatF
is continuous and positive.

There exists an integerN such that for alln > N and allk, �(n)k �

mink �
(n)
k > b and hence,F (�

(n)
k ) = 0. Consequently, the left-hand

side of (12) equals0. The right-hand side, however, equals
1

2�

�

��

F (t(w)) =
1

2� w2[��;+�] and t(w)�b

F (t(w))dw

>
1

2� w2[��;+�] and t(w)�a

F (t(w))dw

=
1

2� w2[��;+�] and t(w)�a

dw > 0:

Consequently, we must haveL � mt.
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(a)

(b)

Fig. 4. Frequency responseh(w). Respectively, path delays0; 0:0470T; 0:5461T;1:0093T;1:0858T;2:9492T;3:5756; and 4T and attenuations
1; 0:8381;0:4418;0:3689;0:8672;0:6775;�0:6518; and0:4. The upper bound in (13) equals1:0690.

B. Implications for Blind SIMO Channel Identification

The covariance matrixRRRn contains channel phase information and is
used to deduce the channel coefficientshhh(k), the so-called identifica-
tion problem, for which a variety of second-order algorithms (among
them the subspace (SS) [13], the linear prediction (LP) [14], and the
outer product decomposition (OPD) [15] algorithms) has been devel-
oped. They all implicitly or explicitly need inversion of the channel
output covariance matrix and hence their performance depends largely
on how well conditioned the matrix is [6], [7]. Hence, its smallest

nonzero eigenvalue is critical to the performance of the blind identi-
fication algorithm.

We point out that in this context (blind SIMO channel identification),
the herein proved result (Theorem 3) can be considered more appro-
priate than that of [16]–[19]. The asymptotic results proved therein are
established for block Toeplitz matrices with Toeplitz blocks (BTTB)
where both the size and number of blocks tend to infinity; while in this
correspondence, only the size of the blocksn tends to infinity. This is
more relevant for stationary processes wheren refers to the observa-
tion time andc refers to the size of the antenna array and/or the amount
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(a)

(b)

Fig. 5. Frequency responseh(w). Respectively, path delays0; 0:0611T; 0:7949T;0:7953T;1:0888T;1:6746T;1:7804;1:8640;2:4152;2:9871;3:7273;
and 4T and attenuations1; 0:4952;0:6583; �0:8267, �0:9669; 0:8591;0:8911;�0:6676; 0:5272; �0:0201;0:4824; and 0:4. The upper bound in (13)
equals0:3033.

of oversampling which naturally are not intended to take large values.
However, for other applications such as image processing, covariance
matrices of the involved two-dimensional (2-D) stationary processes
are BTTB. The number and size of blocks refer to the spatial samples
of the process, possibly large. In this context, results in [16]–[19] ap-
pear better adapted.

Channel blind identifiability from its second-order statistics (i.e.,
RRRn) requires the SIMO channel to be zero-coprime (i.e., theZ-trans-
forms of the sequencesfhuk ; k = 1; . . . ; mg do not have any zero in

common) andn � m. Under such conditions,GGGn(hhh) has full column
rank [20] and the left-hand side of (13) expresses the square root of the
asymptotic lowest nonzero eigenvalue ofRRRn. When observed over fi-
nite time intervals and in the presence of noise, the above is insufficient
and the channel needs to exhibit enoughdiversityto allow for accurate
response estimation. Channel diversity has often been described as the
closeness in theZ plane of the zeros of the subchannels transfer func-
tions [21]. This definition is rather subjective and counterexamples can
be found where a channel has closer zeros while its covariance matrix
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is better conditioned. We, therefore, suggest the left-hand side of (13)
as an algorithm-independentmeasureof the channel diversity. Indeed,
it approximates well the square root of the lowest nonzero eigenvalue
of RRRn for practical values ofn.

The upper bound in (13) is better suited to assess channel blind
(un)identifiability under practical observation conditions. In fact, in
cases where the right-hand side in (13) is small, the channel output
covariance matrix is poorly conditioned and blind algorithms are ex-
pected to fail to identify the channel if its output is observed over a
limited time duration. This bound has also the advantage of giving a
spectral interpretation of channel diversity.

This bound has a further interpretation in the practical case when the
channel response includes small heading and/or trailing terms (Fig. 2).
The wholem-order channel responsehhh can be written as the sum of an
m0-order effective responsehhhm , m0 < m, and a perturbation vector
due to the small trailing terms [22]. If we lethum (w) be the Fourier
transform associated with the subchannelu = 1; . . . ; c of hhhm , then

c

u=1

jhu(w)j2 '
c

u=1

jhum (w)j2

i.e., the bound in (13) is approximately the same when evaluated for
hhh or hhhm . When this bound is weak, it implies poor diversity of the
whole response as well as the effective response. In such a case, the
channel will not be identifiable whatever the assumed channel order.
When assumed to be>m0, it leads to a badly conditioned covariance
matrix because of the small trailing terms. When<m0, the identifica-
tion procedure will fail because some significant terms were ignored.
When equal tom0, blind identification is still not possible because of
the bound (and hence channel diversity) being weak. Hence, while gen-
erally not tight as verified through computations, the upper bound in
(13), when low, indicatesabsolute nonidentifiabilityof the channel, i.e.,
neither the channel nor a part of it can be identified from a finite ob-
servation set. Examples are given in the practical case of fractionally
received band-limited channels.

C. Fractionally Spaced Band-Limited Channels

We now focus on fractionally spaced band-limited channels. If sub-
channelshk(w); k = 1; . . . ; c are issued from the oversampling of a
waveformh(t), then

h
k(w) =

l

h(w� 2l�)e�j(w�2l�)

where

h(w)=̂ h(t)e�jwt dt:

Whenh(t) is band-limited (to[� 1
T
; 1
T
]), then

h
k(w) = h(w)e�jw + h(w � 2�)e�j(w�2�)

for w 2 [0; 2�], and it can be proved that (13) simplifies to

lim
n!1

min
k

�
(n)
k � �s

p
c min

w
( (jh(w)j2 + jh(w � 2�)j2))

More commonly,h(w) is a band-limited shaping filter response (a
raised cosine waveform most often) propagating through a frequency-
selective multipath channel. Because of severe selectivity, some fre-
quency components can be significantly attenuated leading to the upper
bound above to be weak. This justifies the poor performance of blind
algorithms in identifying communication channels using fractional re-
ceivers, and concurs with remarks in [23].4

A series of simulations was conducted with a raised cosine wave-
form5 with rolloff 0:3, propagating through randomly selected mul-

4The analysis there is, however, algorithm-dependent (subspace algorithm)
and uses sophisticated mathematics (spheroidal wave sequences).

5The waveform response was truncated over 40 symbol periods.

tipath channels with a4 symbol period delay spread.6 Channels for
which the upper bound of (13) was weak(�0:1), such as in Fig. 3,
were systematicallyabsolutely nonidentifiable7 in the sense given in
Section IV-B. On the contrary, however, when the upper bound of (13)
was not weak, no conclusion could be made. An order with which reli-
able identification can be performed may exist (Fig. 4) or not (Fig. 5).

V. CONCLUSION

We have given a new and simpler proof, inspired by that in [5],
of Szegö’s theorem extension to block Toeplitz matrices [2]. Block
Toeplitz matrices are encountered in signal processing as covariance
matrices that always verify some factorization properties. We exploited
these properties to get a simpler form of Szegö’s theorem extension and
derive results about the asymptotic behavior of their lowest nonzero
eigenvalue. Application to SIMO channels can help justifying cases
where the channel covariance matrix is poorly conditioned resulting in
poor performance of the blind identification algorithms; as is shown to
be practically the case of fractionally spaced band-limited channels.
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On Preprocessing for Mismatched Classification of
Gaussian Signals

Yariv Ephraim, Fellow, IEEE,and William J. J. Roberts, Member, IEEE

Abstract—The optimal linear preprocessor for classifying two
zero-mean Gaussian discrete-time signals which have been corrupted by
additive zero-mean Gaussian noise is studied. Conditions for existence
of the optimal linear preprocessor that achieves the performance of the
likelihood ratio test for the noisy signals are given and the preprocessor is
explicitly derived.

Index Terms—Hypothesis testing, mismatched classification, prepro-
cessing.

I. INTRODUCTION

We study a binary hypothesis testing problem in which a classifier
was designed for clean signals but the observed signals are noisy. We
assume zero-mean Gaussian discrete-time signals and an additive sta-
tistically independent zero-mean Gaussian discrete-time noise process.
These mismatched conditions may result in significant performance
degradation especially at low signal-to-noise ratio (SNR).

The optimal classifier for the clean signals compares the likelihood
ratio of these signals to a threshold that depends on the optimality cri-
terion. When the observed signals are noisy, the classifier must use the
likelihood ratio for the noisy signals and a different threshold may be
required. Under the Gaussian regime considered here, the likelihood
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ratio for the noisy signals can be obtained from the original likelihood
ratio by replacing the covariance matrices of the clean signals by the co-
variance matrices of the noisy signals. In some applications, however,
it is not desirable to modify the original classifier. Instead, the original
likelihood ratio test is supplemented by a preprocessor that provides
an estimate of the clean signal from the observed noisy signal. This ap-
proach may be chosen, for example, in designing smart antennas where
the preprocessor and the classifier may be in separate locations.

In this correspondence, we study the hookup of a linear preprocessor
with the original likelihood ratio test which provides the desired like-
lihood ratio test for the noisy signals. Optimal classifications in the
sense of minimum probability of error and in the Neyman–Pearson
sense [20] are considered. We provide conditions for the linear prepro-
cessing approach to be optimal and give the explicit form of the optimal
preprocessor. When the Gaussian signals and noise have circulant co-
variance matrices [7], the optimal preprocessor is proportional to the
geometric mean of the Wiener filters for the two hypotheses. For inde-
pendent and identically distributed (i.i.d.) signals and noise, we calcu-
late the probability of error and compare the optimal preprocessor for
classification with the optimal linear preprocessor for estimation of the
signal in the minimum mean-square error (MMSE) sense. This is the
Wiener estimator for the mixture covariance of the signals under the
two hypotheses. It is demonstrated that the optimal linear preprocessor
for classification can substantially outperform the optimal linear pre-
processor for estimation especially at low SNRs. Other signal estima-
tion preprocessors that adaptively estimate the clean signals from the
noisy signals are often used but will not be considered here [17].

The optimal preprocessor for classification derived here under
Gaussian assumptions may also be useful in approximating the
optimal linear preprocessor when the signals and noise are not strictly
Gaussian and compensation of the likelihood ratio for the clean signals
is not trivial. In such situations, only second-order statistics of the
signals and noise are required for designing the linear preprocessor
for classification.

The preprocessing approach is motivated by the infamous
Kailath–Duncan theorem [10], [11]. This theorem draws an analogy
between the likelihood ratio functions for two binary detection
problems. In one problem, the signal to be detected is deterministically
known while in the other problem, it is a sample function of a finite-en-
ergy random process that is not necessarily Gaussian. In both cases,
the signals and noise are continuous-time processes, and the noise is
assumed to be a zero-mean Gaussian white process. The signal and
noise are assumed statistically independent. The theorem shows that
the likelihood ratio for detecting the random signal has a similar form
as that of the likelihood ratio for detecting the deterministic signal.
The former likelihood ratio can formally be obtained from the latter by
replacing the deterministic signal with the MMSE causal estimator of
the signal random process, and by interpreting the correlator integral
as an Ito integral. Thus, this theorem shows that the optimal detector
for the signal random process is an estimator–correlator receiver in
which the signal is first estimated from the observed process and then
the estimated signal is applied to the correlation detector as if it were
the known deterministic signal. An excellent review of this and related
results can be found in [13]. Weaker conditions for the theorem are
also given in [13].

The Kailath–Duncan theorem deals with a detection problem that is
different from the mismatched classification problem we study here.
Nevertheless, it is often cited as the rationale for replacing unavail-
able clean signals by their estimates in detection and classifications
problems. Furthermore, the Kailath–Duncan theorem applies to con-
tinuous-time signals only. No analogous theorem for discrete-time sig-
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