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Data-like interference mitigation in wireless communications systems, and in mobile cellular networks in 
particular, has always been a challenging problem which is becoming even more so for 5G networks and 
beyond including the Internet of things (IoT), to support a massive number of low data rate devices for 
given spectral resources. A promising solution to this problem consists in using one dimensional signaling
(i.e., real-valued modulations) jointly with widely linear (WL) processing at the receiver, which has the 
capability to process up to 2N −1 data-like interference from N antenna receivers, and to fulfill, for N = 1, 
single antenna interference cancellation (SAIC) of a one-dimensional interference in particular. However, 
when the signal of interest (SOI) and observations are jointly non-Gaussian, which is the case for most 
of digital radiocommunications systems, WL receivers become sub-optimal and optimal receivers become 
non-linear. It is then of interest to propose new non-linear receivers to improve performance of WL 
receivers. In this context, the paper aims at introducing, for small-scale systems, third-order complex 
Volterra (CV) minimum mean square error (MMSE) receivers, for the reception of a digital linearly 
modulated SOI whose waveform is known, corrupted by potentially non-Gaussian and non-circular 
interference, omnipresent in practical situations. Properties, performance and adaptive implementation 
of these receivers in the presence of non-Gaussian and potentially non-circular interference up to the 
6th-order are analyzed in this paper. In particular, some of these receivers are shown to enhance WL 
receiver performance for SAIC of one rectilinear interference such as binary phase-shift keying (BPSK) 
interference. Whereas some other receivers allow us to fulfill SAIC of 4th-order non-circular interference 
such as quadrature phase-shift keying (QPSK) interference, which is not possible using WL receivers. 
These new receivers open new perspectives for cancellation of non-Gaussian and potentially non-circular 
interference up to 6th-order in radiocommunication networks.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Data-like interference mitigation in wireless communications systems, and in mobile cellular networks in particular, has always been 
a challenging problem which is becoming even more so for 5G networks and beyond, including the IoT, to support a massive number 
of low data rate devices for given spectral resources. A promising solution to this problem consists in using one dimensional signaling 
(i.e., real-valued modulations) jointly with WL processing at the receiver [1], which has the capability to process up to 2N − 1 data-like 
interference from N antenna receivers, and to fulfill, for N = 1, SAIC of a one-dimensional interference in particular [2–4]. Extension of 
the SAIC concept to multiple antennas is called multiple antenna interference cancellation (MAIC). Let us recall that one-dimensional 
modulations are also called rectilinear (R) modulations and correspond, for example, to BPSK or amplitude shift keying (ASK) modulations.

However WL receivers are only optimal when the SOI and observations are zero-mean, jointly Gaussian and non-circular [5]. When 
the SOI and observations are jointly non-Gaussian, WL receivers then become sub-optimal and optimal receivers have a more general 
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non-linear structure. Such situations are omnipresent in practice. Indeed, most of digital communications signals are non-Gaussian and 
many of them are non-circular either at the second order (SO) and/or at a higher order (HO). For example, an ASK signal is non-Gaussian 
and at least non-circular at all even orders. A phase shift keying signal with M states (M-PSK) is non-Gaussian and non-circular at an 
order 2q such that 2q ≥ M [6]. A square quadrature amplitude modulated (QAM) signal with 4M2 states (4M2-QAM) is non-Gaussian and 
at least fourth-order (FO) non-circular. In this context, it becomes to interest to propose new non-linear receivers to improve performance 
of WL receivers.

More precisely, when the SOI and observations are jointly non-Gaussian (jointly circular or not), the optimal receiver becomes a non-
linear function of the observations, which depends on the joint probability distribution of the SOI and the observed data. However in 
practice, this probability distribution is generally not known a priori. A first philosophy then consists in trying to estimate it in order to 
optimize the non-linearity of the receiver. This estimation may be implemented through stochastic techniques, based, for example, on par-
ticle filtering [7,8] or through a parametric model of the non-Gaussian observations, such as the Gaussian mixture model [9], well-suited 
to modelize non-Gaussian/non-circular noise [10]. However, in all cases, this philosophy is generally costly and difficult to implement. A 
second philosophy, much easier to implement, consists in imposing a particular non-linear structure to the receiver, including the linear 
one, and to compute a MMSE receiver having this imposed structure. Although sub-optimal, this receiver is built to generate a performance 
improvement with respect to the linear one in non-Gaussian contexts. A particular non-linear structure, including both the linear and the 
WL structures, corresponds to the pth-order (p ≥ 2) complex Volterra structure [11,12]. Such a structure is able to improve the perfor-
mance of linear receivers in non-Gaussian and potentially non-circular contexts, by exploiting both the non-Gaussiannity and the complete 
potential non-circularity of the observations up to the order 2p. Note that research to reduce computational complexity of Volterra filter-
ing is still active (see e.g., [13]). Let us recall that Volterra filtering [14] has been considered in signal processing for a long time for many 
applications such as for example detection and estimation [15], system identification [16], echo cancellation [17] or non-linear channel 
equalization [18] but mainly for real-valued observations. The main use of Volterra filtering for complex data concerns both the modeling 
and the predistortion processing of the baseband input-output relationship of power amplifiers operating close to saturation for power 
efficiency in radiocommunications [19,20]. The scarce other works about complex Volterra filtering mainly concern blind identification 
of some linear-quadratic systems [21], mean square estimation and detection from linear-quadratic [22] or pth-order systems [11,12]
and beamforming [23–25]. [23] introduces a particular third-order Volterra MVDR beamformer for non-Gaussian interference rejection 
improvement. However, this beamformer requires a multiple antenna reception, does not include the WL structure, does not take into 
account the potential non-circularity of the interference and may generate lower performance than the WL beamformers. In contrast, [24]
and [25] introduce more general third-order Volterra beamformers, exploiting both the non-Gaussiannity and the potential non-circularity 
of the interference. However [24] concerns coded division multiple access (CDMA) cellular networks, whereas [25] requires a multiple 
antenna reception and exploits the potential non-circularity of the interference only. Note that the FO non-circularity of observations has 
been used by a WL MMSE beamformer in [26] to compensate I/Q imbalance effects at reception but not to improve the steady-state per-
formance of WL beamformers. In addition, the non-Gaussiannity and both the sub-Gaussiannity and non-circularity of observations have 
already been used in [27] and [28] respectively, through the development of the linear minimum dispersion beamformer (MDB) and the 
WL MDB respectively, to boost the convergence speed of linear and WL beamformers respectively, but not to improve their steady-state 
performance. Finally note that some preliminary results of the paper have been presented in [29].

In this context, the first purpose of this paper is to introduce several third-order Volterra MMSE receivers for the reception of a 
digital linearly modulated SOI, whose waveform is known, corrupted by potentially non-Gaussian and non-circular interference. All these 
receivers are third-order extensions of the linear MMSE receiver, whereas some of them are third-order extensions of the WL MMSE 
receiver [2,30,31]. All the proposed receivers exploit the potential non-Gaussian nature of the interference, whereas some of them exploit, 
in addition, their non-circularity up to order 4 or 6. It is important to note that the proposed receivers have no interest for large-scale 
systems, such as massive multiple-input and multiple-output (MIMO) systems for 5G mobile cellular networks, for which the linear 
receivers are quasi-optimal since the sources can be assumed to be approximately orthogonal to each other for the array. On the contrary, 
the proposed receivers are mainly developed for small-scale systems, with a small number of antennas and low spatial aperture in number 
of wavelengths, which are low spatial resolution systems for which the linear MMSE receiver has limited performance in the presence of 
interference. For such systems the idea is to replace the missing hardware (or antennas) by clever software with a moderate complexity, 
to improve the interference cancellation. The analysis of the properties, performance in terms of signal to interference plus noise ratio 
(SINR) and symbol error rate (SER), and adaptive implementation of the proposed third-order receivers constitute the second purpose of 
this paper. In particular, some of these receivers are shown to enhance WL receivers performance for SAIC of one rectilinear interference, 
whereas some other receivers allow us to fulfill SAIC of 4th-order non-circular interference such as QPSK interference, result which is 
not possible from WL receivers. These new receivers open new perspectives for cancellation of non-Gaussian and potentially non-circular 
interference up to 6th-order in radiocommunication networks.

The paper is organized as follows. After the introduction of some hypotheses, data statistics and problem formulation are given in 
Section 2. Enlightening interpretations and related generic output (SINR) performance of the Mth-order CV MMSE receiver are given 
in Section 3. Then the new third-order Volterra MMSE receivers are introduced. An analytical performance analysis with SINR and SER 
illustrations at the output of some of the proposed MMSE receivers is presented in Sections 4 and 5 in the presence of one and two 
interferences, respectively. An adaptive implementation and a complexity analysis of the proposed receivers are briefly investigated in 
Section 6. Finally Section 7 concludes this paper.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper case and bold lower 
case characters, respectively. Vectors are by default in column orientation, while T , H and ∗ stand for transpose, conjugate transpose 
and conjugate, respectively. E(.) is the expectation operator and � is the convolution product. ⊗ and � denote, respectively, the usual 
Kronecker product and the symmetric Kronecker product between identical vectors that contains only all the distinct products of their 
components to avoid any redundancies. a�q means a � a... � a with q − 1 symmetric Kronecker products.
2
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2. Hypotheses, data statistics and problem formulation

2.1. Hypotheses

We consider an array of N narrow-band antennas receiving the contribution of an SOI corrupted by interferences and a background 
noise. Assuming propagation channels with no delay spread and perfect time and frequency synchronization of the SOI, which are accept-
able hypotheses for example for some satellite communication applications [32], the complex envelope of the observation vector at the 
output of the antennas can then be written as

x(t) = μs

∑
k

ak v(t − kT )hs +
P∑

p=1

jp(t)h jp + n(t) ∈CN , (1)

where ak are zero-mean i.i.d. random variables corresponding to the symbols of the SOI, jp(t) are zero-mean and potentially non-Gaussian 
and/or non-circular co-channel interferences (CCI), and n(t) is the background noise, assumed to be zero-mean, Gaussian, stationary, 
circular and spatially white. The random variables ak , jp(t), p = 1, . . . , P and n(t) are independent to each other. T is the symbol period 
and v(t) is the impulse response of the pulse shaping filter of the SOI whose μs controls its amplitude. hs and h jp are the channel vectors 
(whose module of the first component is unity) of the SOI and CCI, respectively. Assuming that v(t) is a raised cosine 1/2 Nyquist filter 
and denoting by xk the sampled observation, at the symbol rate, at time kT at the output of a matched filtering operation to the pulse 
shaping filter, we obtain:

xk = μsakr(0)hs +
P∑

p=1

jp,kh jp + nk, (2)

where r(t) def= v(t) � v∗(−t) is the real-valued impulse response of a Nyquist filter, whereas jp,k , for p = 1, . . . , P and nk are respectively 
the CCI and background noise contribution at the output of the matched filter sampled at symbol rate. The sequences jp,k, p = 1,l . . . , P
are assumed stationary to the second-order. Consequently, the components of nk are zero-mean, spatially white, Gaussian and circular 
with power η2. If a′

k and j′p,k denote the normalized SOI symbols and CCI, respectively, such that E|a′ 2
k | = E| j′ 2

p,k| = 1, (2) takes the form

xk = √
πsa′

khs +
P∑

p=1

√
π jp j′p,kh jp + nk, (3)

where πs
def= μ2

s πar2(0) with πa
def= E|a2

k | and π jp

def= E| j2
p,k|.

2.2. Data statistics

2.2.1. Presentation
To study the statistical performance of the third-order Volterra MMSE receivers, we need to introduce the SO, FO and sixth-order (SIO) 

statistics of the SOI and CCI. If uk denotes the normalized SOI or CCI components, the real-valued FO and SIO circular statistics of uk

assumed second-order stationary, are respectively

κu,c
def= E|u4

k | and χu,c
def= E|u6

k | (4)

and the generally complex-valued SO, FO and SIO non-circular statistics of uk are respectively

γu
def= E(u2

k ), κu,nc,i
def= E(u5−i

k u∗(i−1)

k ), i = 1,2 and χu,nc,i
def= E(u7−i

k u∗(i−1)

k ), i = 1,2,3. (5)

2.2.2. Particular cases
To be able to quantify and illustrate the performance of the proposed third-order Volterra MMSE receivers that are presented in 

Sections 4 and 5, we consider hereafter three particular cases of CCI jp(t).
In the first case, jp(t) corresponds to the complex envelope of a digital linearly modulated signal, defined by:

jp(t) = μ jp

∑
�

bp,�v(t − �T − τ jp ), (6)

where bp,� are i.i.d. zero-mean CCI symbols, τ jp ∈ [0, T ) is the delay of the CCI w.r.t. the SOI and μ jp controls the amplitude of the CCI. 
In this case, the samples jp,k in (2) become

jp,k = μ jp

∑
�

bp,�r((k − �)T − τ jp ) = √
π jp j′p,k, (7)

where π jp = μ2
jp

E|b2
p,�| 

(∑
� r2((k − �)T − τ jp )

)
. The expressions of the SO, FO and SIO statistics of j′p,k depend on the nature of the 

symbols bp,� . For real-valued symbols, γ jp = 1 and the FO and SIO statistics reduce to
3
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κ jp

def= E( j′4
p,k) = E(b4

p,k)
∑

�

r4
p,� + 6[E(b2

p,k)]2
∑
j<�

r2
p, jr

2
p,� (8)

χ jp

def= E( j′6
p,k) = E(b6

p,k)
∑

�

r6
p,� + 30E(b2

p,k)E(b4
p,k)

∑
j<�

r4
p, jr

2
p,� + 90[E(b2

p,k)]3
∑

i< j<�

r2
p,ir

2
p, jr

2
p,�, (9)

where rp,i
def= r(iT − τ jp )/

√
E|b2

p,k|
∑

� r2(�T − τ jp ). For symmetric (w.r.t. the origin) SO circular symbols, we obtain:

κ jp ,c = E|b4
p,k|

∑
�

r4
p,� + 4[E|b2

p,k|]2
∑
j<�

r2
p, jr

2
p,�

κ jp ,nc,1 = E(b4
p,k)

∑
�

r4
p,�

κ jp ,nc,2 = E(b2
p,k|b2

p,k|)
∑

�

r4
p,� (10)

χ jp ,c = E|b6
p,k|

∑
�

r6
p,� + 18E|b2

p,k|E|b4
p,k|

∑
j<�

r4
p, jr

2
p,� + 36[E|b2

p,k|]3
∑

i< j<�

r2
p,ir

2
p, jr

2
p,�

χ jp ,nc,1 = E(b6
p,k)

∑
�

r6
p,�

χ jp ,nc,2 = E(b4
p,k|b2

p,k|)
∑

�

r6
p,� + 10E(b4

p,k)E|b2
p,k|

∑
j<�

r4
p, jr

2
p,�

χ jp ,nc,3 = E(b2
p,k|b4

p,k|)
∑

�

r6
p,� + 16E(b4

p,k)E|b2
p,k|

∑
j<�

r4
p, jr

2
p,�. (11)

In the second case, jp(t) is assumed to be zero-mean stationary and Gaussian. It is then straightforward to prove, from SO, FO and SIO 
cumulant expressions [33], that the FO statistics of j′p,k are given by

κ jp ,c = 2 + |γ jp |2, κ jp ,nc,1 = 3γ 2
jp

and κ jp ,nc,2 = 3γ jp , (12)

whereas the SIO statistics are given by

χ jp ,c = 3(2 + 3|γ jp |2), χ jp ,nc,1 = 15γ 3
jp

, χ jp ,nc,2 = 15γ 2
jp

and χ jp ,nc,3 = 3γ jp (4 + |γ jp |2). (13)

Finally, in the third case, jp(t) are impulsive CCI, where jp,k = ρp,keiθp,k where ρp,k and θp,k are independent random variables. ρp,k

is Bernoulli distributed, taking amplitude μ with probability q and 0 with probability 1 − q, and θp,k is uniformly distributed either on 
[0, 2π ], or drawn from the set of two values {0, π}. In the first case, jp,k is circular at any order, whereas in the second case jp,k is 
rectilinear. In both cases, we obtain:

κ jp ,c = 1

q
and χ jp ,c = 1

q2
, (14)

whereas in the second case, we obtain

κ jp ,nc,1 = 1

q
, κ jp ,nc,2 = 1

q
, χ jp ,nc,1 = 1

q2
, χ jp ,nc,2 = 1

q2
and χ jp ,nc,3 = 1

q2
. (15)

2.3. Problem formulation

The problem addressed in this paper is to detect the symbols ak from the observations xk through an MMSE approach. Naturally, 
the best estimate yk of ak according to the MMSE criterion is the conditional expectation yk = E(ak|xk). Note that for respectively cir-
cular or non-circular mutually Gaussian distributions of (ak, xk), this conditional expectation becomes linear or widely linear [5]. But for 
non-Gaussian distribution of (ak, xk), the derivation of this conditional expectation becomes generally non-linear in xk and needs this 
distribution, which is unknown in practice. For this reason, we consider in this paper an approximation of this conditional expectation 
through the analysis of a particular class of non-linear filters corresponding to the complex Volterra (CV) filters, introduced for the first 
time in [11] and [12] in the context of detection and estimation. The general model of a memoryless full Mth-order time invariant CV 
filter is defined by

yk =
M∑

m=0

m∑
q=0

wH
m,q(x�(m−q)

k ⊗ x∗�q
k ). (16)

Assuming w0,0 = 0, (16) defines a WL filter [5] for M = 1 and a full complex linear-quadratic filter [22] for M = 2. (16) can be compactly 
written in the form

yk = w̃H x̃k, (17)

where w̃ def= (wT
0,0, w

T
1,0, w

T
1,1, w

T
2,0, w

T
2,1, w

T
2,2, ..., w

T
M,M)T and ̃xk

def= (1, xT
k , xH

k , xT
k � xT

k , xT
k ⊗ xH

k , xH
k � xH

k , ..., x∗�M
k )T is the non-redundant 

augmented observation. The problem of the optimal Mth-order CV filter is then to find w̃ minimizing the MSE between yk and ak .
4
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3. Third-order complex Volterra MMSE receiver

3.1. Mth-order complex Volterra MMSE filter

The full Mth-order CV MMSE filter corresponds to the filter w̃ which minimizes the criterion MSE(w̃) = E|ak − w̃H x̃k|2. For stationary 
second-order signals (ak, ̃xk), this filter is classically given by

w̃CV−MMSE = R−1
x̃ rx̃,a, (18)

with Rx̃
def= E(̃xkx̃H

k ) and rx̃,a
def= E(̃xka∗

k ). Note that in the case of linear and WL MMSE filters [31], for which w0,0 and 1 have been removed 
from w̃ and ̃xk , respectively, (18) reduces respectively to

w̃L−MMSE = R−1
x rx,a and w̃WL−MMSE = R−1

x̄ rx̄,a, (19)

where Rx
def= E(xkxH

k ) and rx,a
def= E(xka∗

k ), Rx̄
def= E(x̄kx̄H

k ) and rx̄,a
def= E(x̄ka∗

k ) with x̄k = [xT
k , xH

k ]T , and where

rx,a = μs,ahs and rx̄,a = μs,ah̃s,γ ,

with μs,a
def= μsπar(0) and h̃s,γ

def= [hT
s , γ ∗

a hH
s ]T where γa

def= E(a2
k )/E|a2

k | is the SO non-circular coefficient of the SOI symbol. However, in 
the general case, we obtain:

rx̃,a = μs,ah̃s,n, (20)

where the first two vectorial components of h̃s,n are hs and γ ∗
a h∗

s , but the others depend on hs and the statistics of both ak and nk of 
orders less or equal to M . This vector h̃s,n plays the role of an extended steering vector and w̃CV−MMSE is also written in the form

w̃VC−MMSE = μs,aR−1
x̃ h̃s,n. (21)

The MSE obtained with the full Mth-order CV MMSE filter (18) is given by

MMSE
def= MSE[w̃CV−MMSE] = πa − rH

x̃,aR−1
x̃ rx̃,a. (22)

If some components of the full Mth-order CV MMSE filter (16) are withdrawn, we obtain partial Mth-order CV MMSE filters. The increase 
�CV−MMSE of MMSE obtained by such partial Mth-order CV filters can be derived by partitioning x̃k into the retained, x̃1,k and the 
discarded, ̃x2,k parts. Applying the matrix inversion lemma to the partitioned augmented covariance matrix Rx̃ written as

Rx̃ =
[

Rx̃11 Rx̃12

RH
x̃12

Rx̃22

]
,

where Rx̃i j

def= E(̃xi,kx̃H
j,k), i, j = 1, 2, the increase of MMSE given by the partial Mth-order CV MMSE filter that only uses ̃x1,k is given by

�CV−MMSE = (rH
x̃2,a − rH

x̃1,aR−1
x̃11

Rx̃12
)
(

Rx̃22
− RH

x̃12
R−1

x̃11
Rx̃12

)−1
(rx̃2,a − RH

x̃12
R−1

x̃11
rx̃1,a) ≥ 0, (23)

where rx̃i ,a
def= E(̃xi,ka∗

k ), i, j = 1, 2. Consequently, the term x̃2,k does not bring any information (�CV−MMSE = 0) if in particular, it is not 
correlated with both ak and x̃1,k . An example of such a situation, in the presence of zero-mean signals with symmetric distributions, 
is the case where x̃1,k and x̃2,k gather the odd and even terms m of (16), respectively. Consequently, only Mth-order CV MMSE filters 
such that M is odd containing only polynomial terms of odd order m ought to be used. For such filters, w̃ and x̃k are reduced to 
w̃ = (wT

1,0, w
T
1,1, w

T
3,0, w

T
3,1, w

T
3,2, w

T
3,3..., w

T
M,M)T and ̃xk = (xT

k , xH
k , (x�3

k )T , (x�2
k )T ⊗ xH

k , xT
k ⊗ (x�2

k )H , (x�3
k )H ..., (x�M

k )H )T . In this case, the 
components of x̃k can be rearranged in order as x̃k = [x′ T

k , x′ H
k ]T where x′

k = (xT
k , (x�3

k )T , (x�2
k )T ⊗ xH

k , .., (x�(M+1)/2
k )T ⊗ (x�(M−1)/2

k )H ]T . 
Then, the partial Mth-order CV MMSE estimate yk of ak can be interpreted as the WL-MMSE estimate of ak given x′

k and thus the partial 
Mth-order CV MMSE estimate inherits the properties of the WL-MMSE estimator [5].

In particular, for real-valued SOI symbols ak , the estimate yk given by the full Mth order CV MMSE filter (17) is real-valued. This 
property extends to any partial CV MMSE filter if x̃k contains the same terms as x̃∗

k . For partial CV MMSE structures that do not satisfy 
this condition, the estimate yk of real-valued SOI symbols is complex-valued and the simple post processing consisting to take the real 
part zk of yk allows us to reduce the MMSE (22) because |ak −Re(yk)| ≤ |ak − yk|. Using (18) associated with such partial CV MMSE filters, 
we straightforwardly get:

MSEz
def= E

(
ak − Re(w̃H

CV−MMSẼxk)
)2

= πa − 3

2
rH

x̃,aR−1
x̃ rx̃,a + 1

2
Re

(
rH

x̃,aR−1
x̃ Cx̃R−T

x̃ r∗
x̃,a

)
≤ MMSE, (24)

with Cx̃
def= E(̃xkx̃T

k ).
In contrast, if ̃x1,k gathers the terms (xk, x∗

k ) and ̃x2,k the odd higher order terms, the terms ̃x2,k are generally correlated with ak and 
x̃1,k and thus contribute to decrease the MMSE with respect to that of the WL-MMSE filter. This proves the better performance, in terms 
of MMSE, of the partial Mth-order CV MMSE filter with only odd order terms with respect to the WL-MMSE filter.

Finally, note that in practice, Rx̃ and rx̃,a are not known a priori and have to be estimated from a training sequence correlated with the 
SOI symbols and uncorrelated with the total noise, using a least square approach.
5
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3.2. Orthogonal decomposition

To give an enlightening interpretation of a full or partial CV MMSE filter allowing one to understand its better behavior w.r.t. to the 
WL-MMSE filter, we extend the interpretation of the latter introduced in [30,31] using the orthogonal projection theorem. To this aim, we 
note that all the terms of ̃xk contain a SOI component through the orthogonal decomposition deduced from the definition of rx̃,a:

x̃k =
(

rx̃,a

πa

)
ak + ĩk = μsr(0)̃hs,nak + ĩk, (25)

where ak and ̃ik are uncorrelated. From (25), the ratio of the powers of the SOI component and the associated global noise component at 
the output of an arbitrary CV filter w̃, defines an SINR at its output, given by:

SINR(w̃) = |w̃H rx̃,a|2
πaw̃H Rĩw̃

, (26)

where Rĩ
def= E(̃ik̃iH

k ) is the covariance matrix of the second component of x̃k (25) which gathers all its terms uncorrelated with the SOI 
symbol ak . From (25) and (26), it is straightforward to deduce the following general relation linking the MSE and the SINR at the output 
yk of an arbitrary CV filter w̃:

MSE(w̃) = πa

∣∣∣∣∣1 − w̃H rx̃,a

πa

∣∣∣∣∣
2

+ |w̃H rx̃,a|2
πaSINR(w̃)

. (27)

We deduce from (27) that the CV filter w̃, which minimizes MSE(w̃) under the constraint w̃H rx̃,a = πa is also the CV filter which 
maximizes SINR(w̃) under the same constraint. This shows that under the constraint w̃H rx̃,a = πa , MSE minimization and SINR maxi-
mization are equivalent criteria, which gives a physical interpretation of the SINR criterion (26) in term of MSE minimization. Without 
this constraint w̃H rx̃,a = πa , (27) shows that the MSE minimization is no longer equivalent to SINR maximization, but w̃CV−MMSE, which 
minimizes MSE(w̃) also maximizes SINR(w̃). In this case it is no longer the only one.

It is easy to prove that the CV filters w̃ which maximize this SINR (26) are collinear to Rĩ
−1rx̃,a . Applying the matrix inversion lemma 

to Rĩ = Rx̃ − π−1
a rx̃,arH

x̃,a derived from the orthogonal decomposition (25), it is easy to verify that R−1
ĩ

rx̃,a and R−1
x̃ rx̃,a are collinear. 

Consequently the CV filters w̃ which maximize the SINR (26) are collinear to w̃CV−MMSE (18). The maximum of the SINR (26), denoted 
SINRCV−MMSE is thus given by:

SINRCV−MMSE = 1

πa
rH

x̃,aR−1
ĩ

rx̃,a = π−1
a rH

x̃,aR−1
x̃ rx̃,a

1 − π−1
a rH

x̃,aR−1
x̃ rx̃,a

. (28)

By applying the inversion matrix lemma to Rx̃ = π−1
a rx̃,arH

x̃,a + Rĩ in (22) and the constraint w̃H rx̃,a = πa in (27), we obtain using the 
first equality of (28):

MMSE = πa

1 + SINRCV−MMSE
≤ πa

SINRCV−MMSE
= MSE(w̃CV−MVDR2), (29)

where MSE(w̃CV−MVDR2 ) denotes the MSE at the output of the CV beamformer which minimizes w̃H Rx̃w̃ under the constraint w̃H rx̃,a = πa . 
We see from (29) that MSE(w̃CV−MVDR2 ) approaches MMSE as SINRCV−MMSE 
1.

Finally, we note that the different filters w̃L−MMSE and w̃WL−MMSE (19) studied in [2], w̃L−MVDR, w̃WL−MVDR1 and w̃WL−MVDR2 introduced 
respectively in [34], [35] and [31], and the CV beamformers w̃CV−MVDR1 [25], w̃CV−MVDR2 and w̃CV−MMSE all minimize the output power 
w̃H Rx̃w̃ but under different constraints. Using the inclusion property of these constraints, we straightforwardly prove for both full and 
partial WL CV filters that generally

SINRL−MVDR = SINRL−MMSE ≤ SINRWL−MVDR1 ≤ SINRWL−MVDR2 = SINRWL−MMSE (30)

SINRCV−MVDR1 ≤ SINRCV−MVDR2 = SINRCV−MMSE. (31)

Furthermore, using the inclusion principle in the minimization of the MSE(w̃), we deduce:

SINRL−MMSE ≤ SINRWL−MMSE ≤ SINRCV−MMSE. (32)

But there is no generic relation between SINRWL−MVDR2 = SINRWL−MMSE and SINRCV−MVDR1 .
For partial CV MMSE filters for which the estimate yk is complex-valued for real-valued ak , the SINR (denoted SINRz) associated with 

the MSEz (24) obtained by taking the real part of yk is no longer related to MSEz by the relation (29). But simple algebraic manipulation 
allows us to prove the following expression:

SINRz = 2π−1
a rH

x̃,aR−1
x̃ rx̃,a

1 − 2rH
x̃,aR−1

x̃ rx̃,a + Re(rH
x̃,aR−1

x̃ Cx̃R−T
x̃ r∗

x̃,a)

rH
x̃,aR−1

x̃ rx̃,a

. (33)

Comparing (33) to (28), we see that

SINRz ≥ SINRCV−MMSE (34)

because MSEz ≤ MMSE implies from (24) that Re(rH R−1Cx̃R−T r∗ ) ≤ rH R−1rx̃,a .
x̃,a x̃ x̃ x̃,a x̃,a x̃

6
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3.3. Third-order complex Volterra MMSE filter

For reasons of implementation complexity, we only consider in the following Mth-order CV MMSE filters with M = 3 and odd order 
terms only (i.e. m = 1, 3), whose input/output relation is given by

yk =
L︷ ︸︸ ︷

wH
1,0xk +wH

1,1x∗
k︸ ︷︷ ︸

W L

+wH
3,0[xk � xk � xk]︸ ︷︷ ︸

C(0)

+wH
3,1[(xk � xk) ⊗ x∗

k ]︸ ︷︷ ︸
C(1)

+ wH
3,2[xk ⊗ (x∗

k � x∗
k)]︸ ︷︷ ︸

C(2)

+wH
3,3[x∗

k � x∗
k � x∗

k ]︸ ︷︷ ︸
C(3)

def= w̃H x̃k, (35)

where w̃ is defined by (18), but where w̃ and ̃xk are now restricted to w̃ = [wT
1,0, w

T
1,1, w

T
3,0, w

T
3,1, w

T
3,2, w

T
3,3]T and ̃xk = [xT

k , xH
k , x�3

k , x�2
k �

xT
k , xT

k � x∗�2
k , x∗�3

k ]T , respectively. A filter defined by (35) is called a full WL cubic filter or a WL-C(0,1,2,3) filter, i.e., a WL-Cubic filter 
taking into account the cubic terms 0, 1, 2 and 3. We will see in Section 4 that partial linear or WL-Cubic MMSE filters with a single or 
double third-order term 0, 1, 2 or 3 in (35), called L-C(q1), L-C(q1, q2), WL-C(q1) (qi = 0, 1, 2 or 3) allow us to obtain an MSE equal or 
close to the MMSE (22) of the full CV structure, depending on the statistics of the signals. If we denote by Nq , the number of components 
of the term C(q), q = 0, 1, 2, 3, which are non-redundant, then it is easy to prove that N0 = N3 = N(N+1)(N+2)

6 and N1 = N2 = N2(N+1)
2 .

4. Performance in the presence of one interferer

We analyze in this section the performance of different CV MMSE receivers for the observed model (3) with a single interferer (P = 1):

xk = √
πsa′

khs + √
π j j′kh j + nk. (36)

In particular, we compare the SINRCV−MMSE (28) to the SINRL and SINRWL given by the linear and WL MMSE beamformers (19), respec-
tively.

4.1. SINR at the output of linear and WL receivers

In this scenario, the SINR at the output of the linear MMSE beamformer is straightforwardly given by

SINRL = εs

(
1 − ε j

1 + ε j
|α|2

)
, (37)

where εs and ε j are defined by εs
def= ‖hs‖2πs/η2 and ε j

def= ‖h j‖2π j/η2, while SNR and INR denote the signal to noise ratio πs/η2 and 
the interference to noise ratio π j/η2 per antenna. α, such that 0 ≤ |α| ≤ 1, is the spatial correlation coefficient between the interference 
and the SOI, defined by

α
def= |α|eiφ def= hH

s h j/‖hs‖‖h j‖. (38)

We clearly see from (37) that SINRL tends to zero for a strong CCI (ε j 
 1) for |α| = 1 and thus cannot perform SAIC.
For arbitrary rectilinear SOI and CCI signals, the SINR at the output of the WL MMSE beamformer is given [31] by:

SINRWL = 2εs
1 + 2ε j − ε j|α|2(1 + cos(2φ))

1 + 2ε j
(39)

and is approximated for strong CCI (i.e., for ε j 
 1) [2] by:

SINRWL ≈ 2εs

(
1 − |α|2 cos2 φ

)
. (40)

Relation (40) shows that the WL-MMSE receiver performs SAIC (for which |α| = 1) if φ 
= 0 thanks to a phase diversity between the SOI 
and CCI, with decreasing performance as |φ| decreases to zero. Furthermore, we note that by averaging w.r.t. uniform φ, we get:

SINRWL ≈ εs for |α| = 1 and ε j 
 1. (41)

4.2. Theoretical SINR at the output of CV receivers

In contrast to rels. (37) and (39), the derivation of the SINR at the output of the CV MMSE receivers is much more intricate. But using 
MATLAB symbolic algebra and calculus tools, we have proved that this output SINR follows the rational fraction form:

SINRCV = aDπ D
j + ... + a1π j + a0

bD+1π
D+1
j + ... + b1π j + b0

, (42)

where D depends on the considered partial CV MMSE structure and the coefficients a0, .., aD , b0, .., bD+1 are functions of πs , η2, γs , γ j
κs,c , κ j,c , κs,nc,i, κ j,nc,i for i = 1, 2, χs,c , χ j,c , χs,nc,i, χ j,nc,i for i = 1, 2, 3, |α|, φ, ‖hs‖2 and ‖h j‖2. To enlighten (42), we have to specify 
the statistics of the involved signals. SOI and interference, both rectilinear and SO circular are only considered in the following because of 
the space limitation.
7
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4.2.1. Rectilinear signals

For real-valued a′
k and j′k , bD+1 = 0 and the coefficients a0, .., aD , b0, .., bD depend only on πs , η2, κs

def= κs,c = κs,nc,i , κ j
def= κ j,c = κ j,nc,i , 

χs
def= χs,c = χs,nc,i , χ j

def= χ j,c = χ j,nc,i , |α| and φ. It is easy to prove by following decomposition (23), that discarding the WL or any cubic 
terms in (35) contribute to increase the MMSE and thus to decrease the SINR w.r.t. the full CV structure. This property will be illustrated 
in Subsection 4.3 where it is shown that the SINR of the partial WL-C(i) (i = 0, 1, 2 or 3) MMSE receivers are nevertheless close of that 
of the full CV MMSE structure. For these structures, the maximum value of D in (42) is 4 and we have proved the following asymptotic 
results, for arbitrary N according to the values of χ j − κ2

j ≥ 0:

For χ j − κ2
j = 0, which occurs i.i.f. j′k = ±1/

√
q with probability q > 0 and 0 with probability 1 − q (see Appendix), we get:

lim
π j→∞ SINRWL−C(i) = a3

b3
= 2εs, for i = 0,1,2,3 and for all α = |α|eiφ. (43)

For q = 1, this case corresponds to synchronized BPSK CCI (τ j = 0) (see Appendix) for digital linearly modulated CCI (7) and for 0 <q <1, 
it corresponds to rectilinear Bernoulli distributed CCI for impulsive CCI.

For χ j − κ2
j > 0, i.e., for arbitrary rectilinear CCI, neither synchronized BPSK modulated, nor Bernoulli distributed:

lim
π j→∞ SINRWL−C(i) = a4

b4
= 2εs

(
1 − |α|2 cos2 φ

)
, for i = 0,1,2,3. (44)

Relation (43) shows that for synchronized BPSK CCI and rectilinear Bernoulli distributed CCI, the CCI is completely removed and the SAIC 
occurs, but without any SINR loss whatever the phase difference φ contrary to WL filters (40) for which a loss of (1 − |α| cos2 φ) occurs. 
In this case, the performance gain with respect to the WL MMSE receiver (40) increases with |φ|. This power’s discrimination is generally 
strong in full-duplex systems [36]. For non-synchronized BPSK modulated CCI, despite the absence of gain brought by WL-C(i) MMSE 
receivers with respect to WL MMSE receivers for infinitely strong CCI, it is possible to show still significant gains in SINR for strong but 
not infinitely strong CCI as shown in Subsection 4.3.

Furthermore our MATLAB symbolic tools allow us to refine (43) for both εs 
 1 and ε j 
 1 with εs/ε j � 1, for which we get for 
|α| = 1:

SINRWL−C(0) = SINRWL−C(3) ≈ 2εs − εs

ε j
((20εs + 9) cos(2φ) + 2εs cos(4φ) + 18εs + 9) , (45)

SINRWL−C(1) = SINRWL−C(2) ≈ 2εs − εs

ε j
((12εs + 3) cos(2φ) + 2εs cos(4φ) + 10εs + 3) , (46)

which gives by averaging w.r.t. uniform φ

SINRWL−C(0) = SINRWL−C(3) ≈ 2εs − εs

ε j
(18εs + 9) , (47)

SINRWL−C(1) = SINRWL−C(2) ≈ 2εs − εs

ε j
(10εs + 3) . (48)

Consequently the partial structures WL-C(1) and WL-C(2) are preferred w.r.t. the partial structures WL-C(0) and WL-C(3). All these partial 
structures WL-C(i) naturally outperform the WL filter for which SINRWL ≈ εs for ε j 
 1 (41).

Finally, note that for φ = 0 and |α| = 1, for which SINRWL ∼ εs
ε j

when ε j → ∞ (39), we have proved that

lim
π j→∞ SINRWL−C(i)/SINRWL = 1 + (3 − κ j)

2

χ j − κ2
j

. (49)

There is naturally no gain for real-valued Gaussian distributed CCI for which κ j = 3 (see (12)) and an asymptotic infinite gain for synchro-
nized BPSK modulated or rectilinear Bernoulli distributed CCI.

4.2.2. Second-order circular signals
We consider here only second-order circular a′

k and j′k invariant with rotation of π/2, which correspond for example to M-PSK (M > 2) 
or 4M2 QAM (M > 1) symbols ak and bp,k or to circular Bernouili distributed CCI, for which κs,nc,2 = χs,nc,1 = χs,nc,3 = κ j,nc,2 = χ j,nc,1 =
χ j,nc,3 = 0, κs,nc,1 
= 0, χs,nc,2 
= 0, κ j,nc,1 
= 0 and χ j,nc,2 
= 0. For these signals, we straightforward prove using decomposition (23), that 
the conjugate, C(0) and C(2) terms in (35) do not contribute to decrease the MMSE, and thus the partial structure L-C(1,3) is optimal for 
the MMSE criterion.

For the structures L-C(1), L-C(3) and L-C(1-3), we have proved that D = 7 in (42) and b8 = 0 i.i.f. χ j,c − κ2
j,c = 0, which occurs i.i.f. 

| j′k| = 1/
√

q with probability q > 0 and 0 with probability 1 − q (see Appendix). For q = 1, this case corresponds to synchronized (τ j = 0) 
M-PSK CCI with M > 1 (e.g., QPSK) (see Appendix) for digital linearly modulated CCI (7) or to non-filtered constant modulus modulations, 
and for 0 < q < 1, it corresponds to circular Bernoulli distributed CCI for impulsive CCI. We have proved in particular that for synchronized 
QPSK modulated SOI and CCI:

lim
π j→∞ SINRL−C(1) = a7

b7
= εs

(
(1 − 1

2 |α2|) + (1 − |α2|)εs

1 + (1 − 1
2 |α2|)εs

)
, (50)

lim
π →∞ SINRL−C(3) = a5 = εs

(
1 + εs(1 − |α2|)

2

)
, (51)
j b5 1 + εs + |α |(8εs + 9)
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Fig. 1. SINR at the output of the WL-C(i) and WL-C(0,1,2,3) MMSE receivers as a function of the INR for N = 1, BPSK SOI and CCI with τ j = 0, φ = 0 and SNR = 10 dB. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

lim
π j→∞ SINRL−C(1,3) = a7

b7
= εs,∀α, (52)

where (50) and (51) reduce for |α| = 1 (including for N = 1) to

lim
π j→∞ SINRL−C(1) = a3

b3
= εs

εs + 2
,∀φ (53)

lim
π j→∞ SINRL−C(3) = a3

b3
= εs

9εs + 10
,∀φ. (54)

For χ j,c − κ2
j,c > 0, i.e., for either non-synchronized circular M-PSK CCI or non-filtered constant modulus modulations, we have for 

these structures b8 
= 0 in (42) and

lim
π j→∞ SINRL−C(1) = lim

π j→∞ SINRL−C(1,3) = εs(1 − |α2|). (55)

Relations (53) and (54) prove that the LC-(1) and LC-(3) MMSE receivers perform SAIC because SINRL−C(1) and SINRL−C(3) do not decrease 
to zero when π j → ∞. Relation (52) is the SINR given by the linear MMSE receiver without CCI (see (37)) which shows that for synchro-
nized QPSK SOI and CCI, the CCI is completely removed at the output of L-C(1, 3) receiver whatever α (including for N = 1 for which 
|α| = 1) thanks to a power’s discrimination between the SOI and CCI. In this case, the performance gain with respect to the linear MMSE 
receiver (37) increases with ε j . For non-synchronized QPSK modulated CCI, despite the absence of gain brought by the L-C(1, 3) MMSE 
receivers with respect to the linear MMSE receiver for infinitely strong CCI, it is possible to show still significant gains in SINR for strong 
but not infinitely strong CCI as shown in Subsection 4.3.

4.3. SINR performance illustrations

We start by focusing on the case of a single antenna to evaluate the enhancement of the SAIC given by third-order MMSE CV receivers. 
In all the illustrations, the SNR is fixed to εs = πs/η2 = 10 dB. Fig. 1 compares the SINR at the output of the WL-C(i), i = 0, 1, 2, 3 and 
WL-C(0,1,2,3) receivers for BPSK SOI and CCI in the worst situation (τ j = 0, φ = 0) as a function of the INR = π j/η2 = ε j . We see that the 
partial structures almost achieve the SINR of the full CV structure and the WL-C(1) and WL-C(2) structures are slightly better than the 
WL-C(0) and WL-C(3) structures (as predicted by (45), (46)) that outperform the WL filter.

As described in Subsection 3.2, there is a possible improvement of the partial WL-C(i), i = 0, 1, 2, 3 structures for BPSK SOI symbols by 
using a post processing consisting to take the real part zk of CV MMSE receiver output. Fig. 2, confirms our theoretical analysis (34), but 
the modified structure WL-C(1) presents a small improvement w.r.t. the same partial structure based on yk .

Figs. 3 and 4 show the SINR at the output of the WL-C(1) and WL receivers for BPSK SOI and CCI as a function of φ for different 
values of τ j/T for a roll-off of 0.3, and as a function of τ j/T for different values of the roll-off ω for φ = 0, respectively. In the same 
way, Figs. 5 and 6 show the SINR at the output of the L-C(1, 3) and linear receivers for QPSK SOI and CCI. For all these figures, INR = 
ε j = π j/η2 = 30 dB. These four figures show still significant gain in SINR which decreases when the roll off ω of v(t) decreases and 
τ j ∈ [0, T /2] increases. This is explained by the presence of increasing inter-symbol interference due to the pulse shaping filter, which 
Gaussianizes the CCI component j′k due to the central limit theorem and for which the gain strongly decreases. Furthermore, comparing 
Fig. 3 to 5, we see that the SINR at the output of the WL-C(1) receiver for BPSK SOI and CCI is sensitive to φ, in contrast to the SINR at 
the output of the L-C(1,3) receiver for QPSK SOI and CCI, which is not sensitive.

For the multiple antennas scenario, all performance behaviors of the CV MMSE receivers described in Figs. 2–6 are maintained with 
increasing SINR as |α| decreases and with an SINR enhancement due to spatial diversity because εs = ‖hs‖2πs/η2, except a significant 
increasing of SINR observed in the neighborhood of τ j/T = 0.5 w.r.t. Figs. 4 and 6.
M. Sadok, J.-P. Delmas and P. Chevalier Digital Signal Processing 120 (2022) 103246
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Fig. 2. SINR and SINRz at the output of the WL-C(1) and WL-C(0) MMSE receivers as a function of the INR for N = 1, BPSK SOI and CCI with τ j = 0, φ = 0 and SNR = 10 dB.

Fig. 3. SINRWL−C(1) and SINRWL as a function of φ for BPSK SOI and CCI for N = 1, ω = 0.3 and SNR = 10 dB.

Fig. 4. SINRWL−C(1) and SINRWL as a function of τ j/T for BPSK SOI and CCI for N = 1, φ = 0 and SNR = 10 dB.
10
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Fig. 5. SINRL−C(1,3) and SINRL as a function of φ for QPSK SOI and CCI for N = 1 and SNR = 10 dB.

Fig. 6. SINRL−C(1,3) and SINRL as a function of τ j/T for QPSK SOI and CCI for N = 1, φ = 0 and SNR = 10 dB.

We compare now in Fig. 7, the theoretical SINR at the output of the linear, WL and WL-C(1) MMSE beamformers against their equivalent 
MVDR1 beamformers, which take into account the non-circularity and/or the non-Gaussiannity of the interference only (i.e., linear MVDR 
or Capon [34], WL MVDR1 [35] and WL-C(1) MVDR1 beamformers [25,37]) for N = 2, BPSK synchronized SOI and CCI symbols (τ j = 0) 
in the worst case φ = 0, as a function of |α| for SNR πs/η2 = 10 dB, INR πs/η2 = 30 dB and a roll-off ω = 0.3. Note that for the MVDR1
beamformers, the comparison is shown with the time-averaged theoretical SINR because these beamformers have no knowledge of the 
SOI. This figure also shows the theoretical SINR at the output of the WL-C(1) MVDR1 beamformer for a square pulse shaping filtering 
[25]. This figure confirms the inequalities (30)-(32). It illustrates that the exploitation of the non-circularity and/or the non-Gaussiannity 
of the SOI, in addition to that of the CCI allows one to improve the performance of the MMSE beamformers with respect to the associated 
MVDR1 beamformers. We also see that the power’s discrimination effect of the WL-C(1) MMSE beamformer makes it possible to maintain 
a strong SINR for a module of the spatial correlation close to 1, unlike the other beamformers.

4.4. Symbol error rate performance

To complete the SINR performance analysis, we present in this subsection the SER of the SOI symbols ak ∈ A obtained by simple 
threshold detectors at the output yk of different CV MMSE filters:

yk = w̃H x̃k = μsr(0)(w̃H h̃s,n)ak + w̃H̃ ik
def= αsak + w̃H̃ ik, (56)

deduced from (25). Using the ML1 receiver under the false assumption of both circular Gaussian total noise w̃H̃ ik and independent symbol 
ak and noise part w̃H̃ ik , the detected SOI symbol is given by

1 We note that the implementation of the CV MMSE beamformer before the ML detection, although suboptimal allows one to break free from the knowledge of the 
parameters πs , π j , η2, hs and h j .
11
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Fig. 7. SINR as function of |α| for different MVDR and MMSE beamformers for N = 2, BPSK SOI and CCI with τ j = 0, φ = 0, SNR = 10 dB and INR = 30 dB.

âk = Arg min
a∈A |yk − αsa|. (57)

The derivation of the theoretical SER of such detector is very intricate, because, the noise part is not Gaussian distributed and not inde-
pendent (although uncorrelated) from the symbol. Furthermore, we note the approximation deduced from the central limit theorem is 
not justified although w̃H̃ ik is the sum of a large number of random variables, because the variance of these random variables can be of 
different orders of magnitude, depending on πs , π j and η2.

Consequently, we can only deduce the SER by Monte Carlo experiments. These SER are then compared to those of the optimal ML or 
MAP detector which knows all the parameters πs , π j , η2, hs and h j , given for synchronized symbols (τ j = 0) by:

âk = Arg max
a∈A

∑
b∈A

exp

(
−||xk − a

√
πshs − b

√
π jh j||2

η2

)
. (58)

These SER have also been compared to those of the joint detector given by:

âk = Arga∈A min
(a,b)∈A2

||xk − a
√

πshs − b
√

π jh j||2, (59)

with very similar SER.
We illustrate these SER in Figs. 8 and 9 as a function of the INR for an SNR equal to 9 dB for a single antenna (N = 1) for respectively 

BPSK and QPSK synchronized SOI and CCI symbols (τ j = 0) in the worst condition φ = 0.
In Fig. 8(a), the SER given at the output of the WL-C(1) and WL MMSE filters are compared to those of the MAP receiver. The SINR at 

the outputs of the WL-C(1) and WL MMSE filters are also plotted in Fig. 8(b). This figure illustrates the power’s discrimination allowed by 
the WL-C(1) MMSE receiver, for which its output SINR and SER practically reach their maximum 2εs = 2πs/η2 and minimum respectively 
for INR 
 SNR. For INR ≈ SNR, the SOI and CCI symbols constellations of the input signal xk overlap, so the output SINR reaches its 
minimum where the SER is maximum. Note also a rebound in the SER for INR ≈ SNR + 6 dB which is explained by a geometric ambiguity 
in the constellation of the observation yk with respect to the reference constellation of the SOI.

Fig. 9(a) shows the SER at the output of the L-C(1,3), L-C(1) and linear MMSE filters which are compared to those of the MAP receiver. 
Compared to the SINR exhibited in Fig. 9(b), these figures also exhibit the power’s discrimination allowed by the L-C(1,3) MMSE receiver, 
for which its output SINR attains its minimum for INR ≈ SNR and its maximum εs for strong CCI where the SER is minimum. So the 
SER and SINR obtained by the different CV MMSE receivers have consistent behaviors. This reinforces the meaning of the SINR defined by 
the orthogonal decomposition (26). Furthermore, we note that although the MAP receiver outperforms the WL-C(1) and L-C(1,3) MMSE 
receivers, their SERs are very close for strong CCI.

5. Performance in the presence of two interferers

In the presence of two interferers, the derivation of the SINR is very complicated and exceeds the capabilities of our MATLAB symbolic 
and calculus tools, so we limit our analysis to orthogonal interferers for which hH

j1
h j2 = 0, for both rectilinear or SO circular CCI and SOI.

5.1. SINR at the output of linear and WL MMSE receivers

Under these assumptions, the SINR at the output of the linear MMSE beamformer is straightforwardly given by

SINRL = εs

(
1 − |α1|2ε j1

1 + ε j
− |α2|2ε j2

1 + ε j

)
, (60)
1 2
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Fig. 8. SER (a) and SINR (b) at the output of the WL, WL-C(1) MMSE and MAP receivers as a function of INR for N = 1, BPSK SOI and CCI with τ j = 0, φ = 0 and SNR = 9 dB.

where ε ji

def= ‖h ji ‖2π ji /η2 and αi
def= |αi |eiφi = hH

s h ji /‖hs‖‖h ji ‖, i = 1, 2, whereas the SINR at the output of the WL MMSE beamformer is 
also straightforwardly given by

SINRWL = 2εs

(
1 − 2|α1|2 cos2(φ1)ε j1

1 + 2ε j1

− 2|α2|2 cos2(φ2)ε j2

1 + 2ε j2

)
, (61)

for arbitrary rectilinear SOI and CCI. This SINR is approximated for strong CCI (ε j1 
 1 and ε j2 
 1) by

SINRWL ≈ 2εs

(
1 − |α1|2 cos2 φ1 − |α2|2 cos2 φ2

)
. (62)

5.2. SINR and SER at the output of CV MMSE receivers

In the scenario of two orthogonal interferers, the derivation of the SINR at the output of CV MMSE receiver is very involved by our 
MATLAB’s symbolic math toolbox. However, in the particular case of N = 2 for which ‖hs‖2 = |h j1‖2 = |h j2‖2 = 2, |α1|2 + |α2|2 = 1, with 

π j1 = π j2

def= π j and φ j1 = φ j2

def= φ j , τ j1 = τ j2 = τ j = 0, we have proved the following limits for BPSK SOI/CCI and QPSK SOI/CCI symbols, 
respectively:

lim
π j→∞ SINRWL−C(1) = lim

π j→∞ SINRWL−C(0) = 2εs, (63)

lim
π →∞ SINRL−C(1,3) = εs, (64)
j

13
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Fig. 9. SER (a) and SINR (b) at the output of the Linear, LC(1), LC(1,3) MMSE and MAP receivers as a function of INR for N = 1, QPSK SOI and CCI with τ j = 0, φ = 0 and SNR 
= 9 dB.

for all φ j and α1. These limiting values of SINR are those obtained for a single interference (see (43) for BPSK CCI and (52) for QPSK CCI). 
Both relations (63), (64) prove that these CV MMSE receivers completely remove the two interference terms with only N = 2 antennas 
thanks to a power’s discrimination between the SOI and CCI.

To complete the SINR performance analysis, we present under the assumptions given in Section 4.4 with here SNR = 5 dB, a comparison 
of the behavior of the SINR and the SER at the output of the WL-C(1) and WL MMSE receivers with BPSK SOI and CCI as a function of the 
INR also defined by π j/η2. Similarly to Figs. 8 and 9, Fig. 10 illustrates the power’s discrimination allowed by the WL-C(1) MMSE receiver, 
for which its output SINR reaches its minimum for two CCI when INR ≈ SNR and its maximum 2εs = 4πs/η2 for strong CCI where the 
SER is minimum. Note also the rebound in the SER for two CCI when INR ≈ SNR + 6 dB because of the ambiguity of the SOI constellation 
in xk compared to those of the CCI.

6. Adaptive implementation

6.1. Presentation

In practical situations, the correlation matrix Rx̃ and the intercorrelation vector rx̃,a are not known a priori, whereas a training se-
quence (a1, ..., aK ) uncorrelated with the interference is available after a synchronization process. Several adaptive implementations can 
be developed in this case. Assuming the observations xk are stationary over blocks including K training symbols and L data symbols, we 
propose here to use an extension of the sample matrix inversion (SMI) algorithm [38] to implement (18). It consists to estimate the CV 
MMSE filter w̃ from K observations associated with the training sequence (a1, ..., aK ) by

̂̃w = R̂
−1
x̃ r̂x̃,a, (65)
14
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Fig. 10. SER (a) and SINR (b) at the output of the WL, WL-C(1) MMSE receivers as a function of INR for N = 2, BPSK SOI, SNR = 5 dB and P = 2 orthogonal CCI with φ j = 0, 
τ j = 0 and |α1| = √

2/2.

where R̂x̃ and ̂rx̃,a are the empirical means 1
K

∑K
k=1 x̃kx̃H

k and 1
K

∑K
k=1 x̃ka∗

k , respectively.
In this per block strategy of adaptation, the CV MMSE filter is estimated only on time per block of K training symbols and L data 

symbols (located for example on either side of the training symbols). To illustrate the role of K , we will consider the rate of convergence.

6.2. Rate of convergence

The rate of convergence of the SMI algorithm has been theoretically analyzed in many papers (see e.g. [38] for linear receivers). But the 
theoretical analysis of the CV SMI algorithm is beyond the scope of this paper and we simply illustrate its convergence through a Monte-
Carlo experiment. For this purpose, we consider the case of BPSK synchronized SOI and CCI symbols (τ j = 0) in the worst condition φ = 0
for N = 2, P = 1, SNR = 13 dB and INR = 33 dB. The SINR at the output of the third-order CV receiver implemented by the SMI algorithm 
from K observations is defined by:

SINR(K ) = |̂̃wH
rx̃,a|2

πẫwH
Rĩ

̂̃w = |̂̃wH
rx̃,a|2

πẫwH
(Rx̃ − π−1

a rx̃,arH
x̃,a)

̂̃w . (66)

Under these assumptions, Fig. 11 shows the variation, as a function of K , of the estimated mean value of SINR(K ), ̂E(SINR(K )) computed 
over 1000 runs, at the output of the WL-C(1) MMSE and WL-C(1) MVDR beamformers, compared to the WL MMSE and WL MVDR1
15
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Fig. 11. Ê(SINR(K )) as a function of K for BPSK SOI and CCI, N = 2, P = 1 and |α| = 0.95, with τ j = 0, φ = 0 and SNR = 10 dB.

beamformers. We verify that the steady state performances of the WL MVDR1, WL MMSE and WL-C(1) MVDR1 beamformers are upper 
bounded by the performance of the WL-C(1) MMSE beamformer, consistently with Fig. 7.

We see that in this scenario the necessary numbers of snapshots required to achieve optimal performance for high INR, are about 100 
snapshots for the WL-C(1) MMSE and WL-C(1) MVDR1 beamformers and 40 snapshots for the WL MMSE and WL MVDR1 beamformers. 
Naturally the rate of convergence decreases for WL-C(1) beamformers w.r.t. WL ones because the number of entries is larger [38]. More 
precisely, the numbers of inputs of these receivers are Ni = 2N = 4 and Ni = 2N + N2(N + 1)/2 = 10 for the WL MMSE and WL-C(1) 
MMSE beamformers, respectively, and the required number K of training symbols is roughly K = 10Ni .

6.3. Complexity elements

We now give some complexity elements of some proposed third-order MMSE receivers compared to the linear and WL MMSE receivers. 
Denoting by Ni the number of input of these receivers, we get from the analysis presented at the end of Subsection 3.1:

• Ni = N for a linear receiver,
• Ni = 2N for a WL receiver,
• Ni = N + N2(N + 1)/2 for a L-C(1) receiver,
• Ni = N + N2(N + 1)/2 + N(N + 1)(N + 2)/6 for a L-C(1,3) receiver,
• Ni = 2N + N2(N + 1)/2 for a WL-C(1) receiver,
• Ni = 2N + N2(N + 1) + N(N + 1)(N + 2)/3 for a WL-C(0,1,2,3) receiver.

Assuming the adaptation is done from a per block strategy as explained in Subsection 6.1, the complexity of a receiver corresponds to the 
number of complex operations (comps) required to compute one estimated data symbol. Under these assumptions, the number of comps 
required to compute L receiver outputs from the L data symbols of a block, jointly with the associated complexity, are presented in the 
following:

R̂x̃ : Ni(Ni + 1)(2K − 1)/2 comps

r̂x̃,a : Ni(2K − 1) comps

R̂−1
x̃ : 8N3

i /3 compŝ̃w = R̂
−1
x̃ r̂x̃,a : Ni(2Ni − 1) comps

yk = ̂̃wH
x̃k (1 ≤ k ≤ K + L) : (K + L)(2Ni − 1) comps

overall number of operations : 8N3
i

3
+

(
K + 3

2

)
N2

i +
(

5K + 2L − 5

2

)
Ni − K − L comps.

In practical situations, K is often chosen as a multiple of Ni , which means that K = γ Ni , where γ is an integer such that γ ≥ 1 to ensure 
the invertibility of the estimated correlation matrix of ̃xk . Otherwise, the number δ def= L/K of data symbols per training symbol is of the 
order of a few units, depending on the stationarity of the observations. Under this assumption, the complexity (number of comps per data 
symbol) is given by

Complexity = 1

δ

(
1 + 8

3γ

)
N2

i +
(

2 + 5

δ
+ 3

2δγ

)
Ni −

(
1 + 1

δ
+ 5

2δγ

)
. (67)

We deduce from these expressions that the complexity with respect to N is:
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Fig. 12. Complexity of several first-order and third-order beamformers as a function of N , γ = 20, δ = 4.

• O (δ−1[1 + (8/3γ )]N2) for a linear receiver,
• O (δ−1[1 + (8/3γ )]4N2) for a WL receiver,
• O (δ−1[1 + (8/3γ )]N6/4) for a L-C(1) receiver,
• O (δ−1[1 + (8/3γ )]4N6/9) for a L-C(1,3) receiver,
• O (δ−1[1 + (8/3γ )]N6/4) for a WL-C(1) receiver,
• O (δ−1[1 + (8/3γ )]16N6/9) for a WL-C(0,1,2,3) receiver.

To quantify the expressions of the complexity (67), Fig. 12 shows the variations of the complexity of several first and third-order MMSE 
receivers as a function of N for δ = 4 and γ = 20. We note in particular from this figure, a very acceptable complexity of most of the 
proposed third-order MMSE receiver for small-scale systems (1 ≤ N ≤ 5) because the number of comps required by most of the receivers to 
generate an estimated data symbol does not exceed 500. Clearly large values of γ = K/Ni and δ = L/K are of interest for the complexity 
point of view, whereas large values of γ improve the steady state performance of the estimated receiver and decrease the estimation 
variance of the latter. But γ and δ must be upper-bounded because the observations must be stationary over K + L = γ (1 + δ)Ni symbols. 
A tradeoff must therefore be found between (complexity and performance) and stationarity duration assumption.

7. Conclusion

Enlightening interpretations and related generic output SINR performance of the Mth-order CV MMSE receiver have been given in 
this paper using an orthogonal decomposition. A family of third-order CV MMSE receivers for the reception of digital linearly modulated 
SOI whose waveform is known corrupted by potentially non-Gaussian and non-circular interference has been introduced. Performances in 
term of SINR depending on the symbols constellation, the pulse shaping filter and relative phase and delays between the SOI and the CCI 
have been theoretically analyzed and comparisons w.r.t. output SER have been shown by Monte Carlo experiments. It has been proved 
that some of these receivers that exploit FO and SIO non-circularity of SOI and CCI, enhance WL receiver performance for SAIC of one 
rectilinear interference such as BPSK interference, whereas some other receivers allow us to fulfill SAIC of FO non-circular interference 
such as QPSK interference, by power’s discrimination between SOI and CCI, result which is not possible from WL receivers. These results 
open new perspectives for enhanced SAIC in non-Gaussian and non-circular contexts, omnipresent in practice.
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Appendix

Proof of condition of χ j − κ2
j = 0 in Subsection 4.2

Applying the Cauchy–Schwarz inequality to the random variables | j′ 3
k | and | j′k|, we get: [E| j′ 4

k |]2 ≤ E| j′ 6
k |E| j′ 2

k |. Thus χ j − κ2
j ≥ 0 with 

equality if and only if | j′ 3| and | j′ | are proportional, i.i.f. and | j′ |(| j′ 2| − c) = 0 with c constant, i.i.f. j′ = 0 or | j′ 2| = c. With E| j′ 2| = 1, 
k k k k k k k
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this is equivalent to | j′k| = 1/
√

p with probability p and 0 with probability 1 − p. For p = 1, this is equivalent to j′k = ±1 and | j′k| = 1

for real-valued and second-order circular CCI, respectively. For digital modulated CCI, for which j′k =
∑

� b�r((k−�)T −τ j)√∑
� b�r((k−�)T −τ j)

, this corresponds 
to r(iT − τ j) = 0, except for a value i0 of i and because r(t) is a Nyquist pulse i0 = 0 and τ j = 0. �
References

[1] M. Bavand, S.D. Blostein, User selection and multiuser widely linear precoding for one-dimensional signalling, IEEE Trans. Veh. Technol. 67 (12) (Dec. 2018) 11642–11653.
[2] P. Chevalier, F. Pipon, New insights into optimal widely linear array receivers for the demodulation of BPSK, MSK and GMSK signals corrupted by noncircular interferences 

– application to SAIC, IEEE Trans. Signal Process. 54 (3) (March 2006) 870–883.
[3] H. Trigui, D.T.M. Slock, Performance bounds for cochannel interference cancellation within the current GSM standard, Signal Process. 80 (2000) 1335–1346.
[4] R. Meyer, W.H. Gerstacker, R. Schober, J.B. Huber, A single antenna interference cancellation algorithm for increased GSM capacity, IEEE Trans. Wirel. Commun. 5 (7) (July 

2006) 1616–1621.
[5] B. Picinbono, P. Chevalier, Widely linear estimation with complex data, IEEE Trans. Signal Process. 43 (8) (Aug. 1995) 2030–2033.
[6] P.O. Amblard, M. Gaeta, J.L. Lacume, Statistics for complex variables and signals – part I and II, Signal Process. 53 (1) (Aug. 1996) 1–25.
[7] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50 (2) 

(Feb. 2002) 174–188.
[8] P.M. Djuric, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M.F. Bugallo, J. Miguez, Particle filtering, IEEE Signal Process. Mag. 20 (5) (2003) 19–38.
[9] L.M. Garth, H.V. Poor, Narrowband interference suppression in impulsive channels, IEEE Trans. Aerosp. Electron. Syst. 28 (1) (1992) 15–34.

[10] A. Mohammadi, K.N. Plataniotis, Complex-valued Gaussian sum filter for nonlinear filtering of non-Gaussian/non-circular noise, IEEE Signal Process. Lett. 22 (4) (April 
2015) 440–444.

[11] P. Chevalier, P. Duvaut, B. Picinbono, Le filtrage de Volterra transverse réel et complexe en traitement du signal, in: Numéro spécial: “Non linéaire et non gaussien”, Trait. 
Signal 7 (5) (1990) 451–476.

[12] P. Chevalier, P. Duvaut, B. Picinbono, Complex transversal Volterra filters optimal for detection and estimation, in: Proc. ICASSP, Toronto (Canada), May 1991.
[13] H. Enzinger, K. Freiberger, G. Kubin, C. Vogel, Fast time-domain Volterra filtering, in: Proc. Asilomar, Pacific Grove, CA USA, Nov. 2016.
[14] M. Schetzen, The Volterra and Wiener theory of non linear systems, Wiley, New-York, 1980.
[15] B. Pincibono, P. Duvaut, Optimal linear quadratic systems for detection and estimation, IEEE Trans. Inf. Theory 34 (March 1988) 304–311.
[16] T. Koh, E.J. Powers, Second order Volterra filtering and its application to non linear system identification, IEEE Trans. Acoust. Speech Signal Process. 33 (6) (Dec. 1985) 

1445–1455.
[17] O. Agazzi, D.G. Messerschmitt, D.A. Hodges, Non linear echo cancellation of data signals, IEEE Trans. Commun. 30 (11) (Nov. 1982) 2421–2433.
[18] R.D. Nowak, B.D. Van Veen, Volterra filter equalization: a fixed point approach, IEEE Trans. Signal Process. 45 (2) (Feb. 1997) 377–388.
[19] S. Benedetto, E. Bigieri, R. Daffara, Modeling and performance evaluation of non-linear satellite links – a Volterra series approach, IEEE Trans. Aerosp. Electron. Syst. 15 

(July 1979) 494–507.
[20] C. Crespo-Cadenas, M.J. Madero-Ayora, J. Reina-Tosina, J.A. Becerra-Gonzales, Formal deduction of a Volterra series model for complex-valued systems, Signal Process. 

131 (2017).
[21] G. Mileounis, N. Kalouptsidis, Blind identification of second-order Volterra systems with complex random inputs using higher order cumulants, IEEE Trans. Signal Process. 

57 (10) (Oct. 2009) 4129–4135.
[22] P. Chevalier, B. Picinbono, Complex linear-quadratic systems for detection and array processing, IEEE Trans. Signal Process. 44 (10) (Oct. 1996) 2631–2634.
[23] A. Souloumiac, P. Chevalier, C. Demeure, Improvement in non-Gaussian jammers rejection with a non linear spatial filter, in: Proc. ICASSP, Minneapolis, USA, April 1993, 

pp. 670–673.
[24] P. Comon, R. Liu, D. Slock, Path-wise wide-sense polynomial receiver for UMTS communications, in: 39th Conf. Com. Contr. Comput., Allerton, Illinois, Oct. 2001.
[25] P. Chevalier, J.-P. Delmas, M. Sadok, Third-order Volterra MVDR beamforming for non-Gaussian and potentially non-circular interference cancellation, IEEE Trans. Signal 

Process. 66 (18) (Sept. 2018) 4766–4781.
[26] L. Antilla, M. Valkama, Blind signal estimation in widely-linear signal models with fourth-order circularity: algorithms and application to receiver I/Q calibration, IEEE 

Signal Process. Lett. 20 (3) (March 2013) 221–224.
[27] X. Jiang, W.J. Zeng, A. Yasotharan, H.C. So, T. Kirubarajan, Minimum dispersion beamforming for non-Gaussian signals, IEEE Trans. Signal Process. 62 (7) (April 2014) 

1879–1893.
[28] L. Huang, J. Zhang, L. Zhang, Z. Ye, Widely linear minimum dispersion beamforming for sub-Gaussian non-circular signals, Signal Process. 122 (7) (2016) 123–128.
[29] M. Sadok, J.-P. Delmas, P. Chevalier, Enhanced single-antenna interference cancellation from MMSE third-order complex Volterra filters, in: Proc. ICASSP, New-Orleans 

USA, March 2017.
[30] P. Chevalier, J.-P. Delmas, A. Oukaci, Optimal widely linear MVDR beamforming for noncircular signals, in: Proc. ICASSP, Taipei (Taiwan), April 2009.
[31] P. Chevalier, J.-P. Delmas, A. Oukaci, Properties, performance and practical interest of the widely linear MMSE beamformer for nonrectilinear signals, Signal Process. 97 

(April 2014) 269–281.
[32] C. Agne, M.B. Cornell, M. Dale, R. Kearns, F. Lee, Shared-spectrum bandwidth efficient satellite communications, in: 2010 – MILCOM 2010 Military Communication 

Conference, San Jose, CA, USA, Nov. 2010.
[33] P. Chevalier, L. Albera, A. Ferreol, P. Comon, On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53 (4) (April 2005) 1254–1271.
[34] J. Capon, R.J. Greenfield, R.J. Kolker, Multidimensional maximum likelihood processing of a large aperture seismic array, Proc. IEEE 55 (2) (Feb. 1967) 191–211.
[35] P. Chevalier, A. Blin, Widely linear MVDR beamformer for the reception of an unknown signal corrupted by noncircular interferences, IEEE Trans. Signal Process. 55 (11) 

(Nov. 2007) 5323–5336.
[36] A. Ahmed, A.M. Eltawil, All-digital self-interference cancellation technique for full-duplex systems, IEEE Trans. Wirel. Commun. 14 (7) (July 2015) 3519–3532.
[37] J.-P. Delmas, P. Chevalier, M. Sadok, On the sensitivity of third-order Volterra MVDR beamformers to interference-pulse shaping filter, Signal Process. 170 (May 2020).
[38] I.S. Reed, J.D. Maillet, L.E. Brennan, Rapid convergence rate in adaptive arrays, IEEE Trans. Aerosp. Electron. Syst. AES-10 (6) (Nov. 1974) 853–863.

Mustapha Sadok received the Ph.D. degree in applied mathematics and signal processing from Telecom SudParis, Evry, France, in December 2017. 
He is currently an Assistant Professor with Institut National des Telecommunications et des TIC d’Oran, Oran, Algeria. His research interests are in signal 
processing for communications and radio monitoring.

Jean-Pierre Delmas received the M.Sc. degree from Ecole centrale de Lyon, France in 1973, the Certificat d’Etudes Supérieures from Ecole Nationale 
Supérieure des Télécommunications (ENST), Paris, France in 1982 and the Habilitation diriger des recherches (HDR) degree from the University of Paris 
XI, Orsay, France in 2001. Since 1980, he has been with Telecom SudParis where he is currently a Professor at the CITI department. He was the deputy 
director (2005-2010) and the director (2011-2014) of UMR 5157 (CNRS laboratory). His teaching and research interest lie in statistical methods for signal 
processing with emphasis on asymptotic and non-asymptotic performances analysis and array processing applied to multi-sensor systems in the context 
of communications. He is author or co-author of more than 140 publications (journal, conference and chapter of book, book). He was an Associate Editor 
for the IEEE Transactions on Signal Processing (2002-2006) and (2010-2014) for Signal Processing (2009-2020), and currently for IEEE Signal Processing 
Letters. From 2011 to 2016, he was a member of the IEEE Sensor Array and Multichannel Technical Committee.
18

http://refhub.elsevier.com/S1051-2004(21)00285-2/bib9705FF470F639AEF2CB3A8C8245BED2Fs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib648554A318D9150B5C332AEF1E90CCC8s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib648554A318D9150B5C332AEF1E90CCC8s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib3A485B368D1D97517FDEF1A62334DCB2s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibE4F9509AC442540337B6ECAF0379113Ds1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibE4F9509AC442540337B6ECAF0379113Ds1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibE4240703AA82C8EDC93CCF522F03135Cs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib710B7B3333FC356EFF691903B88B4015s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib735560C145F8C9073AF2C80E82F7DD45s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib735560C145F8C9073AF2C80E82F7DD45s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib38C80334D654B7D17D58FB9971F75B2Fs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib03704046EE900BF2CB0DB6E3D887B3B4s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibDB05ADF9406694FC615FFC25B5E22C08s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibDB05ADF9406694FC615FFC25B5E22C08s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibACA3F1B05F869570CD44173FEF7D5D6Fs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibACA3F1B05F869570CD44173FEF7D5D6Fs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib7893CEFC1FF267CB6F8B2ACF6AEAC4AEs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib8AF7C4812B17AC3BA8AC9D4C205190CAs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib1ED444FC4A51FF560B3869D99BCC9CC6s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibF1523B3961EA4FD00A83A2725F6837B0s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib67E207E9EB438765DAA4CE2694EC169As1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib67E207E9EB438765DAA4CE2694EC169As1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib1325CE28E3CEB4BEEA14CE7A4A7493DEs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib450591DEBA0D54B56E29BB517EBCDF9Fs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib5139273E851956E66D6806FE8387EE4As1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib5139273E851956E66D6806FE8387EE4As1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibF18D98056A6C869BE28598CA180F608Cs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibF18D98056A6C869BE28598CA180F608Cs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib014BD83AFA32708D85FB8F3898A55534s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib014BD83AFA32708D85FB8F3898A55534s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib86831ACD0D21168672BA7DE72DCE4439s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib3C6C394DB4CD6A40B155B91D10AABD67s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib3C6C394DB4CD6A40B155B91D10AABD67s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib2895A6AB72E3D3B532A195D9947D0844s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib755E1E9C3AE8D204F4C9BE201008B306s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib755E1E9C3AE8D204F4C9BE201008B306s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibA8221D76312C90EF19A2CB43B02C9014s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibA8221D76312C90EF19A2CB43B02C9014s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibD68B730D92AE96A6544787C22B40BF03s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibD68B730D92AE96A6544787C22B40BF03s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibAC08F02129FDFCF0A4DA49211D311260s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib9BEAB4D25A42CD490DE737AD57BC174Fs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib9BEAB4D25A42CD490DE737AD57BC174Fs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib3DD0A0A6399E9C0A4BB2BDE710753C1Es1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib50A927A01F1114456BA1C726F8D8C4FCs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib50A927A01F1114456BA1C726F8D8C4FCs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib0D0BDEC352CD9FDCC0310FF9EACEBFC8s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib0D0BDEC352CD9FDCC0310FF9EACEBFC8s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibEAB5FC96982A4A4B123F00583DDF47DCs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib2ADE6E79D073A9637C661EA733B6A42Ds1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib08CC20F8CDDEBBBC68B5021AC8881CABs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bib08CC20F8CDDEBBBC68B5021AC8881CABs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibB4A258ED2431133D45DD34CE016E2076s1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibBF7D3A9FCCC9431BE5BB94A75ABD96BCs1
http://refhub.elsevier.com/S1051-2004(21)00285-2/bibFC726DC5A3D072D5C90BDB1CFCD8FB44s1


M. Sadok, J.-P. Delmas and P. Chevalier Digital Signal Processing 120 (2022) 103246
Pascal Chevalier received the M.Sc. degree from Ecole Nationale Supérieure des Techniques Avancées, Paris, France, in 1985, the DEA degree in 
automatic and signal processing from Jussieu university (Paris VII), Paris, France, in 1987, the Ph.D. degree from South-Paris University (Paris XI), Paris, 
France, in 1991 and the Habilitation Diriger des Recherches degree from Marne-La-Vallée University, Champs-sur-Marne, France, in 2009.

Since 1991, he has been with Thales-Communications-Security (now Thales SIX GTS, France), where he has shared industrial activities, teaching 
activities both in French engineer schools and French Universities and research activities. Since 2000, he has also been acting as a Technical Manager and 
an Architect of the array processing subsystem as part of a national program of military satellite telecommunications. He has been a Thales Expert since 
2003. Since 2010, he has also been with the Conservatoire National des Arts et Métiers, Paris, France, as a Professor holder of the Electronic Chair. His 
current research interests include signal processing and array processing techniques for spectrum monitoring and digital communications. He is author 
or co-author of 30 patents and about 160 publications (Journal, Conferences and Chapters of books). He has been a member of the THOMSON-CSF 
Technical and Scientifical Council between 1995 and 1998. He co-received the 2003 “Science and Defense” Award from the French Ministry of Defense
for its work as a whole about array processing for military radiocommunications. Since 2003, he has been an Associate Editor for EURASIP Journal of 
Wireless Communications and Networking and Co-technical Chairman of ISWCS’12 Symposium. He is currently a member of the EURASIP Special Area 
Team related to Signal Processing for Multisensor Systems, a member of the IEEE Sensor Array and Multichannel Technical Committee and an emeritus 
member of the Societé des Electriciens et des Electroniciens.
19


	Third-order Volterra MMSE receivers for enhanced single and multiple antenna interference cancellation
	1 Introduction
	2 Hypotheses, data statistics and problem formulation
	2.1 Hypotheses
	2.2 Data statistics
	2.2.1 Presentation
	2.2.2 Particular cases

	2.3 Problem formulation

	3 Third-order complex Volterra MMSE receiver
	3.1 Mth-order complex Volterra MMSE filter
	3.2 Orthogonal decomposition
	3.3 Third-order complex Volterra MMSE filter

	4 Performance in the presence of one interferer
	4.1 SINR at the output of linear and WL receivers
	4.2 Theoretical SINR at the output of CV receivers
	4.2.1 Rectilinear signals
	4.2.2 Second-order circular signals

	4.3 SINR performance illustrations
	4.4 Symbol error rate performance

	5 Performance in the presence of two interferers
	5.1 SINR at the output of linear and WL MMSE receivers
	5.2 SINR and SER at the output of CV MMSE receivers

	6 Adaptive implementation
	6.1 Presentation
	6.2 Rate of convergence
	6.3 Complexity elements

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


