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and the lemma is proven.

The theorem now follows as a straightforward consequence of
Lemma 7. Ifqi is theith standard unit vector, then
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[11] Z. Cvetković, “Source coding with quantized redundant expansions: Ac-
curacy and reconstruction,” inProc. IEEE Data Compression Conf., J.
A. Storer and M. Cohn, Eds. Snowbird, UT, Mar. 1999, pp. 344–353.

[12] R. Zamir and M. Feder, “Rate-distortion performance in coding ban-
dlimited sources by sampling and dithered quantization,”IEEE Trans.
Inform. Theory, vol. 41, pp. 141–154, Jan. 1995.

[13] , “Information rates of pre/post-filtered dithered quantizers,”IEEE
Trans. Inform. Theory, vol. 42, pp. 1340–1353, Sept. 1996.

[14] I. Daubechies,Ten Lectures on Wavelets. Philadelphia, PA: Soc. In-
dustr. Appl. Math., 1992.

[15] M. Cwikel and P. O. Gutman, “Convergence of an algorithm to find max-
imal state constraint sets for discrete-time linear dynamical systems with
bounded controls and states,”IEEE Trans. Automat. Contr., vol. AC-31,
pp. 457–459, May 1986.

[16] M. Milanese and V. Vicino, “Optimal estimation theory for dynamic
systems with set membership uncertainty: An overview,”Automatica,
vol. 27, no. 6, pp. 997–1009, Nov. 1991.

[17] H. J. Kushner and C. G. Lin,Stochastic Approximation Algorithms and
Applications. New York: Springer-Verlag, 1997.

[18] J. Ziv and M. Zakai, “Some lower bounds on signal parameter estima-
tion,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 386–391, May 1969.

[19] K. L. Bell, Y. Steinberg, Y. Ephraim, and H. L. Van Trees, “Extended
Ziv–Zakai lower bound for vector parameter estimation,”IEEE Trans.
Inform. Theory, vol. 43, pp. 624–637, Mar. 1997.

[20] J. Ziv, “On universal quantization,”IEEE Trans. Inform. Theory, vol.
IT-31, pp. 344–347, May 1985.

[21] R. Zamir and M. Feder, “On universal quantization by randomized
uniform/lattice quantization,”IEEE Trans. Inform. Theory, vol. 38, pp.
428–436, Mar. 1992.
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Bounds for Sparse Planar and Volume Arrays

Yann Meurisse and Jean-Pierre Delmas, Member, IEEE

Abstract—This correspondence improves and extends bounds on the
numbers of sensors, redundancies, and holes for sparse linear arrays to
sparse planar and volume arrays. As an application, the efficiency of reg-
ular planar and volume arrays with redundancies but no holes is deduced.
Also, examples of new redundancy and hole square arrays, found by ex-
haustive computer search, are given.

Index Terms—Difference base, minimum hole array, minimum redun-
dancy array, sparse planar array, sparse volume array.

I. INTRODUCTION

When the number of antenna sensors available for an array is lim-
ited, the problem of optimum array geometry naturally arises. From the
beam width and the sidelobe level of the associated beam pattern [1]
or from the direction of arrival (DOA) estimation accuracy [2] point
of view, array configurations known as linear minimum-redundancy
(MR) arrays or linear minimum-hole (MH) arrays (also called optimum
nonredundant arrays) are often proposed. Linear MR arrays have been
extensively studied; see [3] and [4], and the references therein. In par-
ticular, much attention has been given to bounds on the ratioM2=A
[4], [5] whereM andA denote, respectively, the number of sensors
and the aperture of the linear array. Linear MH arrays were consid-
ered in [3] and [6]. Whereas specific structures were designed to op-
timize some performance criteria (e.g., [7] for DOA algorithms with
DOA prior information and [1] for beam patterns with various side-
lobe level/beamwidth tradeoffs); redundancy and hole concepts do not
embrace any such optimality criterion directly. Thus, the MR and MH
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TABLE I
NUMBERS OFSENSORS ANDCONFIGURATIONS OFSQUARE MR (RESP., MH) ARRAYS OBTAINED BY EXHAUSTIVE COMPUTERSEARCH COMPARED WITH

LOWER BOUND (LB) (RESP., UPPERBOUND (UB)), VERSUSAPERTURE

Fig. 1. Numbers of sensors (obtained by exhaustive computer search and bounds (2.5), (2.6) versus aperture of square array.

arrays are more easily applicable to a wider range of problems, and
these structures achieve an efficient tradeoff between beam pattern and
DOA estimation performance.

Contrary to the sparse linear arrays, few contributions have been de-
voted to sparse planar and volume arrays (note that the planar array
retains side ambiguity resolved by a volume array). The notions of
MR and MH arrays can be extended to these arrays because the spa-
tial covariance matrix, associated with equally spaced arrays, exhibits a
Toeplitz, block-Toeplitz structure for uncorrelated sources. Some struc-
tures of square and cubic redundancy arrays were studied by Pumphrey
[8]. However, as discussed in [9], the computation of MR and MH ar-
rays for the two-dimensional (2–D) case is much more involved than
that for the one-dimensional (1–D) case. Thus, it is of importance to
have bounds to be able to qualify the efficiency of not necessarily MR
or MH planar and volume structures.

Section II improves and extends bounds on the numbers of sensors,
redundancies, and holes for the sparse linear arrays given by [3] to
sparse planar and volume arrays. As an application, the efficiency of
regular planar and volume arrays with redundancies but no holes is
deduced. Also, examples of new redundancy and hole square arrays
given by exhaustive computer search are shown in the Appendix.

II. BOUNDS FORARRAYS WITH REDUNDANCIES AND HOLES

Consider a volume arrayA made ofM sensors lying on the marks
of a Cartesian grid.1 The sensor spacings on this grid are integer multi-
ples of some fundamental distance (usually the half wavelength of the

1It is possible to consider other kind of grid as Haubrich [10] did, who con-
sidered sensors on an isometric or equilateral triangle grid and found perfect
planar arrays in this way.
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Fig. 2. Examples of square MR arrays.

Fig. 3. Examples of square MH arrays.

incident radiation), and thus the sensor separations can be represented
by these integers. Based on the assumption that one is primarily inter-
ested in how an array samples the spatial covariance function, which is
a function only of the separation between the points (for uncorrelated
sources), the useful notion of coarray was introduced [10]. It refers to
the set of points at which the spatial covariance function can be esti-
mated with that array. This coarrayD is represented with a set of vec-
torsddd called lags

D = fdddij = sssi � sssjg; i; j = 1; 2; . . . ; M

wheresssi = (xi; yi; zi)
T is the location of theith sensor (xi, yi, and

zi are integers). Denote by

(Ax; Ay; Az) = (max(xi � xj); max(yi � yj); max(zi � zj))

the apertures of this array. Linear and planar arrays are considered as
particular cases of volume arrays, i.e.,Ay = Az = 0 andAz = 0 for,
respectively, linear and planar arrays. With these definitions, we recall
that if the array has more than one pair of sensors separated by the
same lagddd, these pairs produce redundant estimates of the covariance
function at that lag. In this case, the coarray of that array is said to have
redundancies. The number of these redundancies excluding the lag000

is denoted byR. If there is no pair of sensors separated by some lag
whose components are all smaller than the associated apertures of the
array, the array is said to have a hole in its coarray at that location. The
number of these holes is denoted byH . If E is the number of distinct
lags of the coarray (including lag000), the numberM2 of lagsdddij of
the coarray is composed ofE lags appearing at least one time and of
R + M � 1 strictly redundant lags, soM2 = E + R + (M � 1).
Each of the(2Ax + 1)(2Ay + 1)(2Az + 1) lags of the rectangular
parallelepiped associated full array appears either at least one time or
not at all, soE+H = (2Ax+1)(2Ay+1)(2Az+1). Consequently, the
apertures, the numbers of sensors, redundancies, and holes are related
by

(2Ax +1)(2Ay + 1)(2Az +1) = (M2 �M + 1)+H �R: (2.1)

To eliminate the apertures in this relation and derive a general relation
between the numbers of sensors, redundancies, and holes, we introduce
a new function associated with its autocorrelation function that enables
us to improve and to extend directly the linear array bounds by [3] to
planar and volume arrays. Let�A:Z3!f0; 1g be the characteristic
function of the array, i.e.,�A(sss) = 1 if a sensor is in positionsss and
�A(sss)= 0 elsewhere. The number of times the lagddd is present in the
sparse array defines the autocorrelation function�(ddd) of�A:Z3!N :

With these definitions, the following result is proved.

Result 1: For a given number of sensors, the numbers of holes and
redundancies that must be present in the linear, planar, or volume array
satisfy the relation2

R(3� + 2(1 + �A)) +H(3�� 2(1 + �A))

� 2(1 + �A)M
2 � (M � 1)(3�+ 2(1 + �A)) (2.2)

where�A is given in the Appendix.3

Proof: Let�
D

be the characteristic function of the coarray asso-
ciated with the fully populated array of apertures(Ax; Ay; Az) and
�000: Z

3 ! f0; 1g that of lag000 whose Fourier transforms are, respec-
tively, sin �(2A +1)f

sin �f

sin �(2A +1)f

sin �f

sin �(2A +1)f
sin �f

and1.
As�(ddd) is the number of times the lagddd appears in the arrayA, the

difference

�(ddd)
def
=�(ddd)� �

D
(ddd)� (M � 1)�000(ddd) (2.3)

satisfies forddd inD: �(ddd) = �1 if ddd is a hole,�(ddd) is equal to the number
of redundancies of that lagddd if ddd is in D, except forddd = 000 in which
case�(ddd) = 000. Consequently,

ddd2D
j�(ddd)j = H +R. As the Fourier

transformE(fff) of the even real function�(ddd) is real

E(fff) � jE(fff)j �

ddd2D

j�(ddd)j = H +R:

2Note that in our formulation, lagsddd are inZ , so our definitions ofH andR
differ from those of [3, rel. (19)] in the linear case by the multiplicative factor2.

3In particular, it is shown in the Appendix that� � 1 and that� �
0:0237 for apertures� 6.
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Therefore, taking the Fourier transform of (2.3) and noting that the
Fourier transformL(fff) of the autocorrelation function�(ddd) is real
nonnegative, the following holds for allfff :

�

sin�(2Ax+1)fx
sin�fx

sin�(2Ay+1)fy
sin�fy

sin�(2Az+1)fz
sin�fz

�(M�1)

� H+R�L(fff)�H+R:

After simple manipulations detailed in the Appendix, we obtain

2

3�
(1+�A)(2Ax+1)(2Ay+1)(2Az+1)�(M�1) � H+R: (2.4)

Finally, substituting (2.1) in this expression yields (2.2).

Result 1, identical to [3, rel. (19)] except for the presence of�A,
improves the classic 1-D bound [1], and extends it to 2-D and three-di-
mensional (3–D) arrays. Surprisingly, this result is invariant with re-
spect to the dimensionality of the array. Putting, respectively,H = 0
andR = 0 in (2.2) gives lower bounds onR andH , respectively, for
redundancy and hole arrays. Whatever the dimensionality of the array
may be, we have, for redundancy arrays

R �
2(1 + �A)M

2

3� + 2(1 + �A)
� (M � 1)

and for hole arrays

H �
2(1 + �A)M

2

3� � 2(1 + �A)
� (M � 1)

3� + 2(1 + �A)

3� � 2(1 + �A)
:

Thus, for large arrays, the lower bounds provided by [3, rels. (20) and
(21)] are approximatively multiplied by1:0237.

Concerning the bounds onM , Result 1 implies the following.

1) For perfect arrays, i.e., arrays with no redundancy or hole(R =
0; H = 0), Result 1 implies2(M2�M+1)�3�(M�1) � 0,
therefore,M 2 f2; 3; 4g. Thus, from (2.1)

M
2 �M + 1 = (2Ax + 1)(2Ay + 1)(2Az + 1) = 3; 7; or13:

Since the product(2Ax + 1)(2Ay + 1)(2Az + 1) is prime, the
only, nontrivial solutions are

M =3 Ax = 3 Ay = Az = 0

and

M =4 Ax = 6 Ay = Az = 0:

These are the well-known linear perfect arrays [3] and we prove
that the only perfect arrays are linear.

2) For redundancy arrays [3], i.e., arrays with no hole(H = 0),
Result 1 and (2.1) yield

M
2�(2Ax+1)(2Ay+1)(2Az+1) 1+

2(1+�A)

3�
(2.5)

which for Ay = Az = 0 gives a tighter lower bound onM
than [3, rel. (17)]. However, because of roundoff effect, the im-
provement provided by (2.5) in the 1-D case is not regular and
occurs for only certain values ofA. For example, for linear MR
(LMR) arrays,A = 69 is the lowest value ofA for which the
lower bound onM provided by [3, rel. (17)] and by (2.5) would
be different (respectively,M � 13 andM � 14).

3) For hole arrays [3], i.e., arrays with no redundancy(R = 0),
Result 1 and (2.1) yield

(M�1)2�(2Ax+1)(2Ay+1)(2Az+1) 1�
2(1+�A)

3�
�1

(2.6)

which for Ay = Az = 0 gives a tighter upper bound onM
than [3, rel. (26)]. But, as previously, the improvement in the
one-dimensional case is not regular and, for example, for linear
MH (LMH) arrays,A = 51 is the lowest value ofA for which
the upper bound onM provided by [3, rel. (26)] and by (2.6)
would be different (respectively,M � 10 andM � 9).

III. D ESIGN OFSPARSELINEAR AND VOLUME ARRAYS

To build efficient square and cubic redundancy arrays, two regular
structures are known. The first, referred to by Pumphrey [8] as “cross
product” (CP) arrays, are constructed from, respectively, two or three
identical LMR arrays. A square cross-product array, for example, has
a sensor atfi; jg if the linear array it is constructed from has a sensor
at fig and one atfjg (see Fig. 2). Note that these structures can be
extended to nonidentical LMR arrays. As LMR arrays are built for any
M , their optimal apertureA is a functionAM of M . So associated
cross-product arrays are defined only for these aperturesAM , for which
the number of sensors isM2 orM3. As for LMR arrays [5], [4]

2:434 � lim
M!1

M2

AM
� 3:348

therefore, these cross-product structures satisfy, respectively, for the
square and cubic arrays withM sensors

2:434 � lim
M!1

M

AM
� 3:348

and

2:434 � lim
M!1

M2=3

AM
� 3:348: (3.1)

Compared to (2.5), which gives for linear, square, and cubic redun-
dancy arraysM2 � 2:434A + 1:217, M � 2:207A + 1:103, and
M2=3 � 2:135A + 1:068, respectively, these cross-product redun-
dancy arrays are potentially efficient. However, we note that the differ-
ence between the number of sensors given by the lower bound (2.5) and
the one given by (3.1) increases with the dimensionality of the array. A
second regular structure was proposed by Greene–Wood (GW) [11] for
square arrays. The sensor location(i; j; k) of such an array of aper-
tureA verifies: i = 0 or j = 0 or k = 0 or i = j = k = 2; . . . ; A
(k = 0 for square array cf. Fig. 2). It gives, respectively,M = 3A and
M = A(3A+4) for square and cubic arrays.4 Compared to (2.5), the
GW square array is a potentially efficient redundancy array contrary to
the GW cubic array. Naturally, all these structures are not necessarily
MR. Table I exhibits, by exhaustive computer search, the number of
MR and MH square arrays for apertures up to6(7 for MH square ar-
rays), two arrays being considered different if none of them can be de-
duced from the other by an elementary transformation. We find that
these arrays are not generally unique. However, GWor cross-product
MR arrays exist for each of these apertures (except forA = 2).

IV. CONCLUSION

A general formulation has enabled us to consider the notion of min-
imum hole and minimum redundancy arrays regardless of the dimen-
sionality of the array. Thanks to this approach, tighter bounds have been
given on the numbers of sensors, redundancies, and holes for the linear
arrays and similar bounds have been proposed for planar and volume
arrays. As an application, the efficiency of regular planar and volume
arrays with redundancies but no holes has been deduced (see Fig. 1
for planar arrays). The number of sensors and configurations of square
MR and MH arrays obtained by exhaustive computer search has been

4Note that a more efficient cubic structure can be obtained by piling up iden-
tical GW square arrays for which the number of sensors isM = 3A(A+ 1):
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given. An example of square MR and MH array for each aperture is
exhibited up to aperture7 (see Figs. 2 and 3). Finally, we note that de-
signing simple regular structures of efficient hole arrays, or deducing
hole planar and volume arrays from linear hole arrays, still presents a
number of obstacles.

APPENDIX

PROOF OF(2.4)

Let s(AAA; fff) denote the expression

�

sin �(2Ax + 1)fx
sin �fx

sin �(2Ay + 1)fy
sin �fy

sin �(2Az + 1)fz
sin �fz

:

Because explicit calculation ofmaxfff s(AAA; fff) is complicated, we shall
focus on two slightly smaller values. First, as

max
x

�

sin x

x
=

2

3�
(1 + �

0)

with �0 = 0:0237 andsin x < x for x > 0, direct manipulations
imply

2

3�
(1 + �

0)(2Ax + 1)(2Ay + 1)(2Az + 1) � max
fff

s(AAA; fff):

Second, supposeAx = min(Ax; Ay; Az) without loss of generality.
For

fff
0

def
=(f0; 0; 0) f0

def
=

3

2(2Ax + 1)

�
sin�(2Ax+1)f0

sin�f0
(2Ay+1)(2Az+1)=s(AAA; fff0)�max

fff
s(AAA; fff):

Using the classical relation between the periodic Fourier transform of a
sequence and the Fourier transform of the associated analog waveform

�
sin �(2Ax + 1)f0

sin �f0

= �

+1

k=�1

sin(�(2Ax + 1)(f0 � k))

�(f0 � k)

= �
sin �(2Ax + 1)f0

�

+1

k=�1

(�1)k

f0 � k

= �
sin �(2Ax + 1)f0

�

1

f0
+ 2f0

+1

k=1

(�1)k

f0
2
� k2

=
2

3�
(2Ax + 1) 1�

9

2

+1

k=1

(�1)k

k2(2Ax + 1)2 � 9

4

def
=

2

3�
(2Ax + 1)(1 + �

00

A):

Therefore,
2

3�
(1 + �

00

A)(2Ax + 1)(2Ay + 1)(2Az + 1) � max
fff

s(AAA; fff):

Combining these two values, (2.4) holds with�A
def
= max(�0; �00A). We

note that�00A is decreasing inAx and a sharp examination of�00A shows
that�A = �00A for Ax < 6 (e.g.,�3 � 0:0797) and�A = �0 �

0:0237 for Ax � 6.

REFERENCES

[1] S. De Graff and D. H. Johnson, “Optimal linear arrays for narrow-band
beamforming,” inProc. ICASSP-84, 1984, pp. 40.8.1–40.8.4.

[2] Y. I. Abramovich, D. A. Gray, A. Y. Gorokhov, and N. K. Spencer,
“Comparison of DOA estimation performance for various types of
sparse antenna array geometries,” inProc. EUSIPCO-96, Trieste, Italy,
1996, pp. 915–918.

[3] D. A. Linebarger, I. H. Sudborough, and I. G. Tollis, “Difference bases
and sparse sensor arrays,”IEEE Trans. Inform. Theory, vol. 39, pp.
716–721, Mar. 1993.

[4] S. U. Pillai, Array Signal Processing. New York: Springer Verlag,
1988.

[5] J. Leech, “On the representation of1; 2; . . . ;n by differences,”J.
London Math. Soc., vol. 31, pp. 160–169, 1956.

[6] E. Vertatschitsch and S. Haykin, “Nonredundant array,”Proc. IEEE, vol.
74, p. 217, Jan. 1986.

[7] X. Huang, J. P. Reilly, and M. Wong, “Optimal design of linear array
of sensors,” inProc. ICASSP-91, Toronto, ON, Canada, 1991, pp.
1405–1408.

[8] H. C. Pumphrey, “Design of sparse arrays in one, two, and three dimen-
sions,”J. Acoust. Soc. Amer., vol. 93, no. 3, pp. 1620–1628, March 1993.

[9] S. Haykin, J. P. Reilly, V. Kezys, and E. Vertatschitsch, “Some aspects
of array signal processing,”Proc. Inst. Elelct. Eng. -F, vol. 139, no. 1,
pp. 1–26, Feb, 1992.

[10] R. A. Haubrich, “Array design,”Bull. Seismol. Soc. Amer., vol. 58, pp.
977–991, 1968.

[11] C. R. Greene and R. C. Wood, “Sparse array performance,”J. Acoust.
Soc. Amer., vol. 63, pp. 1866–1872, 1978.

Bounds on Entropy in a Guessing Game

Alfredo De Santis, Antonio Giorgio Gaggia, and Ugo Vaccaro

Abstract—We consider the guessing problem proposed by Massey [1] of a
cryptanalyst that wants to break a ciphertext with a brute-force attack. The
best strategy he can use is to try out all possible keys, one at time in order
of decreasing probability, after narrowing the possibilities by some crypt-
analysis. In this correspondence we provide both upper and lower bounds
on the entropy of the probability distribution on the secret keys in terms of
the number of secret keys and of the average number of trials of the crypt-
analyst.

Index Terms—Entropy, guessing, probability.

I. INTRODUCTION

Massey in [1] considered the problem of a cryptanalyst that, in order
to decrypt a ciphertext, must try out all possible secret keys, one at a
time, after narrowing the possibilities by some cryptanalysis. LetK

be the set of all possible secret keys and letP = (p1; . . . ; pn) be
the probability distribution wherepi; i = 1; . . . ; n; is the probability
that the secret key iski 2 K. The strategy that minimizes the number
of trials is obviously to guess the possible keys in order of decreasing
probability. Without loss of generality, we assume thatp1 � � � � � pn.
Then the average number of trials of the cryptanalyst is

�(P ) =

n

i=1

i � pi:

Massey [1] proved that the entropy ofP , that is,

H(P ) = H(p1; . . . ; pn) = �

n

i=1

pi log pi
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