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ABSTRACT

This paper mainly deals with an extension of the matrix Slepian-Bangs (SB) formula to elliptical sym-
metric (ES) distributions under the assumption that the arbitrary density generator depends on unknown
parameters, aiming to rigorously quantify and understand the impact of this assumption on ES distributed
parametric estimation models. This matrix SB formula is derived in a unified way within the framework
of real (RES) and circular (C-CES) or noncircular (NC-CES) complex elliptically symmetric distributions,
and then compared to the matrix SB formula obtained with fully known or completely unknown density
generators. This new matrix SB formula involves a common structure to the existing one with a simple
corrective coefficient. Closed-form expressions of this coefficient are given for Student’s t and generalized
Gaussian distributions and are each compared according to different knowledge of the density genera-
tor. This allows us to conclude that for an arbitrary parameterization, the Cramér-Rao bound (CRB) may
be very sensitive to the knowledge of the density generator for super-Gaussian distributions contrary to
sub-Gaussian distributions. Finally, we prove that for the parametrization with an unknown scale factor,
the CRB for the estimation of the other parameters of the scatter matrix does not depend on the type of
knowledge of the density generator. This latter result remains true for the specific noisy linear mixture

data model where the parameter of interest is characterized by the range space of the mixing matrix.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

To assess the performance of many estimation algorithms, it is
necessary to derive the Cramer-Rao bound (CRB), which is a lower
bound on the variance of any unbiased estimator of the parameters
of interest for the problem at hand. This bound relies on a para-
metric probabilistic model of the data which may be either exact
or misspecified. Under the matched model assumption, the CRB is
usually computed as the inverse of the Fisher information matrix
(FIM). Fortunately a simple elementwise closed-form expression of
this FIM, called Slepian-Bangs (SB) formula has been derived for
the real Gaussian distribution in [1] and [2], in which both the ex-
pectation and the covariance are parameterized. Then this formula
was extended to the circular complex Gaussian and non-circular
Gaussian case in [3] and [4], respectively. However, in practice, the
Gaussian assumption is not always adapted due to outliers. It is
known from the literature that outliers can be modeled by ellipti-
cally symmetric (ES) distributions with heavy tails. The Gaussian-

* Corresponding author.
E-mail addresses: h.abeida@tu.edusa (H. Abeida), jean-pierre.delmas@it-
sudparis.eu (J.-P. Delmas).

https://doi.org/10.1016/j.sigpro.2022.108886
0165-1684/© 2022 Elsevier B.V. All rights reserved.

based SB formula was later extended to circular complex ES (C-
CES) distributions (see e.g., [5-7]) in [8] and [9] and to noncircular
complex ES (NC-CES) distributions [10]. We remind here the ellip-
tically symmetric (ES) distributions encompass the Gaussian, the
generalized Gaussian and all the compound Gaussian distributions,
such as the Student’s t and K-distributions, as special cases. Be-
cause of their great flexibility in modeling both heavy-tailed and
light-tailed non-Gaussian distributed data, these distributions have
been used in a variety of applications, in particular in the radar
and array signal processing fields (see [7] and references therein).

In all above references on the derivations of SBs, the density
generator is assumed to be perfectly known. Unlike this case, when
considered as a nuisance parameter, an extension of SB formula
was proposed in [11] in the context of semiparametric estimation
for C-CES distributions. However, when the data model is misspec-
ified by the parametric probabilistic model, the SB formula was
generalized in [12] and [13] for the Gaussian model and then ex-
tended in [14] to C-CES distributions.

Given a particular ES distribution, its density generator might
depend on some extra parameters (e.g., shape and scale parame-
ters for the Student’s t distribution) that are in general unknown.
In this context, closed-form expressions of the FIM for the esti-
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mation of these parameters along with the symmetry center and
scatter matrix for the circular Student’s t and generalized Gaus-
sian distribution have been derived in [15-17] where the trace of
the scatter matrix is constrained. In this paper, we rather consider
these extra parameters of the density generator as unknown nui-
sance parameters and we are interested in the FIM for the estima-
tion of the parameters parameterizing the symmetry center and
scatter matrix which is constrained to be equal to the covariance
matrix. The derived SB formula is compared to that for which the
density generator is fully known or completely unknown. This new
SB formula involves a common structure to the existing one with
a simple corrective coefficient. Closed-form expressions of this co-
efficient are given for Student’s t and generalized Gaussian distri-
butions and are each compared according to different knowledge
of the density generator. This allows us to conclude that for an
arbitrary parameterization, the CRB may be very sensitive to the
type of knowledge of the density for super-Gaussian distributions
contrary to sub-Gaussian distributions. Finally, we prove that if
the symmetry center and the scatter matrix have no parameter in
common with an unknown scale factor, the CRB for the estimation
of the other parameters of the scatter matrix does not depend on
the type of knowledge of the density generator. The same result
is true for the specific noisy linear mixture data model where the
parameter of interest is characterized by the range space of the
mixing matrix.

The remainder of this paper is organized as follows.
Section 2 recalls the real to complex representation of ES dis-
tributions useful to be able to deduce the SB formulas for complex
data from those for real data. It also gives a brief reminder of
Student’s t and generalized Gaussian distributions under the con-
straint that the scatter matrix is equal to the covariance matrix,
and of the classic and parametric SB formulas. The parameterized
SB formula is derived in Section 3 for arbitrary density generators
and then for Student’s t and generalized Gaussian distributions,
where comparisons are given for different parameterizations of the
symmetric center and scatter matrix for three types of knowledge
of the density generators. The specific model noisy linear mixture
data model where the parameter of interest is characterized by
the range space of the mixing matrix is covered in Section 4.
Finally, the paper is concluded in Section 5.

The following notations are used throughout the paper. Matri-
ces and vectors are represented by bold upper case and bold lower
case characters, respectively. Vectors are by default in column ori-
entation, while the superscripts T, H and = stand for transpose,
conjugate transpose and conjugate. E(.), |.|, Re(.) and Im(.) are
the expectation, determinant, real and imaginary part operators re-
spectively. Iy is the identity matrix of dimension N. vec(-) is the
“vectorization” operator that turns a matrix into a vector by stack-
ing the columns of the matrix one below another which is used in
conjunction with the Kronecker product A ® B as the block matrix
whose (i, j) block element is g; ;B. Finally, I'(x) and B(x, y) are the
usual gamma and beta functions and x =; y means that the r.v. x
and y have the same distribution.

2. Preliminaries on elliptically symmetric distributions and
Slepian-Bangs formulas

2.1. RES, C-CES and NC-CES distributions
Consider first the case of a N-dimensional RES distributed ran-

dom variable (r.v.) x whose probability density function (p.d.f.) is
of the form

p(x) = |7 2gn[(x = ) Z7 (x — )], (1)
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where g and X are the symmetry center and the scatter matrix,
respectively, and where the density generator'g, y: Rt > RT sat-

isfies?8,.y def Joo tN2=1g n(8)dt < co. To derive the SB formula, we
assume throughout this paper that the second-order moments of
x are finite. To avoid the scale ambiguity problem between X and
grN, we here impose the constraint on g,y such that ¥ =E[(x—
) (x — w)T] rather than usual constraints on X that we cannot
work on when it is parameterized. The r.v. x admits the following
stochastic representation [18]

X=q L+ Qr,NZ]/zur,N? (2)

where 9,y and u,y are independent, u, y is uniformly distributed
on the unit real N-sphere and O, y has the p.d.f.

p(q) = 8.3a"* g (@) 3)

An N-dimensional complex r.v. x is CES distributed if and only
if the 2N-dimensional r.v. X ' (Re()T, Im(x)T)T is RES distributed
[19]. Depending on whether 2 def E[(x—u)x—p)T]=00r +#£0,

X is C-CES or NC-CES distributed, respectively. Using the one-to
V20 i

is unitary, we get ®— )T 1&-f1) = X— J)HE-1X - i) and

2] =22N|Z| where £ EE[(k - p) X~ )], T EE[X - E)X -

one mapping X — X &' (x7, x)T = v2Mx where M &' LC lll)

_ T e\ . _
)M = (sz z*) it Re(u)". Im(u)")T, i E (uT, pH)T and
the p.d.f. (1) becomes

< 1o oyt ~
P00 = (£ 2gen] 5 ®- WM E T ®- ) |, (4)
where  gon(t) % 2Ng o(2)  which  satisfies Sy &

Jo tN1g N(t)dt = 8oy = % From the stochastic represen-
tation (2) where N is replaced by 2N, we get

X =gt +/Qen[(ZV?)1 1ucn + (21/2)1,211;1\1]’ (5)
- 31/2 3172

: 12 def (V)11 (B2 ) )

with XV/* = ((21/2)?2 E12) where closed-form expres

sions of (2172);; and (Z1/2);, are given in [10] with ¥ =
X12(X1/2)H 9.y and u. y are independent, u y is uniformly dis-

tributed on the unit complex N-sphere and Q. y dﬁf%gnz,\, with
p.d.f.

p(q) =8, yq" " gn(q). (6)

In the particular case where £ =0, x is C-CES distributed, and
(4) and (5) respectively reduce to

px) = | X 'gen[(x— ) E"(x— )] and
X = al +/QenEV ucy. (7)

We consider from now on that g and X are parameterized by
a parameter o € RM that characterizes (i, X), but we omit this
dependence (p(e), X()) to simplify the notations. We also as-
sume that the density generators are either fully known, known
up to unknown parameters 8 € R, or completely unknown and in-
terpreted as infinite-dimensional nuisance parameters. 8 acts as a
nuisance parameter, while « is a parameter of interest (time delay,
direction of arrival, range, impulse response coefficients...) depend-
ing on the related problem.

1 The readers interested in these density generator functions can refer to
[7] which gives several examples.

2 The usual normalizing constant being included in gy (1), 8,5 depends here in
fact only on N.
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2.2. Constrained density generators of Student’s t and generalized
Gaussian distributions

We give here a brief reminder of the expressions of the den-
sity generators of Student’s t and generalized Gaussian distribu-
tions (see [7] for details) under the constraint that the scatter ma-
trices X are equal to the covariance matrices. We note that the Stu-
dent’s t distribution, which belongs to the subclass of compound
Gaussian distributions, have gained popularity for modeling radar
clutter [20] and the generalized Gaussian distributions have been
used for modeling various images or features extracted from these
images [21]. These distributions are used in the illustration of the
parameterized SB formulas in Section 3.2. From the expressions of
the unconstrained density generators [7], we deduce easily the fol-
lowing expressions that are reduced to a single parameter:

' 2T (N + 3) 26\
gn(t) = nN(v_Z)Nl'z‘(%)(1 v—2) and
g (0) = sT(N[C D [1(%} , (8)

n—NNN[]“(g)]NJr]

for Student’s t distribution with v > 2 degrees of freedom and gen-
eralized Gaussian distributions with exponent s > 0, respectively.
The expressions of the associated RES constrained density genera-
tors g n(t) is related to g n(t) by g n(t) = 2Ng, oy (20).

2.3. Classic and semiparametric SB formulas

The purpose of this Subsection is to unify in a common struc-
tured matrix formula, the classic and semiparametric SB formulas
relating to C-CES and NC-CES distributions from that of the RES
distributions.

For RES distributed data, all the steps of the proof of the clas-
sic and semiparametric SB formula for C-CES distributions given in
[8] and [11] (with [14, Appendix B]), respectively, apply by using
the identity E[(y”Ay)(y"By)] = Tr(A)Tr(B) + 2Tr(AB) for any sym-
metric N x N matrices A and B, and N-dimensional zero-mean real-
valued Gaussian distributed r.v. y. This allows us to prove that the
classic and semiparametric matrix SB formula for RES distributions
have the following structure:

CRB~ (a)_a1d"z1d”+

daT daT

dvec(X)
doT

T
) (2 Tex™)

dvec(E)) )

+a3vec(Zl)VeCT(El))< do™

where a; =&.1n, G = %5,,2,N for both classic and semiparamet-

ric SB formulas and a3 def aCI&ls = }t(grz Ny — 1) [resp., a3 def agel’a =
Er 2 N

| for the classic [resp., semiparametric] SB formula with

of E|Qo-y(Q o E[Q?¢2,(Q
&N = def M and &, &f [N(N—I:(Z))] (10)
where Q &' 0, v and ¢, n(6) &' g‘,f(t) dg’;i’i(”

These classic and semiparametric SB formulas allow us to di-
rectly deduce those of NC-CES distributed data obtained, thanks to
the relationship between the representation of real and complex
r.v.'s introduced in Subsection 2.1. These SB formulas are similarly

T
structured where p, X, %' (%) and vecT (1) in (9) are

~ ~ s \H ~
replaced by i, T it (M) and vecl(X-1), respectively,

* o dal’ daT
EE” for both classic and semiparamet-

def
3 Econ—1) [resp, a3 = a3t =

where a = §C1 N and a =

def
ric SB formulas and a3 € aglas
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—@] for the classic [resp., semiparametric] SB formula with

def E[Q¢CN(Q)] def E[Qz N(Q)]
CIN = =N and &on = TNN+1) (11)
def 1 dgen(t)

where Q QcN and ¢ n(t) = AN GR On the other hand,
the classic and semiparametric SB' formulas for C-CES distributed
0

=)
yielding the classic and semiparametric SB formulas proved in
[8,9], and [11], respectively, which are also similarly structured

T
where d’L x- 1:5, (%) and vec’(X-1) is replaced by

data can be deduced directly by replacing b by ()(i

H
Re(d" ¥~ 1d") (%) and vec”(X-1) in (9) with a; =

daT daT
2.4y and ay =&,y for both classic and semiparametric SB for-
mulas and a3 € agas = £,y —1 [resp., a3 &' a$ePa = —Lﬁ“] for
the classic [resp., semiparametric] SB formula.

Note that for real Gaussian distributions, ¢ n(t) =
—1 and Q is XN distributed which give E(Q) =N and

E(Q?) =N(N+2), and thus from (10), & ny=§&.on=1 and

(a1, a3, 0§55, a5%P3) = (1, 3,0, —5%), which imply that (9) re-

duces to thed Twell dknown elementwise classic SB formula

[FIM ()], = d'kazflw"l + %Tr(2*1%2*1 %) [1],[2].  Sim-

ilarly for complex circular and noncircular Gaussian dis-

tributions, we  get (al a, a§®, a3¥) = (2,1,0,—4) and
— o), Tespectively.

(ay.a;.a§, a5P) = (1, 1.0,

3. Parameterized Slepian-Bangs formulas
3.1. Arbitrary density generator

In this Section the density generators g,y and g. y are assumed
to be known up to unknown parameters 8 € R- and here denoted

by g‘f y and gf - Consequently the unknown parameter for the RES,
C-CES and NC-CES distributions is (e, B7)T € RM+L where 8 is an
unknown nuisance parameter. The following result is proved in the
Appendix.

Result 1. For each RES, C-CES and NC-CES distribution, the clas-
sic, semiparametric and parameterized SB formula have the same
structure (9) with identical coefficients a; and a, and differ only
by their coefficients as given in the parameterized SB formula by
as & aber — a$as_q, where a4 = &) 5 yE) .5y for RES distribu-
tions, with o

" E[Q¢r.N(Q)¢fN(Q)]

r3,N = N

and E S 4N d_ef E[¢EN(Q)¢£;NT(Q)] s
(12)

agl\ (©)

where ¢ N(t) dﬁf 1 5 € Rl and Q def 9, and similarly for

(t)
C/NC-CES dlstrlbutlons by replacing r by ¢, T by H and the associ-
ated expression of aglas are given above.

Note that for Gaussian distributions for which the density gen-
erator g, n(t) = > exp(— 2t) has no parameter, we get aPar
a§l = 0.

In particular, if g and ¥ have no parameters in common with
p and X parameterized and characterized by «; and a5, respec-
tively, the parameters o; and o are decoupled in the FIM (9).
Consequently the CRB for the estimation of a; has the common

expression
du’ du
docTE 1dozT> (13)

(271)N/

CRB((X]) = (
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for fully known density generator, known up to parameters and
completely unknown density generators, in contrast to the CRB for
the estimation of o,

T
CRB(aty) = ((d"ec(z)> (2(2Tex™)

T
da

-1
+asvec(ZYvec' (1)) (dvec(z)» (14)

dod
which generally depends on the type of knowledge about the

density generator through the term as. However, in the specific

parameterization of the scatter matrix X = a/Xq(e)) with un-

known scaling factor o/ and o, = (ozé,oc/z’T)T, the following result

is proved in the Appendix:

Result 2. For each RES, C-CES and NC-CES distribution, where p
and ¥ have no common parameters with the parameterization
Y =a}Xo(af) of the scatter matrix, the CRB for the estimation
of af does not depend on a/, nor on the type of knowledge about
the density generator and is given for RES distributions by the ex-
pression:

T

" 1 dvec(Xy) _ _

CRB(oty) = o (M)((ZOT@@Z(,])
2

T
de,

1
_%vec(z(jl)vecT(Ea])) (d"ec(z"))) . (15)

In other words, for this specific parametrization, the perfect knowl-
edge or only the knowledge up to unknown extra parameter of
the density generator does not reduce the CRB on oc;. Similarly to
(9), the CRB for C-CES distributions is deduced from (15), thanks
to the relationship between the representation of real and com-

T H
plex r.v.'s, by replacing (‘“’Lﬁo)> and vec’ (2,1 by (‘”Lﬁ‘ﬁ)
d d

L) L)

T
and vecH (£71). For the NC-CES distributions, X, | 2°%Z0) )} and
0 nT
do

2

H
vecT (X,") must be replaced by %o, (dvjcfﬁo)) and vec”()ial).
%

By contrast, the scale parameter o, cannot be estimated in the
absence of knowledge of the density generator due to the intrin-
sic ambiguity of the parametrization of the p.d.f. of the ES dis-
tributions, while the CRB on this parameter may depend on the
knowledge of the density generator (with fully known or known
up to unknown parameters). Moreover, unlike Result 2, the CRB
for the estimation of a; when the parameter o, is known is given
by (16) which depends on the type of knowledge of the density
generator through the coefficient as

T
" d D)
CRB(@;) = (V“(T”)) (2(%," © %5 1)
dat,

nT
det;,

-1
+asvec(E;vec (£;1) (dvec(z(’)» , (16)

as illustrated by an example in Subsection 3.2.

It follows from Result 1 that for general parameterization of u
and X, the comparison of the classical and semi-parametric SB for-
mulas recalled in subsection 2.3 and the parameterized SB formula
amounts to comparing the coefficient a; of the associated SB for-
mulas. Naturally, more knowledge about the density generator re-
sults in a smaller CRB on parameter &, and we must therefore have
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the following inequalities on the coefficients as:

Clas_a4. (17)

agePa < a[3’ar < aglas with a[3’ar =daf
Note that the inequality a5e™ < a3 is equivalent for example for
C-CES distributions to the inequality

N
—&# SEC,Z.N -1 ";:c,z.N . m, (18)

which is in fact strict. It follows directly from the Cauchy-Schwarz

inequality (E(XY))? < E(X?) E(Y2) with X = Q¢ n(Q) (where Q &

Ocn) and Y =1 with equality if and only if the r.v. Q¢ n(Q) is
constant. Since this property is equivalent to g.(t) = t® where a is
constant, which cannot satisfy the condition f5° tN~1g. y(t)dt < oo,
and then the equality can not hold. To go further in the compari-
son of the coefficient a3, we consider the following specific distri-
butions.

3.2. Student’s t and generalized Gaussian distributions

To illustrate Results 1 and 2, we consider the two commonly
used Student’s t distribution with v > 2 degrees of freedom® and
generalized Gaussian distributions with exponent s > 0 reminded
in Subsection 2.2. It is simple to prove that the coefficients &, y
and &5 N, &1y and &,y are independent of the constraint on
the density generators for arbitrary distributions. These have been
calculated for complex Student’s t or complex generalized Gaussian
distributions by several authors (see e.g., [8],[9],[22]) and given re-
spectively by:

s v/2 (v/2) +N s . (W2)+N
SN = ) - D () + N+ D M S = Gy N T
(19)
[+ N=1yp(taty Nots
cG _ s s G __
CINZ T )y and &5y = N+ T (20)

In contrast, the coefficients &3y and &4y, &3 n and &. 4y, nat-
urally, generally depend on the constraint imposed on the density
generators which leads to a relation between the multidimensional
parameters of the standard density generators (e.g., B8 reduces to
the exponent s (8) for the generalized Gaussian distribution where
the standard density generator is parameterized by exponent and
scale [7]). The following result concerning Student’s ¢t and general-
ized Gaussian distribution is proved in the Appendix:

Result 3. For complex Student’s t and generalized Gaussian distri-
bution, the coefficients &.35y and &. 4y are given respectively by

s N+1

_ , 21
¢3.N 2(%_1)(%+N)(%+N+1) (21)
T N(% +N(4-2)-2)

s 4 2

_ _ , (22)
4N §4(6+%)2 4(g—1)2(%+N)(§+N+1)
and
EgN _ N+s+NI\(JISV+1)’<N,s’ (23)

3 The constraint v > 2 ensures that the Student’s t distribution has second-order
finite moments
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o _ 2N+s
c4,N — st
(N+1)s2(N+5) + NN+ Dkns)kns + NN+ )9 (1+5)
+ g :
(24)
with ky ‘j_efiﬁ(g) — ¥ (M) where ¥ (x) def lli((xx)) is the digamma

function and ' (x) & 4®)

For the associated RES dlstributions, the coefficients &1 n, &8,
€3N and &4y are related to &y n, Scone Sc3n and Ecqn by
the relations &1y =4&r12n, §c2n =46r20n, §c3n =26,32n and
can=5&ra2N.

We see that &., y given by (19) and (20) for respectively com-
plex Student’s t and generalized Gaussian distributions can be

written as
N 1+v/2N N S
s _ bl
c2N = N+l(l +v/(2(N+l))> and £5v= g (1 + N)'
(25)
Consequently 5 N and chN are very close to NLH and there-

fore from (17) and (18), the coefficients a5, a3 and a$R are
very close for v/N «1 and s/N « 1, respectively. On the con-
trary, .oy ~ 1 and &, y ~ s/(N + 1) for respectively v/N > 1 and
s/N > 1. We can deduce that for Student’s t distributions which
possess heavier tails than the Gaussian distribution, the knowl-
edge of the density generator has a slight impact on the CRB for
the estimation of parameters «. On the other hand, for the gen-
eralized Gaussian distribution, this impact is strong for s/N > 1,
i.e., for much lighter tailed distributions than Gaussian distribu-
tion. To show the influence of the parameter s on the coefficient
as, a§ = §= and a§f™ = N(N 75 are compared to a5 obtained
from tedious algebralc manipulation of (23) and (24) w1th the aid
of symbolic algebra and calculus tools in the vicinity of s = o0
which corresponds to a uniform distribution in an ellipsoid. We
get
N(7?-6) —
T2N(N +1)
This influence is illustrated in Fig. 1 which shows a large difference
between these coefficients as.

We can therefore conjecture that the knowledge of the den-
sity generator brings little information on the parameter « for the
heavy-tailed distributions unlike for lighter-tailed distributions.

To illustrate the impact of the knowledge of the scale factor
a!, on the estimation of the parameter ozg of X, for the modeling
of Result 2, we assume here that generalized Gaussian distributed
data are modeled as a stationary, zero-mean autoregressive pro-
cess of first order with one lag correlation ozg = p which gives
[Z]ie = [Zo(P) i, = o1 (with oy = 1). Fig. 2 shows a large dif-
ference between the CRB for the estimation of p according to the
knowledge available on the density generator. This observed be-
havior is consistent with that of Fig. 1 as explained at the end
of section III-A, thanks to the sensitivity of the coefficient a; in
(16) to the knowledge available on the density generator.

To reinforce the behavior of the CRB on the parameter of inter-
est p under different knowledge on the density generator, we com-
pare in Fig. 3, the CRB on p to the mean square error (MSE) (es-
timated by 2000 runs) of the associated maximum likelihood (ML)
estimator derived from T independent snapshots x;, t=1,...,T
identically distributed as in the scenario of Fig. 2. More precisely,
when a; is assumed to be unknown, the semiparametric, param-
eterized, and classic CRB given by (15) which are equal are com-
pared to the MSE of the joint ML estimates § where (a, p,95) =
argmax,, , o ST logp(x;) and to the MSE of the ML estimate

@ < b — ®5(1 4 0(1)) < as®. (26)
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p obtained from (o?é, p) = arg max,, , Zle log p(x;) (given s),
where the density generator gi,N(t) is given by (8). Similarly, when

ozé is assumed to be known, our parameterized CRB and the clas-
sic CRB given by (16) are respectively compared to the MSE of the
joint ML estimate § where (p,$) = argmax, s ZL] log p(x;) and
to the MSE of the ML estimate p = arg max, ZL1 log p(x;) (given
s), respectively. Note that these different maximizations are derived
form simple numerical optimizations because, to the best of our
knowledge, there is no ML algorithm in the literature, despite the
sub-optimal approaches proposed in [16], [17] for the Student’s t
distribution.Fig. 3 confirms clearly the efficiency of the ML as these
CRBs are very close to the associated MSE with the ML estimates
for T = 500 snapshots.

4. Noisy linear mixture data model

We consider here the following model*
=A@)s;+n, eRY (orcV), t=1,...,T (27)

where the real-valued parameter of interest @ is characterized by
the range space of the full column matrix A(f). Two assumptions
have been commonly used for the signals s; and n;.

In the conditional or deterministic model, (S¢);—1. T
are conditioned from an independent zero-mean process
(as it was explained in [25]) and are considered as de-
terministic nuisance parameters. n;, t=1,...,T are zero-

mean, independent RES (or C-CES) distributed with scat-

In this case xd_ef(xT,.,xg)TeRN (or CM)

RES (or C-CES) distributed with u =
(A@)s)T.....(A@)sp)T)T and X = o1y with a = (0", pT,02)7
with  p % (Re"(s;), Im" (s;). .. Re! (sy). Im (s7))T. This model
extends also to rectilinear CN-CES® distributed data. By slightly
modifying the end of the proof given in [25] in the estimation
framework of DOA, we obtain the following result.

ter matrix o2ly.
where N=TN' is

Result 4. For each RES, C-CES or NC-CES noisy linear mixture dis-
tributed conditional model, the CRB for the estimation of @ is given
by a common expression for fully known, known up to parameters
and completely unknown density generators. We get, for example,
for C-CES distributed data the following expression:

2 H (6 da(o
Tees [Re< T e o) G )ﬂ -

where R; T = T Zt 1 %X, a(0) = vec(A(9)) and HA(Q) defy_
A(@)[A”(@)A(@)] TAH () is the ortho-complement of the projec-
tion matrix on the columns of A(6).

In the unconditional or stochastic model, both s; and n; are
assumed zero-mean random, not correlated with each other such
that x;, t =1,..., T are zero-mean, independent RES (or C-CES)

distributed® with g = 0 where the scatter matrix has the following

CRB(0) =

def

4 This model encompasses many far or near-field, narrow or wide-band DOA
models with scalar or vector-sensors for an arbitrary number of parameters per
source and many other models as the bandlimited SISO, SIMO [23] and MIMO
[24] channel models.

5 This model can be applied for DOA estimation modeling with rectilinear or
strictly second-order sources and for SIMO channels estimation modeling with BPSK
or MSK symbols [26] where @ represents both the localization parameters (azimuth,
elevation, range) and the phase of the sources, and the real and imaginary parts of
channel impulse response coefficients, respectively.

6 We note that s; and n; cannot be both elliptical symmetric distributed as the
family of elliptical symmetric distributions is not closed under summation except
for the Gaussian distribution. But fixing both the structure (29) of X and the ellip-
tical symmetric distribution of X; can be considered as good approximations thanks
to the flexibility of the family of the elliptical symmetric distributions. Furthermore,
this family of distributions offers robustness to outliers and heavy tailed samples.
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structure A(O)RAH (0) + 021y, where here @ is only characterized by the
T = A@)RA" (0) + 021y, (29) range space of the full column matrix A(6) def ®($)> and R; is

where Rg is real-valued positive definite symmetric (or Hermi-
tian). Here too o = (8", pT.02)T but p collects the entries of Rs.
This model also extends to NC-CES distributed data with X =

real-valued positive definite symmetric. For this model, the proof
given in [10] that the CRB on the DOA parameter @ is proportional
to the CRB for Gaussian distributed data in the context of fully
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known density generator, directly extends to known up to parame-
ters and completely unknown density generators because the proof
is based on the structure (9) with g = 0, irrelevant the value of the
coefficient a;. Thus we obtain the following result.

Result 5. For each RES, C-CES or NC-CES noisy linear mixture dis-
tributed unconditional model, the CRB for the estimation of @ has
a common expression for fully known, known up to parameters
and completely unknown density generators. For example for CES
distributed data, we get:

o2 da"(0) v 1 da@®\]"
CRB(a)_ZTsc,z,NI:Re( 10 (H ®HA(9))do>i| , (30)

where H % R,AH(6)T-'A(0)R,. Note that (30) reduces to

B
CRB(O) = grft . [Re((DliT4,D))0HT)] * for DOA  model-

ing with one parameter per source where A(6) d:ef[al ..... ax]

where (ay);_;._ g are the steering vectors parameterized by the

DOA 6, with 6% (6,,....60)7, and D, ‘Ef[%;,...,g%;;] for K
sources. This last expression of CRB was given in [11] and [27] as
semiparametric CRB without noticing that it was equal to the
classic CRB.

In other words from Results 3 and 4, the fully knowledge or
the functional knowledge (unknown parameter) does not provide
any additional information about the parameter 6 unlike arbitrary

parameter o.

5. Conclusion

This paper rigorously quantifies the impact of the arbitrary
density generators depending on unknown parameters of ES dis-
tributed parametric estimation models, by deriving an extension

us s for p =0.9 and N=6.

of the SB formula of the FIM for known elliptical symmetric dis-
tributions. This SB formula was derived in a unified way within
the framework of RES, C-CES and NC-CES distributed data. It was
then compared to the SB formula obtained with fully known or
completely unknown density generators for different types of the
symmetry center and scatter matrix, in particular for the specific
noisy linear mixture data model where the parameter of interest
is characterized by the range space of the mixing matrix. This al-
lows us to conclude, contrary to commonly known results, that for
an arbitrary parameterization, the CRB may be very sensitive to the
type knowledge of the density generator for super-Gaussian distri-
butions contrary to sub-Gaussian distributions. These results make
it possible to know the situations where it is advantageous or not
to use all the information available on the ES distributed data to
construct efficient estimators.
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Appendix

Proof of Result 1.. It is well known that the CRB for the estimation of (o, ﬂT)T is the inverse of the FIM and thus given from the
-1 I |
matrix inversion lemma by CRB(a) = (la Iy p 5115 ﬁ) , where (lra ‘i‘ﬁ ) is the FIM for (a, B7)T and I, is given by the structured
, T s
matrix (9) for the RES distribution. Following the derivation of Iy, it is straightforward to get (I, g)i . = —lE[Q¢)rN(Q)q§ (Q)]Tr(dak )

dg? 3
where ¢ HOR ﬁ1(r) ggg;t) Q &' g, v, which gives the M x L matrix I, B= (d"sc(ﬁ:)> vec(E-1)El; y with &,y &' w where

3
¢ﬁN( ) &f gﬂl() g/;ﬁ(t) From (1), we get by definition of the FIM for 8, Iz = E[¢ﬁN(Q)¢’3N Q)% EMN Gathering the expressions of Iy,

I, and I, g we prove that the CRB for the estimation of & has always the structure (9) with a; = 4§ n, a; = 2§, v are the coefficients

given for both classic and semiparametric SB and a3 = aglas — a4 with a4 = EZ&,N E;}l NEr’&N where &1 y and &, , y are given by (10).
Using again the real to complex representation introduced in Subsection 2.1, it is straightforward to prove that the parameterized
SB formulas for NC-CES and C-CES distributions have also the structure (9) where a; and a, are both equal to those of the classic and

semiparametric SB formulas and where a3 is given by aClaS — a4 with a4 = ‘g'c3 NuC4N§C3N with § 35 = © w and Ecqn &«
ANG)

EIL0(@fy (@] where ¢/ () & 1250 and q € opy. O

c.N

Proof of Result 2.. It follows from Result 1 that the FIM associated with the parameter o, = (ct}, ot T)T parameterizing the scatter matrix
Y = o} Xp(af), can be written for RES distributed data in the following partitioned matrix form

1 fa b7
FIM(aty) = — A.31
( 2) Ot/% (b C) ( )

T T
. _ . 2( d _ _ _ _
with a = N(ay + Na3), b= o/ (a; + N@)(%) (Z;T @ Zyvec(Eo) and €= o) (%) (a2(Z5" ® Zg1) + azvec(Zy " vec! (Bg1))
2 2

<d"ec%°)> We note that for the semiparametric SB formula, a; = 2.,y and a3 = —ZE’% implies a; + Na; =0 and consequently

dor,

T /1
FIM(aty) = %(% 0C> Thus, CRB(aZ’) :oz’%C‘1 which gives (15). For the classic and parametric SB formulas, a, + Nas # 0 and the
az

inverse of the partitioned FIM (A.31) allows us to derive CRB(a;) = a/ﬁ[c —ba~b”]~! which also gives (15) not containing the coefficient
az. O

Proof of Result 3.. Complex Student’s t—distribution
From (8), we get after simple algebraic manipulation

def 1 dgiy(®) 2N+
Gen(t) = g0 d ~ viar (A32)
w1 9&N® o, 1 2t NV — vt
O a5 =k g e (1+ ) - 5 (A33)
with v €'y — 2 and Ky, def s(W(N+5) =¥ (3))
Hence with Q = QC N
£y E[Qocn(Q)9!y(Q)]
c¢3.N = N
_ (2N+v) Q v Q? 1 Q 2Q
- [(1 —N)E(U/+2Q> +U/E<U/+2Q> —§E<v/+2Q log (”w))} (A34)

Ecan L EQLy 2(@)1

-V oo (1+22)) + (02

2Q 2 _(NvV—-vQ 1 (NV'—vQ) 2Q
— K E(l (1 7)) SE(VR) | g AR, (1 7) . A.
kN,v|: og(1+ 7))+ 120 + 5 1 20) og(1+ (A.35)
Then, observing that Q =; NEy, where Q is associated with Student’s t distribution without constraint on X and F, 4 denotes the
F-distribution with ¢ and q degrees of freedom [7], we have here Q =4 VT*ZNFZNYU. with p.d.f.

1
((v/2) = HNB(N, v/2)

2g \~M2
qgh-1 (1 + —) for ¢> 0 and 0 for g < 0. (A.36)

p(q) = )
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) - def
Using [, “iﬁdt = (%)pB(p, q), p>0,q>0,s>0, and thanks to [28,29] fol w11 —u)~'logP (1) log?(1 — u)du = Bpq(x,y) =
ap+a

55p5xa B(x, y) for integers p,q > 0 and g +x, p+y > 0, and particularly By o(x,y) = Bo,1 (v, X) = B(x, VW x) — P (x+y)), we get the follow-
ing expressions of the different expectations included in (A.34) and (A.35)

E( 1 )_ 1%
V' +2Q V(2N +v)’
v(v+2)
V22N +Vv)(2N +v +2)’
N
2N +v’
N(N+1)
2N+v ’
E( Q _ Nv
V' +2Q V2N+Vv)2N +v +2)’

)
)
)
w20
E( Q ) N(N+1)
)
)
)
)

1
57207

2N+v)(2N+v +2)’
fos(1+22)) - #(1-1-3) -5

).

v
2
() = () v () (o) vl )
E<l°g<1+v’> =viz)-Viz+3z)TW3) v (N+3))
( Q log (1 + 2Q> _ N(w(l +N+ %) ~ 1/f(%))
v +2Q v/ - 2N+ v ’
1 20\\ 1 2Q 2 Q 2Q
(rzgloe(1+57)) = we(loe (1+57)) - FE(orizg e (14 57) )
Plugging these expressions of the expectations in (A.34) and (A.35) and using 1//’(%) - 1//’(N+ %) = Z’g’;ol T 1U 7 allows us to obtain
v
after some tedious algebraic manipulations the values (21) of & 3y and (22) of &, 4. O ’
Complex generalized Gaussian distribution. From (8), g} (t) is given by
S
N (5) ST ()b
- —t*/bwwith b 4f s def
Zn() =cnse with b = |:F(N;r1) and ¢y = nNI‘(g) , (A.37)
yielding after some algebraic manipulation
@ 1 dgn®) s
Gen(t) = gi,N(t) dt ——Bt ) (A.38)
s def 1 0 N() B s 1
en () = .0 05 s + (Vs = Prs)t* — £ 1og(t), (A39)

_(NEL ’
with s % (s NN+ D), Brs & M0V and 710800 ang where kys %y (Y) — 9 (%1) where (0 % [ s the

T(x)
digamma function.
Hence with Q = Q. n

def E[Q@en (Q)] (Q)]

¢3,N = N

= 5 [nsE@) + O — B E@®) - 1EQ 108())] (A40)
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def

Elgin’ (@]
= @+ (s — Bus) Q%) + E(Q* 108" (Q))

2(XN,5

TE(QS log(Q))

$C,4,N

+2aN,s(VN,s - ﬁN,s)E(QS) -

+ 2 (ﬂN,sb—

Ys) E (0% log(Q)). (A41)

Then observing that Q =4 G!/* where G ~ Gam(N/s, b) [7], the
following equalities [15, Egs. (a.14)-(a.17)]

EQ) = NTb
E(Q¥) - Nb2(;\21+5)
E(Q*log(Q)) = ’;'—szN,s
E(Q% log(Q)) = M(ANS + Nj—s)
E(Q*log*(Q)) = W(Aﬁ * sz st "’"(N: )

where Ay def log(b) + 1//(%) used in (A.40) and (A.41), allows us
to obtain after some algebraic manipulations the values (23) of
§canand (24) of Eqn. O
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