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a b s t r a c t 

The concept of threshold array signal-to-noise ratio (ASNR) which is defined as the minimal SNR at which 

specific high-resolution algorithms are able to resolve two closely spaced far-field sources, allows to quan- 

tify and to compare sensors array performance in localizing remote targets. This paper generalizes and ex- 

tends the expressions of the threshold ASNR given in the literature for the conventional and non-circular 

(NC) MUSIC direction-of-arrival (DOA) estimation algorithms in the context of uncorrelated stochastic 

circular or rectilinear Gaussian sources and circular complex Gaussian (C-CG) noise, in a more general 

stochastic framework. We assume that the sources are correlated with an arbitrary distribution, which is 

inherent in a context of multipath or smart jammers, and that the noise is circular complex elliptically 

symmetric (C-CES) distributed, which can model impulsive noise with heavy-tailed distributions. The C- 

CES and NC-CES distributed observations are also considered to quantify the gain in resolution provided 

when the sample covariance matrix (SCM) of the observations is replaced by M-estimates of this matrix. 

Asymptotic approaches and perturbation analysis have been performed to derive closed-form expressions 

of the mean null spectra of the two considered MUSIC algorithms for both observation models, which 

allow us to derive, for the first time, general unified explicit analytical expressions of the threshold ASNR 

along the Cox and the Sharman and Durrani criteria. These expressions allow us to quantify the impact 

of the non-Gaussianity of noise and observations, as well as of the phase and magnitude of the corre- 

lation on the resolution threshold, and to quantify the benefit provided when the SCM is replaced by 

M-estimates of this covariance matrix for CES observations. Finally, numerical illustrations are included 

to support our theoretical analysis. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The ability to resolve two closely-spaced narrowband far-field 

ources is an important performance measure of sensor arrays in 

ocalizing remote targets with wide-ranging application in, among 

thers, astronomy, radar and wireless communications [1] . This 

ery old problem has been extensively studied in the literature and 

s still the object of active research in many applications (see e.g., 

2,3] ). There are usually four different approaches in the literature 

o determine the resolution limit of two closely spaced signals. The 

rst one rests on the analysis of the mean null spectrum concern- 

ng specific high-resolution algorithms. More precisely, two main 

riteria based on the mean null spectrum have been introduced by 

ox [4] and Sharman and Durrani [5] . The first criterion states that 
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wo sources are resolved if the midpoint mean null spectrum is 

reater than the mean null spectrum in the two true source DOAs. 

hile for the second criterion, two sources are resolved if the 

econd derivative of the mean spectrum at the midpoint is neg- 

tive. The two criteria were applied to derive the threshold ASNR 

or specific high-resolution algorithms, including conventional MU- 

IC and Min-Norm (the first one in [6–10] and the second one 

n [11,12] ). Then, they have been used to compare the threshold 

SNR for the conventional MUSIC and NC MUSIC algorithms [13] in 

he context of uncorrelated circular and rectilinear sources, respec- 

ively. The second approach is based on a hypothesis test using the 

eneralized likelihood ratio test [14,15] or the Bayesian approach 

16] . The third approach relies on the estimation accuracy, capital- 

zing on the Cramér-Rao bound (CRB). It compares the DOA sep- 

ration of two sources to the square-root of the CRB of the DOA 

17] or to the CRB of the difference between the two DOA’s intro- 

uced in [18] and then used in numerous papers (see e.g., [19–22] ). 

he last approach is based on the information theory and more 

https://doi.org/10.1016/j.sigpro.2021.108234
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1 To remove the so-called scale ambiguity, the density generator g is here con- 

strained such that δN+1 ,g /δN,g = N, [28] to ensure that the scatter R y and extended 

scatter R ˜ y matrices are equal to the covariance E(y t y 
H 
t ) and extended covariance 

E( ̃ y t ̃ y H t ) , respectively. The expressions of these p.d.f. are consistent with the ones 

given in [28] and [30] , respectively, because the normalizing constant is here in- 

cluded in the function g. 
pecifically on the Stein’s lemma which links the false alarm prob- 

bility resulted from the Neyman-Pearson decision criterion to the 

elative entropy between two hypothesis [23] , or on the mutual 

nformation between DOA, scattering properties and the received 

ignal [2] . In all these works, however, the sources embedded in a 

patially uncorrelated C-CG distributed noise are considered either 

eterministic or uncorrelated stochastic Gaussian distributed, ex- 

ept in [9] which presents some simulation results using the null 

pectrum with correlated and coherent C-CG distributed sources, 

nd in [22] which uses the Smith’s criterion [18] in the MIMO 

adar context under K-distributed clutter. 

This paper is dedicated to the threshold ASNRs derivation based 

n the first approach and its aim is twofold. First, it gives the- 

retical approximate interpretable closed-form expressions of the 

hreshold ASNR for which MUSIC-like algorithms are able to re- 

olve two closely spaced sources in a much more general statistical 

ramework than in the previous works. More precisely, we assume 

ere that the directional sources are circular or rectilinear corre- 

ated with arbitrary distributions, which is inherent in a context 

f multipath or smart jammers. We also consider that the noise is 

patially uncorrelated and C-CES distributed, which can model im- 

ulsive noise with heavy-tailed distributions. This kind of noise can 

e encountered in radar clutter [24,25] , made-man noise and in- 

erference in indoor and outdoor mobile communications channels 

26,27] . In these adverse conditions, this allows us, in particular, 

o quantify the increase of threshold ASNR required to resolve two 

losely-spaced equipowered sources with the conventional MUSIC 

nd NC MUSIC algorithms based on the SCM of the observations, 

ith respect to the standard conditions of uncorrelated sources 

mbedded in C-CG distributed noise. Second, it aims is to quantify 

he gain in resolution brought when this SCM is replaced by an M- 

stimate of the covariance matrix of the observations. For this pur- 

ose, interpretable closed-form expressions of the threshold ASNR 

re also derived for C-CES and NC-CES distributed observations. 

The paper is organized as follows. Section 2 gives a brief re- 

inder on CES distribution and specifies the data models and the 

nvolved MUSIC-based DOA estimation algorithms. It first describes 

 standard array data model with two equal-power arbitrary dis- 

ributed correlated sources, which are either circular or rectilinear, 

nd a spatially white C-CES distributed noise. Then, a robust distri- 

ution model, where the observations are either C-CES or NC-CES 

istributed, is introduced. This section ends with a brief review 

f the conventional and NC MUSIC algorithms and the statistical 

istributions of the SCM and M-estimators of covariance matrices. 

ection 3 presents the resolving power of MUSIC-like algorithms. 

fter a brief review of the Cox, and of Sharman and Durrani cri- 

eria on which resolving power is based, two preliminary lemmas 

ased on perturbations of noise projectors are given. They allow 

s to give closed-form expressions of the mean-null spectrum as- 

ociated with the conventional and NC MUSIC algorithms for the 

wo models introduced in Section 2 . Two general closed-form ex- 

ressions of the threshold ASNR applicable to the two models and 

riteria for each conventional MUSIC and NC MUSIC algorithms 

re deduced. Then, comments to explain how the non-Gaussianity 

f the noise and observations, and the phase and magnitude of 

he correlation of the sources impact the threshold ASNR are dis- 

ussed. Numerical illustrations of the threshold ASNR are given in 

ection 4 , with particular attention paid to the phase and magni- 

ude of the correlation of the sources and to the robustness of M- 

stimates of covariance matrices of the observations. Finally, the 

aper is concluded in Section 5 . 

The notations used throughout this paper are the following. The 

bbreviation [resp. ] stands for respectively. Vectors and matrices 

re denoted by bold-faced lowercase and uppercase letters, respec- 

ively. ∗, T , and 

H respectively represent the conjugate, the trans- 

ose and the conjugate transpose operators. E(. ) , Re(.), | . | and #
2 
re the expectation, real part operator, determinant and Moore- 

enrose inverse, respectively. = d stands for ”shares the same dis- 

ribution as”. vec (·) is the vectorization operator that turns a ma- 

rix into a vector by stacking the columns of the matrix one below 

nother which is used in conjunction with the Kronecker prod- 

ct A � B as the block matrix whose (i, j) block element is a i, j B

nd with the vec-permutation matrix K which transforms vec (C ) 

o vec (C 

T ) for any matrix C . The matrix J is the exchange matrix

0 I 

I 0 

)
and e k denotes the k -unit vector. 

. Data model and MUSIC-like algorithms 

In this section, we specify two data array models with two 

qual-power arbitrary distributed correlated sources impinging on 

n arbitrary array of N sensors with spatially white noise. In the 

rst model, the sources are either arbitrary or rectilinear with a 

-CES distributed noise and in the second one, the observation is 

ither C-CES or NC-CES distributed. For the ease of the readers, we 

egin by giving a brief reminder on C-CES and NC-CES distribu- 

ions. 

.1. Brief review of C-CES and NC-CES distributions 

In this paper, we use N-dimensional zero-mean C-CES [resp., 

C-CES] distributed random variables (r.v.) y t possessing probabil- 

ty density functions (p.d.f.) given by 

p(y t ) = | R y | −1 g(y H t R 

−1 
y y t ) , [resp., | R ˜ y | −1 / 2 g( 

1 

2 

˜ y H t R 

−1 
˜ y 

˜ y t )] , (1)

here ˜ y t 
def = [ y T t , y 

H 
t ] 

T and R ˜ y 
def = 

(
R y C y 

C 

∗
y R 

∗
y 

)
with R y and C y are N ×

Hermitian positive definite and complex symmetric matrices, 

espectively called scatter and pseudo-scatter matrices. The func- 

ion 

1 g(. ) : R 

+ �→ R 

+ satisfies δN,g 
def = 

∫ ∞ 

0 t N−1 g(t) dt < ∞ . The r.v.

 t admit the following stochastic representation: y t = d 

√ 

Q t R 

1 / 2 
y u t 

28] [resp., ˜ y t = d 

√ 

Q t R 

1 / 2 
˜ y 

˜ u t [29] with ˜ u t 
def = [ u 

T 
t , u 

H 
t ] 

T ], where the 

on-negative real r.v. Q t and the complex r.v. u t are independent 

nd u t is uniformly distributed on the unit complex N-sphere. 

.2. Standard data model 

Consider two equal-power narrowband uncorrelated or corre- 

ated (but non-coherent) signals impinging on an arbitrary array of 

sensors. The signal received in baseband at the time instant t is 

odeled as 

 t = Ax t + n t , t = 1 , . . . , T , (2)

here { y 1 , . . . , y t , . . . , y T } are independent and identically dis-

ributed. A = [ a 1 , a 2 ] is the steering matrix where each vector a k =
 (θk ) is parameterized by the real scalar parameter θk accord- 

ng to the parametrization introduced in [10] where ‖ a k ‖ 2 = N. 

 t = [ x t, 1 , x t, 2 ] 
T and n t model signals transmitted by sources and

dditive measurement noise, respectively. x t and n t are zero-mean 

ith finite fourth-order moments and not correlated with each 

ther. n t is assumed to be C-CES distributed and spatially un- 

orrelated with E(n t n 

H ) = σ 2 
n I . The fourth-order moments of n t 
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re proved to be characterized by a single parameter η. This pa- 

ameter is defined by η
def = 

E(Q 2 t ) 

N (N +1) 
from the stochastic represen- 

ation n t = d σn 
√ 

Q t u t . This parameter satisfies the conditions η ≥
/ (N + 1) [31] , η = 1 for C-CG distributions and can take very large

alues for very impulsive noise, such that for the circular com- 

lex Student t-distributions with heavier tails than the C-CG dis- 

ribution as shown in Section 4.1 . The signal sources x t are ar- 

itrary distributed (circular or non-circular to the second-order), 

ith covariance R x = E(x t x 
H 
t ) and complementary covariance C x = 

(x t x 
T 
t ) . Consequently, this leads to the following covariance and 

omplementary covariance of y t 

 y = AR x A 

H + σ 2 
n I 

def = S + σ 2 
n I and C y = AC x A 

T , (3)

here 

 x = σ 2 
x 

(
1 ρ
ρ∗ 1 

)
with ρ

def = E(x t, 1 x 
∗
t, 2 ) ∈ C and | ρ| < 1 . (4) 

We will also consider the specific case where x t, 1 and x t, 2 are 

ectilinear (also called strictly second-order non-circular), i.e., de- 

cribed by 

x t,k = s t,k e 
iφk where s t,k are real-valued with �φ

def = φ1 − φ2 

∈ [0 , + π ] . (5) 

he phases φk associated with different propagation delays are as- 

umed fixed, but unknown during the array observation. To derive 

USIC-like algorithms exploiting the prior knowledge of rectilinear 

ources, the model (2) can be rewritten according to the following 

quivalent extended model: 

 

 t 
def = 

[
y t 
y ∗t 

]
= ̃

 A s t + ̃

 n t , t = 1 , . . . , T , (6) 

here ˜ A 

def = [ ̃  a 1 , ̃  a 2 ] with 

˜ a k 
def = [ a T 

k 
e iφk , a H 

k 
e −iφk ] T , s t 

def = [ s t, 1 , s t, 2 ] 
T 

nd 

˜ n t 
def = (n 

T 
t , n 

H 
t ) 

T . Consequently the covariance R ˜ y 
def = E( ̃  y t ̃  y H t ) 

nd complementary covariance C ˜ y 
def = E( ̃  y t ̃  y T t ) of the extended sig- 

al ̃  y t are given by 

 ˜ y = ̃

 A R s ̃
 A 

H + σ 2 
n I 

def = ̃

 S + σ 2 
n I and C ˜ y = R ˜ y J = JR 

∗
˜ y , (7)

here if 

 s 
def = E(s t s 

T 
t ) = σ 2 

x 

(
1 ρ ′ 
ρ ′ 1 

)
with ρ ′ ∈ (−1 , +1) , (8) 

 x in (3) is written in the following form: 

 x = σ 2 
x 

(
1 ρ ′ e i �φ

ρ ′ e −i �φ 1 

)
. (9) 

onsequently, in the specific case of rectilinear sources, the phase 

eparation �φ associated with the sign of ρ ′ corresponds to the 

hase ∠ ρ of the correlation of the sources. 

Assuming that A and 

˜ A are full column rank, whose column 

paces characterize the DOA (θ1 , θ2 ) , the conventional and NC MU- 

IC algorithms are usually based on the SCM and extended SCM 

 y,T = 

1 
T 

∑ T 
t=1 y t y 

H 
t and R ˜ y ,T = 

1 
T 

∑ T 
t=1 ̃

 y t ̃  y H t , respectively. 

.3. Robust distribution model 

Many papers in the literature (see e.g., [28,32] ) have shown by 

umerical simulations that the MUSIC sample null spectrum pre- 

ented a loss of resolution for heavy-tailed distributed noise. To 

itigate this loss in resolution performance of MUSIC-like algo- 

ithms for heavy-tailed C-CES distributed noise, the SCM and ex- 

ended SCM can be replaced by the ML estimate of R y and R ˜ y ,

espectively. However, these ML estimates cannot be obtained for 

rbitrary distributed x t and arbitrary C-CES distributed n t in (2) . 
3 
o overcome this difficulty, we consider here an alternative model 

sed in [31] , [29] and [33] , where the observations y t in (2) are

ES distributed. In this case the distributions of x t and n t are not 

pecified, but only their second-order statistics are imposed. More 

pecifically, in the cases where the signals x t are circular to the 

econd-order [resp., rectilinear], where { y 1 , . . . , y t , . . . , y T } are as-

umed independent zero-mean C-CES [resp., NC-CES] identically 

istributed whose p.d.f. are given by (1) . 

The ML estimate of R y [resp., R ˜ y ] in this model is solution of 

he implicit equation: 

�y,T = 

1 

T 

T ∑ 

t=1 

ψ(y H t �
−1 
y,T ̃

 y t ) y t ̃  y H t , [ 

resp., � ˜ y ,T = 

1 

T 

T ∑ 

t=1 

ψ 

(
1 

2 

˜ y H t �
−1 
˜ y ,T ̃

 y t 

)
˜ y t ̃  y H t 

] 

, (10) 

here ψ(t) 
def = − 1 

g(t) 
dg(t) 

dt 
. Existence, uniqueness of the solution of 

10) and convergence in probability of the sequence �y,T to R y 

ave been proved in [28] . These properties have been extended in 

29] to the sequence � ˜ y ,T which converges in probability to R ˜ y . 

These estimates belong to the class of M-estimators of scat- 

er matrices introduced by Maronna [34] , where ψ(. ) does not 

eed to be related to the density generator of any particular C- 

ES/NC-CES distribution. Existence and uniqueness of the solution 

f (10) where ψ(. ) is replaced by a function u (. ) have been proved

n the real case, provided u (. ) satisfies a set of general conditions 

called Maronna conditions) stated in [34] . 

�y,T = 

1 

T 

T ∑ 

t=1 

u (y H t �
−1 
y,T ̃

 y t ) y t ̃  y H t , [ 

resp., � ˜ y ,T = 

1 

T 

T ∑ 

t=1 

u 

(
1 

2 

˜ y H t �
−1 
˜ y ,T ̃

 y t 

)
˜ y t ̃  y H t 

] 

, (11) 

hese conditions have been extended to the complex case in 

35] and [28] . These sequences denoted by �u 
y,T 

and �u 
˜ y ,T 

to spec- 

fy their dependence in u (. ) converge in probability to σu R y and 

u R ˜ y , respectively where σu given by [28, (46)] depends on u (. ) 

nd the C-CES [resp., NC-CES] distribution of y t [resp., ˜ y t ]. Note 

hat Tyler’s M-estimator [36] is also solution of (11) with the spe- 

ific weight u (t) = 

N 
t , does not satisfy Maronna conditions. It is a 

istribution-free estimator within the family of C-CES/NC-CES dis- 

ributions. However, it has been proved for real elliptically sym- 

etric (RES) distributions in [36] and for C-CES distributions in 

37] , then extended to NC-CES distributions in [29] , that after nor- 

alizing, the solutions �u 
y,T 

and �u 
˜ y ,T 

of (10) also converges in 

robability to σu R y and σu R ˜ y , respectively with σu = 1 . 

.4. MUSIC-like algorithms 

For the standard and robust distribution models, we consider 

he conventional MUSIC algorithm associated with R y,T and �u 
y,T 

, 

espectively. The DOAs estimated by this algorithm are given by 

he two smallest minima of the following so-called sample null 

pectra g 
Alg C 
T 

(θ ) and g 
Alg u 

C 
T 

(θ ) [38] : 

 

Alg C 
k,T 

= arg min 

θ
g Alg C 

T 
(θ ) and 

̂ θ
Alg u C 

k,T 
= arg min 

θ
g 

Alg u C 

T 
(θ ) , k = 1 , 2 , 

(12) 

ith 

 

Alg C 
T 

(θ ) 
def = a H (θ ) �T a (θ ) and g 

Alg u C 

T 
(θ ) 

def = a H (θ ) �u 
T a (θ ) , (13)

here �T and �u 
T 

denote the projector matrix associated with the 

oise subspace of R y,T and �u 
y,T 

, respectively. 
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Table 1 

Table 1 Different models and algorithms studied in this paper. 

Standard data model Robust distribution model 

Circular noise: C-CG or C-CES C (or NC)-CES distributed observations y t with scatter matrix: 

arbitrary sources rectilinear sources C-CES: R y = AR x A 
H + σ 2 

n I NC-CES: R ˜ y = ̃

 A R s ̃  A H + σ 2 
n I 

conventional MUSIC algorithm NC MUSIC algorithm conventional MUSIC algorithm NC MUSIC algorithm 

R y,T � −→ �T R ˜ y ,T � −→ ̃

 �T �u 
y,T � −→ �u 

T 
˜ �u 

˜ y ,T 
� −→ ̃

 �u 
T 
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In the specific case where x t is rectilinear, we consider for both 

odels, the NC MUSIC algorithm devised in [39] associated with 

 ˜ y ,T and �u 
˜ y ,T 

, respectively. The DOAs are also estimated by the two 

mallest minima of g 
Alg NC 
T 

(θ ) and g 
Alg u 

NC 
T 

(θ ) , respectively 

 

Alg NC 

k,T 
= arg min 

θ
g Alg NC 

T 
(θ ) and 

̂ θ
Alg u NC 

k,T 
= arg min 

θ
g 

Alg u NC 

T 
(θ ) , k = 1 , 2 

(14) 

ith 

g Alg NC 

T 
(θ ) 

def = 

(
a H (θ ) �1 ,T a (θ ) 

)2 −| a T (θ ) �∗
2 ,T a (θ ) | 2 and 

g 
Alg u NC 

T 
(θ ) 

def = 

(
a H (θ ) �u 

1 ,T a (θ ) 
)2 −| a T (θ ) �u ∗

2 ,T a (θ ) | 2 , (15) 

here �1 ,T and �2 ,T [resp., �u 
1 ,T 

and �u 
2 ,T 

] are Hermitian and 

omplex symmetric respectively, given by the projector matrices ˜ 

T and ˜ �u 
T 

structured as 

�1 , T �2 ,T 

�∗
2 ,T �∗

1 ,T 

)
and 

(
�u 

1 , T �u 
2 ,T 

�u ∗
2 ,T �u ∗

1 ,T 

)
ssociated with the noise subspace 2 of R ˜ y ,T and �u 

˜ y ,T 
, respectively. 

The following Table 1 summarizes the different models and al- 

orithms that are defined in this paper: 

.5. Statistical distributions of the SCM and M-estimators of 

ovariance matrices 

For deriving in Section 3.3 the resolving power of these MU- 

IC algorithms based on R y,T and R ˜ y ,T , we will need the covariance 

 r y 
def = E[( vec (R y,T ) − vec (R y ))( vec H (R y,T ) − vec (R y ))] and R r ˜ y 

def = 

[( vec (R ˜ y ,T ) − vec (R ˜ y ))( vec H (R ˜ y ,T ) − vec (R ˜ y ))] of these SCM. They 

re given in [31] and [40] , respectively, by 

 r y = 

1 

T 
[ (R 

∗
y � R y ) + K (C y � C 

∗
y ) + (A 

∗
� A ) Q x (A 

T 
� A 

H ) + Q n ] , (16) 

 r ˜ y 
= 

1 

T 
[(R 

∗
˜ y � R ˜ y ) + K (C ˜ y � C 

∗
˜ y ) + ( ̃  A 

∗
� ˜ A ) Q s ( ̃  A 

T 
� ˜ A 

H ) + Q ˜ n ] , (17) 

here Q x , Q s , Q n and Q ˜ n are the quadrivariance 3 of x t , s t , n t and
 

 t , respectively. For C-CES distributed noise Q n and Q ˜ n are given in 

31] and [29] , respectively by 

 n = σ 4 
n (η − 1)[ I + vec (I ) vec T (I )] , (18) 

 ˜ n = σ 4 
n (η − 1)[(I � I ) + K (J � J ) + vec (I ) vec T (I )] . (19) 

Similarly to the standard data model, we will need the co- 

ariance of �u 
y,T 

and �u 
˜ y ,T 

for deriving in Section 3.3 the resolv- 

ng power of the MUSIC algorithms based on these M-estimators. 

ut only their asymptotic distributions are available. Under these 
2 Similar to the projector matrix �T associated with R T from its EVD, the projec- 

or matrices ˜ �T and ˜ �u 
T are defined by the EVD of R ˜ y ,T and �u 

˜ y ,T 
, respectively, by 

ollecting the eigenvectors associated with their 2 N − 2 smallest eigenvalues. 

3 For example [ Q x ] i +2( j−1) ,k +2(l−1) = κi, j,k,l 
def = Cum (x ∗

t, j 
, x t,i , x t,l , x 

∗
t,k 

) , i, j, k, l ∈ { 1 , 2 } . 

w

[

δ

4 
aronna conditions, it has been proved for RES distributions 

41] and for C-CES distributions in [28,42] , then extended to 

C-CES distributions in [29] , that the sequences 
√ 

T ( vec (�u 
y,T 

) −
ec (σu R y )) and 

√ 

T ( vec (�u 
˜ y ,T 

) − vec (σu R ˜ y )) converge in distribu- 

ion to the zero mean Gaussian distribution N (0 , R �u 
y 
, C �u 

y 
) and

 (0 , R �u 
˜ y 
, C �u 

˜ y 
), respectively, where 

 �u 
y 

= ϑ 1 (R 

∗
y � R y ) + ϑ 2 vec (R y ) vec H (R y ) , (20) 

 �u 
˜ y 

= ϑ 1 ((R 

∗
˜ y � R ˜ y ) + K (C ˜ y � C 

∗
˜ y )) + ϑ 2 vec (R ˜ y ) vec H (R ˜ y ) (21) 

nd with C �u 
y 

= R �u 
y 

K and C �u 
˜ y 

= R �u 
˜ y 
K , where ϑ 1 and ϑ 2 are given

y [28, (4 8–4 9)] . 

. Resolving power of MUSIC-like algorithms 

.1. Review on the resolving power 

Based upon the assumption [6] that the standard deviation 

 

Var [ g 
Alg C 
T 

(θ )] of the sample null spectrum associated with the 

onventional MUSIC and Min-Norm algorithms for circular Gaus- 

ian signals is small compared to its mean value E[ g 
Alg C 
T 

(θ )] in the

icinity of the true DOAs, the mean value of the sample null spec- 

rum can be reasonably taken as representative of the ensemble of 

ample null spectra. We note that this assumption has been spec- 

fied in [43] , for which its validity has been proved in the condi- 

ions N � 1 and T � N for the conventional MUSIC algorithm. We 

uppose it is also valid for non-Gaussian signals and as well as for 

he NC MUSIC algorithm. Based on this assumption, we continue 

o use the Cox [4] and the Sharman and Durrani [5] criteria which 

espectively state that two closely spaced equal-power sources are 

esolved if the following respective conditions are satisfied: 

[ g Alg 
T 

(θ1 )] = E[ g Alg 
T 

(θ2 )] ≤ E[ g Alg 
T 

(θm 

)] (22) 

d 2 E[ g Alg 
T 

(θ )] 

dθ2 | θ= θm 

≤ 0 , for θm 

def = (θ1 + θ2 ) / 2 . (23) 

.2. Preliminary lemmas 

Approximations to the resolution threshold are deduced from 

qualities in (22) and (23) . Consequently, the key point to derive 

hese resolution thresholds depends on the expectation of the ran- 

om variables g 
Alg C 
T 

(θ ) and g 
Alg NC 
T 

(θ ) . To obtain these expectations, 

e resort to an analysis based on perturbations of the noise pro- 

ector [38] instead of those of the eigenvectors (e.g., [6,10] ). There- 

ore, we consider the following second-order expansion of δ�T 
def = 

T − � (where w.r.t. � denotes the projector matrix associated 

ith the noise subspace of R y ) w.r.t. δR y,T 
def = R y,T − R y proved in 

38] : 

�T = −(�δR y,T S 
# + S # δR y,T �) 

+ S # (δR y,T �δR y,T ) S 
# − �(δR y,T S 

#2 δR y,T ) �
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+ S # (δR y,T S 
# δR y,T ) �

+ �(δR y,T S 
# δR y,T ) S 

# − S #2 (δR y,T �δR y,T ) �

−�(δR y,T �δR y,T ) S 
#2 + o(δR 

2 
y,T ) . (24) 

his relation is also valid for the extended model (6) by replacing 

, �T , δ�T , δR y,T and S , by ˜ �, ˜ �T , δ
˜ �T , δR ˜ y ,T and 

˜ S , respec-

ively. It is also valid for the robust distribution model, by replacing 

δ�T , δR y,T ) and (δ˜ �T , δR ˜ y ,T ) , by (δ�u 
T 
, δR 

u 
y,T 

def = σ−1 
u δ�u 

y,T 
) and 

δ˜ �u 
T 
, δR 

u 
˜ y ,T 

def = σ−1 
u δ�u 

˜ y ,T 
) , respectively. 

To proceed, we need the expressions of E(δR y,T B 1 δR y,T ) and 

(δR ˜ y ,T B 2 δR ˜ y ,T ) for arbitrary N × N matrices B 1 and 2 N × 2 N ma-

rices B 2 , which are given by the following lemma proved in 

ppendix A : 

emma 1. For the standard data model, we have 

(δR y,T B 1 δR y,T ) = 

1 

T 

(
Tr (B 1 R y ) R y + C y B 

T 
1 C 

∗
y 

+ 

∑ 

i, j,k,l∈{ 1 , 2 } 
κi, j,k,l Ae j e 

T 
k A 

H B 1 Ae l e 
T 
i A 

H 

+ σ 4 
n (η − 1)[ B 1 + Tr (B 1 ) I ] 

)
, (25) 

(δR ˜ y ,T B 2 δR ˜ y ,T ) = 

1 

T 

(
Tr (B 2 R ˜ y ) R ˜ y + C ˜ y B 

T 
2 C 

∗
˜ y 

+ 

∑ 

i, j,k,l∈{ 1 , 2 } 
κi, j,k,l ̃

 A e j e 
T 
k ̃

 A 

H B 2 ̃
 A e l e 

T 
i ̃

 A 

H 

+ σ 4 
n (η − 1)[ B 2 + JB 

T 
2 J + Tr (B 2 ) I ] 

)
, (26) 

nd for the robust distribution model: 

(δR 

u 
y,T B 1 δR 

u 
y,T ) ≈

1 

T σ 2 
u 

(
ϑ 1 Tr (B 1 R y ) R y + ϑ 2 R y B 

T 
1 R y 

)
, (27) 

(δR 

u 
˜ y ,T B 2 δR 

u 
˜ y ,T ) ≈

1 

T σ 2 
u 

(
ϑ 1 Tr (B 2 R ˜ y ) R ˜ y + ϑ 1 C ˜ y B 

T 
2 C 

∗
˜ y + ϑ 2 R ˜ y B 2 R ˜ y 

)
.

(28)

Then using Lemma 1 with B 1 = �, S # and S #2 , then with B 2 =˜ , ̃  S # and 

˜ S #2 in the derivation of the mean of δ�T given in 

24) and the mean of δ˜ �T , we get after some algebraic manipu- 

ations based on the identities R y � = σ 2 
n �, �C y = 0 , S # � = 0 and

 ˜ y ̃
 � = σ 2 

n ̃
 �, J ̃  �T J = 

˜ �, J ̃  S # 
T 

J = ̃

 S # and J ̃  S #2 T J = ̃

 S #2 , the following

emma: 

emma 2. In the standard data and robust distribution models, the 

ean of δ�T and δ�u 
T 

are given respectively by 

(δ�T )≈ 1 

T 

(
Tr (�) U − Tr (U ) � + (η − 1) 

(
Tr (�) U 

′ − Tr (U 

′ 
) �

))
,

(29) 

(δ�u 
T ) ≈

ϑ 1 

T σ 2 
u 

( Tr (�) U − Tr (U ) �) , (30) 

ith U 

def = σ 2 
n S 

# R y S 
# and U 

′ def = σ 4 
n S 

#2 . 

For the two extended models, the mean of δ˜ �1 ,T , δ
˜ �2 ,T , δ

˜ �u 
1 ,T 

nd δ˜ �u 
2 ,T 

are given respectively by 

(δ�1 ,T ) ≈ 2 

T 
( Tr (�1 ) U 1 − Tr (U 1 ) �1 

+(η − 1) 
(
Tr (�1 ) U 

′ 
1 − Tr (U 

′ 
1 ) �1 

))
(31) 

(δ�2 ,T ) ≈ 2 

( Tr (�1 ) U 2 − Tr (U 1 ) �2 

T 

5 
+(η − 1) 
(
Tr (�1 ) U 

′ 
2 − Tr (U 

′ 
1 ) �2 

))
(32) 

(δ�u 
1 ,T ) ≈

2 ϑ 1 

T σ 2 
u 

( Tr (�1 ) U 1 − Tr (U 1 ) �1 ) , (33) 

(δ�u 
2 ,T ) ≈

2 ϑ 1 

T σ 2 
u 

( Tr (�1 ) U 2 − Tr (U 1 ) �2 ) , (34) 

here U 1 and U 2 , U 

′ 
1 and U 

′ 
2 , �1 and �2 are N × N sub- 

lock matrices of the 2 N × 2 N Hermitian positive semidefinite matri- 

es ˜ U 

def = σ 2 
n ̃

 S # R ˜ y ̃
 S # = 

(
U 1 U 2 

U 

∗
2 

U 

∗
1 

)
, ˜ U 

′ def = σ 4 
n ̃

 S #2 = 

(
U 

′ 
1 

U 

′ 
2 

U 

′ ∗
2 U 

′ ∗
1 

)
and 

˜ = 

(
�1 �2 

�∗
2 

�∗
1 

)
, respectively. 

Using (29) and (30) in (13) , allows us to straightforward derive 

he mean null spectra associated with the conventional MUSIC al- 

orithm based on the SCM, then on an M-estimate covariance of 

 t , which are given respectively by: 

(g Alg C 
T 

(θ )) ≈ g Alg C (θ ) + 

1 

T 

(
(N − 2) a H (θ ) Ua (θ ) − Tr (U ) g Alg C (θ ) 

+ (η − 1) 
(
(N − 2) a H (θ ) U 

′ 
a (θ ) − Tr (U 

′ 
) g Alg C (θ ) 

))
(35) 

(g 
Alg u C 

T 
(θ )) ≈ g Alg C (θ ) + 

ϑ 1 

T σ 2 
u 

(
(N − 2) a H (θ ) Ua (θ ) − Tr (U ) g Alg C (θ ) 

)
, 

(36) 

ith g Alg C (θ ) 
def = a H (θ ) �a (θ ) . 

For the NC MUSIC algorithm, the derivation of the mean null 

pectra is more involved, but using asymptotic distribution of �1 ,T , 

2 ,T , �
u 
1 ,T 

and �u 
2 ,T 

given in [29] , the mean null spectra for this 

lgorithm based on the SCM and then on an M-estimate covariance 

f ˜ y t are proved in Appendix B and given respectively by: 

(g Alg NC 

T 
(θ )) ≈ g Alg NC (θ ) 

+ 

2 

T 
(2 N − 3)[(a H (θ ) U 1 a (θ ))(a H (θ ) �1 a (θ )) 

− Re [(a H (θ ) U 2 a 
∗(θ ))(a T (θ ) �∗

2 a (θ ))]] 

+ 

2(η − 1) 

T 
(2 N − 3)[(a H (θ ) U 

′ 
1 a (θ ))(a H (θ ) �1 a (θ ))

− Re [(a H (θ ) U 

′ 
2 a 

∗(θ ))(a T (θ ) �∗
2 a (θ ))]] 

− 4 

T 
[ Tr (U 1 ) + (η − 1) Tr (U 

′ 
1 )] g Alg NC (θ ) (37) 

(g 
Alg u NC 

T 
(θ )) ≈ g Alg NC (θ ) 

+ 

2 ϑ 1 

T σ 2 
u 

(2 N − 3)[(a H (θ ) U 1 a (θ ))(a H (θ ) �1 a (θ )) 

− Re [(a H (θ ) U 2 a 
∗(θ ))(a T (θ ) �∗

2 a (θ ))]] 

− 4 ϑ 1 

T σ 2 
u 

Tr (U 1 ) g 
Alg NC (θ ) , (38) 

ith g Alg NC (θ ) 
def = 

(
a H (θ ) �1 a (θ ) 

)2 − | a T (θ ) �∗
2 
a (θ ) | 2 . 

We check that (35) and (37) reduce to [13, rel. (3.6)] and [13, 

el. (4.4)] , respectively, for circular Gaussian noise for which η = 1 . 

ikewise, (36) and (38) reduce to [13, rel. (3.6)] and [13, rel. (4.4)] , 

espectively, for Gaussian observations associated with the SCM for 

hich σu = ϑ 1 = 1 . 

Finally, note that all the results of this subsection apply to an 

rbitrary number K of sources necessarily equi-powered by replac- 

ng N − 2 by N − K in (35), (36) and 2 N − 3 by 2 N − K − 1 in (37),

38) . 
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Table 2 

Parameters δ1 , δ2 and δ3 . 

Cox criteria δ1 = 2 

Sherman and Durrani criteria δ1 = 1 

Standard data model (δ2 , δ3 ) = (1 , η) 

Robust distribution model (δ2 , δ3 ) = (ϑ 1 /σ 2 
u , 1) 

w

a

s

�

a

α

F

N

l

�  

C  

t

f  

b

s

a

t

p

R

S

r

t

a

c

f

e

ξ

w

(

β

.3. Derivation of the threshold ASNR 

First, we note that mean null spectra associated with the 

tandard data model (35) and (37) reduce to those of the ro- 

ust distribution model (36) and (38) if η = 1 and T replaced by 

 σ 2 
u /ϑ 1 . Consequently, the threshold ASNR for the robust distri- 

ution model is directly deduced form those of the standard data 

odel. Let us start with the derivation of the threshold ASNR given 

y the Cox (22) and the Sharman and Durrani (23) criteria, ap- 

lied to the conventional MUSIC algorithm for the standard data 

odel. To obtain these threshold ASNRs, we must get closed-form 

xpressions of a H (θ ) Ua (θ ) , a H (θ ) U 

′ a (θ ) and a H (θ ) �a (θ ) in (35) .

o simplify notations and to make the calculations of these ex- 

ressions easier, we derive in Appendix C , the matrices �, U and 

 

′ for only centrosymmetric arrays where the coordinate system 

as its origin at the centroid of the arrays. 4 Plugging their expres- 

ions in (35) and using symbolic calculus akin to a high level lan- 

uage, the terms E(g 
Alg C 
T 

(θ1 )) , E(g 
Alg C 
T 

(θm 

)) and 

d 2 E[ g 
Alg C 
T 

(θ )] 

dθ2 | θ= θm 
of 

he Cox and the Sharman and Durrani criteria, can be written in 

he following form: 

(g Alg C 
T 

(θ1 )) ≈ 1 

T 

[ 
1 

r 
h 1 , 1 + 

1 

r 2 
h 2 , 1 

] 
(39) 

(g Alg C 
T 

(θm 

)) ≈ g Alg C (θm 

) + 

1 

T 

[ 
1 

r 
h 1 ,m 

+ 

1 

r 2 
h 2 ,m 

] 
(40) 

d 2 E[ g Alg C 
T 

(θ )] 

dθ2 | θ= θm 

≈ d 2 g Alg C (θ ) 

dθ2 | θ= θm 

+ 

1 

T 

[ 
1 

r 
h 

′ 
1 ,m 

+ 

1 

r 2 
h 

′ 
2 ,m 

] 
, (41) 

here r 
def = Nσ 2 

x /σ
2 
n and the terms h 1 , 1 , h 2 , 1 , h 1 ,m 

, h 2 ,m 

h ′ 1 ,m 

and 

 

′ 
2 ,m 

given in C.1 for arbitrary centrosymmetric arrays are functions 

f the real-valued geometric terms a H 
1 

a 2 , a H 
1 

a m 

, a 
′ H 
m 

a 1 and a 
′′ H 
m 

a 1 .

sing expansions of these terms with respect to δθ
def = θ2 − θ1 ac- 

ording to the parameterization of [10] for closely-spaced sources 

llow us to prove the following result: 

esult 1. The threshold ASNRs deduced from the Cox (22) and 

he Sharman and Durrani (23) criteria given by the conventional 

USIC algorithm (12) for both standard data ( Section 2.2 ) and ro- 

ust distribution ( Section 2.3 ) models with two correlated equal- 

ower sources and an arbitrary centrosymmetric array are given 

or closely-spaced sources and a large number T of snapshots, by 

he following approximations: 

C −MUSIC ≈ δ1 δ2 

T 

(
1 + Re (ρ) 

1 − | ρ| 2 
)

αN 

(�θ ) 4 

( 

1 + 

√ 

1 + 

δ3 T 

δ1 δ2 

(�θ ) 2 

βN 

) 

, 

(42) 

here �θ denotes the measure 5 of the angular separation be- 

ween the two sources defined by [10, rel. (8)] and where the pa- 

ameters δ1 , δ2 and δ3 are defined in Table 2 . 

In the specific case of ULA associated with the symmetric steer- 

ng vectors 

 (θ ) = 

(
e −i (N−1) θ

2 , e −i (N−3) θ
2 , ., e i 

(N−3) θ
2 , e i 

(N−1) θ
2 

)T 

, (43) 
4 We note that this structure is very used in practice because uniform linear, 

niform circular and regular hexagonal shaped arrays [44] , cross-based centro- 

ymmetric arrays, square-based centro-symmetric array are centrosymmetric. 

5 This measure is defined by (�θ ) 2 
def = 

(2 π) 2 

λ2 N 2 

∑ N 
n =1 [ r 

T 
n (s 1 − s 2 )] 2 , where r n , s 1 and 

 2 denote vectors pointing from the centroid of the array to the n th sensor and to 

he two sources, and λ is the wavelength. 

W

m

t  

δ
(  

(

6 
here the coordinate system has its origin at the centroid of the 

rray, this measure of angular separation �θ for closely-spaced 

ources is given by 

θ ≈ Nδθ cos θm 

/ (2 

√ 

3 ) where θm 

def = 

1 

2 

(θ1 + θ2 ) (44) 

nd αN and βN are given by: 

N = 

10 N 

4 cos 4 θm 

(N 

2 − 1)(N + 2) 
and βN = 

5 N 

2 cos 2 θm 

2(N + 2) 
. 

or the NC MUSIC algorithm, the derivation of the threshold AS- 

Rs given by the Cox and the Sharman and Durrani criteria fol- 

ows the same steps. Closed-form expressions of the blocks �1 , 

2 , U 1 , U 2 and U 

′ 
1 , U 

′ 
2 of ˜ �, ˜ U and 

˜ U 

′ , respectively, are derived in

.1 and Appendix D . Note that the expression [ a T 
k 

e iφk , a H 
k 

e −iφk ] T of

he extended steering vectors allows for simpler calculations than 

or the expression [ a T 
k 
, a H 

k 
e −i 2 φk ] T used in the literature. Using sym-

olic calculus, (39), (40) and (41) can also be derived for the mean 

pectrum E[ g 
Alg NC 
T 

(θ )] where now h 1 , 1 , h 2 , 1 , h 1 ,m 

, h 2 ,m 

h ′ 
1 ,m 

and h ′ 
2 ,m 

re functions of both �θ and �φ. Using expansion of these spatial 

erms with respect to �θ for closely-spaced sources allow us to 

rove the following result: 

esult 2. The threshold ASNRs deduced from the Cox (22) and the 

harman and Durrani (23) criteria given by the NC MUSIC algo- 

ithm (14) for both standard data ( Section 2.2 ) and robust distribu- 

ion ( Section 2.3 ) models with two correlated equal-power sources 

nd an arbitrary centrosymmetric array are respectively given for 

losely-spaced sources and a large number T of snapshots, by the 

ollowing approximations: 

ξNC −MUSIC ≈ δ1 δ2 

T 

(
1 + ρ ′ cos (�φ) 

(1 −ρ ′ 2 ) sin 

2 (�φ) 

)
γN 

(�θ ) 2 

×

⎛ ⎝ 1 + 

√ √ √ √ 1 + 

δ3 T 

δ1 δ2 

(�θ ) 2 

γN 

[ 

1 + 

(
ρ ′ + cos (�φ) 

1 + ρ ′ cos (�φ) 

)2 
] 

⎞ ⎠ , (45) 

xcept for ”very small” �φ mod π for which: 

NC −MUSIC ≈ δ1 δ2 

T 

(
1 

1 −ρ ′ 
)

αN 

(�θ ) 4 

( 

1 + 

√ 

1+ 

δ3 T 

δ1 δ2 

(�θ ) 2 

βN 

) 

, (46) 

here δ1 , δ2 and δ3 are defined in Table 2. 

In the specific case of ULA whose steering vector given by 

43) and where �θ is defined by (44) , we have 

γN = 

N 

2 (2 N − 3) cos 2 θm 

N 

2 − 1 

, αN = 

5 N 

4 (2 N − 3) cos 4 θm 

(N 

2 − 1)(N 

2 − 4) 
and 

N = 

5 N 

2 (2 N − 3) cos 2 θm 

N 

2 − 4 

. 

e note that for Gaussian distributed noise in the standard data 

odel for which η = 1 and Gaussian distributed observations in 

he robust distribution model for which ϑ 1 = σu = 1 , we have δ2 =
3 = 1 in (42), (45) and (46) , In this case, for uncorrelated sources 

 ρ = ρ′ = 0 ), the threshold ASNRs (42), (45) and (46) reduce to [13,

3.7)(3.8)] , [13, (4.5)(4.6)(4.8)] and [13, (4.5)(4.6)(4.7)] , respectively. 
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.4. General comments 

This section attempts to explain the influence of the signal and 

oise parameters on the ASNR thresholds in Results 1 and 2 . 

.4.1. Influence of the non-Gaussianity of the noise and observations 

In the standard data model for which δ2 = 1 and δ3 = η, the 

on-Gaussianity of the noise can strongly impact the threshold 

SNR. This is particularly the case of the C-CCG noise distribu- 

ions [28] including the circular complex Student t and general- 

zed Gaussian distributions, for which η > 1 where η is very large 

or heavy-tailed distributions. Thus for these distributions, the re- 

uired ASNR to resolve closely-spaced sources can be very large, as 

t will be illustrated in Section 4 . 

In the robust distribution model for which δ2 = ϑ 1 /σ
2 
u and 

3 = 1 , the non-Gaussianity of the observation impacts the thresh- 

ld ASNR through the equivalent number T /δ2 = σ 2 
u T /ϑ 1 of snap- 

hots. For ML estimates of R y and R ˜ y , σu = 1 and ϑ 1 is close to

 for many heavy-tailed CES distributions. Likewise, for the Tyler’s 

-estimate, ϑ 1 = (N + 1) /N [37] . Consequently, the threshold AS- 

Rs (42), (45) and (46) required for heavy-tailed CES distributions 

re very similar to those obtained in the case of Gaussian distri- 

utions. In contrast if the SCM have been used to estimate R y and 

 ˜ y , u (t) = 1 gives σu = 1 and ϑ 1 = η and the equivalent number

 /δ2 = T /η of snapshots is dramatically reduced for heavy-tailed 

istributions and thus, the required ASNR to resolve closely-spaced 

ources would be very large. 

.4.2. Influence of the correlation (magnitude and phase) for the 

onventional MUSIC algorithm 

The threshold ASNR (42) is a function of the magnitude of the 

orrelation of sources, but also of its phase. Note that many perfor- 

ance analysis of the conventional MUSIC algorithm seem to have 

lways assumed that the correlation phase is zero or 180 ◦ (e.g., 

n [45] ). Whereas, it is known [46] that the correlation phase has 

 strong effect on the associated Cramér-Rao bound under certain 

onditions (small aperture arrays, large correlation magnitude and 

losely-spaced sources). 

As expected, the threshold ASNR generally increases strongly 

s the magnitude of the correlation approaches one for which 

he sources are coherent. In this case, the signal subspace is one- 

imensional and the conventional MUSIC algorithm fails. More pre- 

isely, the relevant correlation term in (42) satisfies the following 

roperty: 

1 + Re (ρ) 

1 − | ρ| 2 | ∠ ρ � = π = 

1 + | ρ| cos (∠ ρ) 

1 − | ρ| 2 | ∠ ρ � = π −−−−→ | ρ|→ +1 
+ ∞ 

1 + Re (ρ) 

1 − | ρ| 2 | ∠ ρ= π = 

1 

1 + | ρ| −−−−→ | ρ|→ +1 
1 / 2 . (47) 

n this latter case the threshold ASNR reaches half the value for 

ncorrelated sources. This singular case occurs when the distance 

 | x t, 1 − x t, 2 | 2 reaches its maximum. 

However, for a fixed magnitude correlation, the phase correla- 

ion can also strongly impact the threshold ASNR. We can clearly 

bserve that the threshold ASNR (42) is maximal [resp., minimal] 

or ∠ ρ = 0 [resp., ∠ ρ = π ] where the term 

1+ Re (ρ) 

1 −| ρ| 2 of (42) takes

he value 1 
1 −| ρ| and 

1 
1+ | ρ| , respectively. We can deduce that for 

 ρ = π , two correlated sources are better resolved than uncorre- 

ated sources with the conventional MUSIC algorithm. 

.4.3. Influence of the correlation and phase separation of rectilinear 

ources for the NC MUSIC algorithm 

It can also be seen, comparing (45) to (42) , that the NC MUSIC

lgorithm always largely outperforms the conventional MUSIC al- 

orithm used for rectilinear sources, due to the proportionality of 

NC −MUSIC and ξC −MUSIC to 1 / (�θ ) 2 and 1 / (�θ ) 4 , respectively. 
7 
In contrast, for very weak �φ (mod π ), the behavior of the 

onventional and NC MUSIC algorithms are similar due to the sim- 

larity of the dependence in (�θ ) 4 in (42) and (46) . The weak �φ
mod π ) correspond to the worst resolution capability of the NC 

USIC algorithm. Consequently, the phase separation �φ plays a 

rucial role from the resolution point of view for any distribution 

f noise and observations. 

For uncorrelated sources ( ρ′ = 0 ), (45) clearly shows that the 

hreshold ASNR deduced from the Cox and the Sharman and Dur- 

ani criteria given by the NC MUSIC algorithm is minimum for 

φ = π/ 2 . Furthermore (45) shows that ξNC −MUSIC is a symmet- 

ic function of �φ with respect to π/ 2 . This property is consis- 

ent with the asymptotic variance of the NC MUSIC DOA estima- 

ion algorithm, which has been observed numerically minimal for 

φ = π/ 2 [47] . 

For correlated sources, the role of �φ in (45) is more compli- 

ated to analyze. However, noting that for ρ ′ > 0 , 1+ ρ′ cos (�φ) 

(1−ρ′ 2 ) sin 2 (�φ) 

nd 

(
ρ′ + cos (�φ) 
1+ρ′ cos (�φ) 

)2 

are decreasing functions of �φ in [0 , π ] and 

0 , �φ0 ] , respectively (where �φ0 is solution of ρ′ + cos (�φ0 ) = 

 ), the threshold ASNR (45) is minimum for �φ = �φ1 > �φ0 > 

/ 2 , where �φ1 increases as ρ′ increases. With the same ap- 

roach, for ρ′ < 0 , the threshold ASNR is minimum for �φ = 

φ1 < �φ0 < π/ 2 , where �φ1 decreases as ρ′ decreases. This de- 

endence of ξNC −MUSIC to �φ for different values of ρ′ will be il- 

ustrated in Fig. 5 in Section 4 . Furthermore, we note that for �φ = 

/ 2 , 1+ ρ′ cos (�φ) 

(1−ρ′ 2 ) sin 2 (�φ) 
= 

1 
1−ρ′ 2 and 

(
ρ′ + cos (�φ) 
1+ρ′ cos (�φ) 

)2 

= ρ′ 2 , and therefore 

he threshold ASNR does depend on the sign of ρ ′ ∈ (−1 , +1) . 

Note also that the threshold ASNR associated with NC MUSIC 

lgorithm generally increases strongly as the magnitude of the cor- 

elation approaches one because 1+ ρ′ cos (�φ) 

(1 −ρ′ 2 ) sin 2 (�φ) 
→ + ∞ for �φ � = 0 

nd ρ′ → ±1 in (45) and 

1 
1−ρ′ → + ∞ for �φ = 0 and ρ′ → +1 in

46) . However, 1 
1−ρ′ → 1 / 2 for �φ = 0 and ρ′ → −1 in (46) , which 

s consistent with the singular case of the conventional MUSIC al- 

orithm, whose performances are similar for �φ = 0 . 

.4.4. Fluctuation of the correlation phase 

Finally note that the phase of the correlation ρ of the sources 

or the conventional MUSIC algorithm (which corresponds to �φ
or rectilinear sources, see (9) ) is a highly variable and unpre- 

ictable parameter in a multipath environment for which it is 

ery sensitive to the difference between the propagation delays in 

he direct and secondary paths. Consequently, the threshold ASNRs 

ay vary significantly from time to time and thus the resolution 

erformance are rather given by the mean of the threshold ASNRs 

ith respect to the correlation phase. For the conventional MUSIC 

lgorithm, (42) gives: 

(ξC −MUSIC ) ≈ δ1 δ2 

T 

(
1 

1 − | ρ| 2 
)

αN 

( �θ) 4 

( 

1 + 

√ 

1 + 

δ3 T 

δ1 δ2 

(�θ ) 2 

βN 

) 

, 

(48) 

hich also clearly increases with the magnitude of the correlation. 

or the NC MUSIC algorithm, the expression of mean of the thresh- 

ld ASNRs (45) (46) which is not reachable will be illustrated in 

ection 4 . 

. Illustrative examples 

This section illustrates the dependence of the threshold ASNR 

iven by Results 1 and 2 on the non-Gaussianity of the noise and 

bservations, and the phase and magnitude of the correlation of 

he complex circular and rectilinear sources by considering two 
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Fig. 1. Threshold ASNRs (42) (45) given by the Cox criterion and the Sharman and Durrani criterion as a function of the parameter ν associated with the conventional MUSIC 

and NC MUSIC algorithms for circular complex Student t-distributed noise. 

Fig. 2. Ratio r 1 = ξC −MUSIC | | ρ| /ξC −MUSIC | | ρ| =0 given by the Cox criterion (42) for the conventional MUSIC algorithm with �θ = 0 . 05 rd as a function of the angle (a) and 

magnitude (b) of the correlation. 
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llustration parts corresponding to the standard data and robust 

istribution models. Let us assume that two narrowband equal- 

ower rectilinear correlated signal sources with power σ 2 
x impinge 

n a uniform linear array of N = 10 sensors separated by a half-

avelength for which the steering vectors are a (θk ) is given by 

43) where θk = π sin (ω k ) , k = 1 , 2 , with ω k is the DOAs relative

o the normal of array broadside. The phases φk , k = 1 , 2 associated

ith different propagation delays are assumed fixed, but unknown 

uring the array observation and the threshold ASNR depends only 

n �φ
def = φ1 − φ2 . The SNR is defined as 10 log 10 (σ

2 
x /σ

2 
n ) dB. 

.1. Standard data model 

In the first experiment, the noise n t is either circular com- 

lex Student t-distributed with parameter ν > 4 to have finite 

ourth-order moment for which η = 

ν−2 
ν−4 > 1 , which has heavier 

ails than the Gaussian, or C-CG distributed (with η = 1 obtained 

lso for ν → ∞ ). We suppose the sources in model (5) consist of

wo multipaths issued from two independent BPSK modulated sig- 

als e t, 1 and e t, 2 , for which we have s t, 1 = e t, 1 and s t, 2 = ρ′ e t, 1 +
8 
 

1 − ρ ′ 2 e t, 2 with ρ′ ∈ (−1 , +1) . The two sources x t, 1 and x t, 2 are

hus equal-powered with correlation ρ = ρ ′ e i �φ . 

.1.1. Influence of the non-Gaussianity of the noise 

Figs. 1 a and 1b exhibit the threshold ASNRs given by the Cox 

riterion and the Sharman and Durrani criterion as a function of 

he shape parameter ν for circular complex Student’s t-distributed 

oise associated with the conventional MUSIC and NC MUSIC algo- 

ithms for uncorrelated sources. These figures show that the non- 

aussianity of the noise strongly impacts the threshold ASNR for 

arge heavy-tailed distributions, i.e., when ν approaches 4. We also 

ote that the threshold ASNR loss is of the order of 2dB when 

he C-CG distributed noise becomes circular complex Student’s t- 

istributed for ν = 4 . 1 . Furthermore, these figures confirm that the 

C MUSIC algorithm greatly outperforms the conventional MUSIC 

lgorithm for large phase separations. 

.1.2. Influence of the correlation (magnitude and phase) for the 

onventional MUSIC algorithm with C-CG noise 

Fig. 2 a and b show the crucial role played by the phase of 

he correlation. One can see that the resolution threshold ASNR 
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Fig. 3. Threshold ASNR given by the Cox criterion (45) for the NC MUSIC algorithm with C-CG distributed noise as a function of the noncircularity phase separation �φ for 

�θ = 0 . 05 rd for negative (a) and positive (b) values of ρ ′ as shown in (8) . 
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Fig. 4. Threshold ASNR given by the Cox criterion (45) for the NC MUSIC algorithm 

with C-CG distributed noise as a function of ρ ′ for �φ = π/ 2 . 
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f the conventional MUSIC algorithm is minimal [resp. maximal] 

or the phase of correlation ∠ ρ = π [resp., ∠ ρ = 0 ] as predicted by

.4.2 . Fig. 2 a shows that there is a resolution gain of 3dB when the

ources are practically in phase opposition ( ∠ ρ ≈ π ) compared to 

ncorrelated sources. We also naturally see a severe degradation 

or a large magnitude of the correlation (13dB for | ρ| = 0 . 95 ) for

 zero phase with respect to uncorrelated sources. Fig. 2 b shows 

he threshold ASNR loss ratio r 1 = ξC −MUSIC | | ρ| /ξC −MUSIC | | ρ| =0 varies 

ith respect to | ρ| in 

1 
1 −| ρ| and 

1 
1+ | ρ| , for respectively ∠ ρ = 0 and

 ρ = π as depicted by 3.4.2 . 

.1.3. Influence of the correlation (magnitude and phase) for the NC 

USIC algorithm with C-CG noise 

Fig. 3 illustrates that the threshold ASNR given for the NC MU- 

IC algorithm is maximum for �φ = 0 rd mod π , but only mini- 

um when �φ = π/ 2 rd for uncorrelated sources. For correlated 

ources, the threshold ASNR is minimum for �φ1 > π/ 2 for ρ′ > 0 

nd for �φ1 < π/ 2 for ρ′ < 0 and this value of �φ1 deviates from

/ 2 when | ρ′ | increases, as depicted by 3.4.3 . 

Fig. 4 shows that the threshold ASNR of the NC MUSIC algo- 

ithm with the particular value �φ = π/ 2 does not depend on the 

ign of ρ′ as depicted by 3.4.3 and naturally increases when �θ
ecreases. 

.1.4. Mean of the threshold ASNRs with respect to the correlation 

hase 

Fig. 5 a and b represent the mean of the threshold ASNR with 

espect to the correlation phase given by the Cox criterion for the 

onventional MUSIC and NC MUSIC algorithms, respectively, with 

-CG distributed noise, as a function of the magnitude of the cor- 

elation. This mean is derived from (48) for the conventional MU- 

IC algorithm and by averaging 12,0 0 0 realizations for both con- 

entional MUSIC and NC MUSIC algorithms. Fig. 5 a shows that the 

pproximate value of the threshold ASNR given by the closed-form 

xpressions (48) is very close to the mean derived from (39) and 

40) . We clearly see a great degradation in resolution for correlated 

ources compared to uncorrelated sources (about 7dB for | ρ| = 0 . 9

or both algorithms). This figure also shows the advantage of us- 

ng the NC MUSIC algorithm rather than the conventional MUSIC 

lgorithm for rectilinear sources. 
9 
.2. Robust distribution model 

In this second experiment, we assume that the observations 

 t follow either a circular or a NC complex Student t-distribution 

ith parameter ν > 4 , with associated structured covariance R y 

iven by (3) , or extended covariance R ˜ y given by (7) , respectively. 

hese robust distribution models can be considered as second- 

rder approximative models of the actual ones. 

We consider here three estimates of covariance and extended 

ovariance based on the circular or NC complex Student t- 

istribution: the complex Student’s ML, M-estimator and the com- 

lex Tyler’s M-estimator for which the associated weight functions 

(t) and u (t) are respectively defined in [28] by ψ(t) = 

2 N+ ν
ν+2 t and 

 (t) = 

N 
t . The SCM estimator corresponding to the ML in the Gaus- 

ian case is obtained with u (t) = 1 . The parameters ϑ 1 and σu of

his complex Student t-distribution are also given by ϑ 1 = 

N+ ν/ 2+1 
N+ ν/ 2 

nd σu = 1 for ML M-estimator, ϑ 1 = 

N+1 
N and σu = 1 for Tyler’s 

-estimate and by ϑ 1 = η = 

ν−2 
ν−4 and σu = 1 for the SCM [30] . 
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Fig. 5. Mean of the threshold ASNR with respect to the correlation phase given by the Cox criterion (42),(45) for the conventional MUSIC algorithm (a) and NC MUSIC 

algorithm (b) with C-CG distributed noise, as a function of the magnitude of the correlation. 

Fig. 6. Threshold ASNRs (42), (45) given by the Cox criterion for circular [resp., NC] complex Student t-distributed observations with ν = 4 . 1 associated with the conventional 

[resp., NC] MUSIC algorithms, based on ML M-estimate, Tyler’s M-estimate and SCM of the covariance [resp., extended sample covariance], as function of �θ , with �φ = π/ 6 . 

Fig. 7. Probability of resolution as function of the ASNR for NC complex Student’ t-distributed observation models with ν = 4 . 1 , ρ ′ = 0 . 95 and �θ = 0 . 2 rd; given by the Cox 

and the Sharman and Durrani criteria associated with the NC MUSIC algorithm for two values of �φ. 

10 
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Fig. 6 exhibits the threshold ASNRs given by the Cox criterion 

or circular [resp., NC] complex Student t-distributed observations 

ssociated with the conventional [resp., NC] MUSIC algorithms, 

ased on ML M-estimate, Tyler’s M-estimate and SCM of the co- 

ariance [resp., extended covariance], as a function of �θ . We see 

hat for heavy-tailed distributions ( ν = 4 . 1 ), the threshold ASNRs 

rovided by Tyler’s M-estimate reaches that of the ML M-estimate 

nd outperforms those of the SCM by about 10dB. Furthermore, 

aturally, the NC MUSIC algorithm applied to rectilinear sources 

utperforms the conventional MUSIC algorithm applied to circu- 

ar sources, associated with the same structured covariance R y (3) . 

ig. 7 shows estimation of probability of resolution related to the 

ox and to the Sharman and Durrani criteria for NC complex Stu- 

ent t-distributed observation models (with ν = 4 . 1 ) obtained by 

onte Carlo simulations 6 for highly correlated sources ( ρ ′ = 0 . 95 ) 

nd �θ = 0 . 2 rd. 10 0 0 independent Monte Carlo runs have been

erformed where the number of snapshots is fixed at T = 500 . We 

ee that the ASNR threshold given by our non-probabilistic ap- 

roach based on the mean null spectrum g T (θ ) confirms the re- 

ults of Fig. 6 . 

. Conclusion 

In this paper, we have derived interpretable unified closed-form 

xpressions for the threshold ASNR along the Cox and the Sharman 

nd Durrani criteria associated with the conventional MUSIC and 

C MUSIC algorithms in the context of arbitrary circular or recti- 

inear distributed correlated sources and circular CES distributed 

oise, as well as of C-CES and NC-CES distributed observations. 

sing these expressions, we investigated the impact of the non- 

aussianity of the noise and observations, as well as of the phase 

nd magnitude of the correlation of the sources. In particular, we 

roved for the first time that the phase of the correlation, which 

s the non-circularity phase separation for rectilinear sources, may 

ave a strong impact on the resolution and a zero phase may lead 

o overly optimistic resolution. Otherwise, we quantified the reso- 

ution benefit provided when the SCM is replaced by M-estimates 

f the covariance matrix for CES observations. 
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ppendix A. Proof of Lemma 1 

We will make use of the following relations proved in [48, 

hp.16] which hold for any conformable matrices A , B , C , and D
6 In each simulation trial, the two sources are considered resolved for the 

harman and Durrani criterion if g Alg NC 

T 
(θm + 0 . 002 �θ) + g Alg NC 

T 
(θm − 0 . 002 �θ) −

 g Alg NC 

T 
(θm ) < 0 . 

P

(

11 
nd vectors a and b . 

ec (ABC ) = (C 

T 
� A ) vec (B ) , (49) 

A � B )(C � D ) = AC � BD , (50) 

ec (ab 

T ) = b � a , (51) 

r (AB ) = vec T (A 

T ) vec (B ) , (52) 

 (A � B ) = (B � A ) K , (53) 

ec (A � B ) = (I � K � I )[ vec (A ) � vec (B )] , (54)

I � K � I ) vec (K ) = vec (K ) . (55) 

et us first consider the standard data model and start to prove 

25) . Using the vectorization operator, it follows form (49) that 

ec [E(δR y,T B 1 δR y,T )] = E(δR 

T 
y,T � δR y,T ) vec (B 1 ) , (56) 

ith δR y,T 
def = R y,T − R y gives after straightforward manipulations 

(δR 

T 
y,T � δR y,T ) = 

1 

T 

(
E(y ∗t y 

T 
t � y t y 

H 
t ) − R 

T 
y � R y 

)
= 

1 

T 

(
E[ vec (y t y 

H 
t ) vec H (y t y 

H 
t )] − R 

T 
y � R y 

)
= 

1 

T 

(
T R r y + vec (R y ) vec H (R y ) − R 

T 
y � R y 

)
, (57) 

here (50) and (51) is used in the second equality and where R r y 

s also the covariance of the random vector 1 √ 

T 
vec (y t y 

H 
t ) . Using its

xpression in (16) and (18) , we get 

(δR 

T 
y,T � δR y,T ) = 

1 

T 

(
vec (R y ) vec H (R y ) + K (C y � C 

∗
y ) 

+ (A 

∗
� A ) Q x (A 

T 
� A 

H ) 

+ σ 4 
n (η − 1)[ I + vec (I ) vec T (I )] 

)
. (58) 

lugging (58) into (56) and using (49), (52) and (53), (25) is 

roved. The proof of (26) follows the same steps as the proof of 

25) using (17) and (19) . 

Consider now the robust distribution model and let us start to 

rove (27) for the conventional MUSIC algorithm. From the asymp- 

otic distribution of R 

u 
y,T 

def = σ−1 
u �u 

y,T 
, we deduce that 

[ vec (δR 

u 
y,T ) vec H (δR 

u 
y,T )] ≈ 1 

T σ 2 
u 

R �u 
y 
, (59) 

or large enough T , where R �u 
y 

is given by (20) . By vectorization of

59) and using (51) , we get 

E[ vec (δR 

u 
y,T 

T 
) � vec (δR 

u 
y,T )] 

≈ 1 

T σ 2 
u 

[
ϑ 1 vec (R 

∗
y � R y ) + ϑ 2 vec (R 

∗
y ) � vec (R y ) 

]
. (60) 

sing (54) , we deduce that (60) is equivalent to 

(δR 

u 
y,T 

T 
� δR 

u 
y,T ) ≈

1 

T σ 2 
u 

[
ϑ 1 vec (R y ) vec H (R y ) + ϑ 2 (R 

∗
y � R y ) 

]
. 

(61) 

lugging (61) into (56) where δR y,T is replaced by δR 

u 
y,T 

and using 

49) and (52), (27) is proved. 
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e way, where (60) yields 

E C 

∗
˜ y )) } + ϑ 2 vec (R 

∗
˜ y ) � vec (R ˜ y ) 

]
. (62) 

B tation matrix K comes into (62) . To exclude it, we premultiply to the 

l

v ec (K (C ˜ y � C 

∗
˜ y )) } + ϑ 2 vec (R 

∗
˜ y � R ˜ y ) 

]
. (63) 

W (55) , that (I � K � I ) vec (K (C ˜ y � C 

∗
˜ y 
)) = vec (K (C ˜ y � C 

∗
˜ y 
)) . It follows from 

( ) is equivalent to 

E  2 (R 

∗
˜ y � R ˜ y ) 

]
. (64) 

P . 

A

 

a (θ ) a H (θ ) and N 

def = a (θ ) a T (θ ) for which we have: 

g

w

E

 (�∗
2 N ) ) 

 ,T N 

∗) 
]
. (65) 

T ich gives from Tr [ ̃  �) = 2 Tr [ �1 ) = 2 N − 2 where a 
def = a (θ ) (for sake of 

b

, 

T

] 
)
. 

I ven by 

2 1 a 
)2 + ( η − 1 ) 

[ 
( 2 N − 2 ) 

(
a H U 

’ 

1 a 
)(

a H �1 a 
)

− 2 Tr 
(
U 

’ 

1 

)(
a H �1 a 

)2 
] )

, 

(66) 

2 ) 
)

− 2 Tr (U 1 ) | a H �2 a 
∗| 2 ), 

∗
2 a )) −2 Tr (U 

′ 
1 ) | a H �2 a 

∗| 2 ] ). (67) 

T

E ) 
)
vec (M ) 

(68) 

E vec (N 

∗) 

(69) 

w ptotic distribution of �1 ,T and �2 ,T , respectively, deduced from the 

c from [47] by: 

C
 

(
( ̃  �∗

� ˜ U 

′ 
) + ( ̃  U 

′ ∗
� ˜ �) 

)
, 

t

C
 

)]
U 

’ 

2 � �∗
2 

)])
, 

C

The proof of (28) for the NC MUSIC algorithm begins in the sam

[ vec (δR 

u 
˜ y ,T 

T 
) � vec (δR 

u 
˜ y ,T )] ≈ 1 

T σ 2 
u 

[
ϑ 1 { vec (R 

∗
˜ y � R ˜ y ) + vec (K (C ˜ y �

ut now the rest of the proof is more complex because the permu

eft (62) by I � K � I , and thanks to (54) , we obtain 

ec [E(δR 

u 
˜ y ,T 

T 
� δR 

u 
˜ y ,T )]≈ 1 

T σ 2 
u 

[
ϑ 1 { vec (R 

∗
˜ y ) � vec (R ˜ y ) + (I � K � I ) v

e then prove after some algebraic manipulations, using (49) and 

51) that vec (R 

∗
˜ y 
) � vec (R ˜ y ) = vec [ vec (R ˜ y ) vec T (R 

T 
˜ y 
)] , and hence (63

(δR 

u 
˜ y ,T 

T 
� δR 

u 
˜ y ,T ) ≈

1 

T σ 2 
u 

[
ϑ 1 { vec (R ˜ y ) vec T (R 

T 
˜ y ) + K (C ˜ y � C 

∗
˜ y ) } + ϑ

lugging (64) into (56) and using (49), (52) and (53), (28) is proved

ppendix B. Proof of relations (37) and (38) 

To simplify the derivation of E(g 
Alg NC 
T 

(θ )) , let us introduce M 

def= 

 

Alg NC 

T 
(θ ) = Tr (�1 ,T M ) Tr (�1 ,T M ) − Tr (�∗

2 ,T N ) Tr (�2 ,T N 

∗) , 

hich gives with δ�1 ,T 
def = �1 ,T − �1 and δ�2 ,T 

def = �2 ,T − �2 

(g Alg NC 

T 
(θ )) = g Alg NC (θ ) 

+ 2 Tr [E(δ�1 ,T ) M ] Tr (�1 M ) − 2 Re ( Tr [E(δ�2 ,T ) N 

∗] Tr

+ E [ Tr (δ�1 ,T M ) Tr (δ�1 ,T M ) ] − E 

[
Tr (δ�∗

2 ,T N ) Tr (δ�2

he first-order terms of (65) are deduced from (31) and (32) , wh

revity) 

Tr [E(δ�1 ,T ) M ] ≈ 1 

T 

(
(2 N − 2)(a H U 1 a ) − 2 Tr (U 1 )(a H �1 a ) 

+ (η − 1)[(2 N − 2)(a H U 

′ 
1 a ) − 2 Tr (U 

′ 
1 )(a H �1 a )] 

)
r [E(δ�2 ,T ) N 

∗] ≈ 1 

T 

(
(2 N − 2)(a H U 2 a 

∗) − 2 Tr (U 1 ) a 
H �2 a 

∗

+ (η − 1)[(2 N − 2)(a H U 

′ 
2 a 

∗) − 2 Tr (U 

′ 
1 )(a H �2 a 

∗)

ntroducing these expressions into (65) , the first-order terms are gi

 Tr [ E ( δ�1 ,T ) M ] Tr ( �1 M ) ≈ 2 

T 

(
( 2 N − 2 ) 

(
a H U 1 a 

)(
a H �1 a 

)
− 2 Tr ( U 1 ) 

(
a H �

 Re ( Tr [E(δ�2 ,T ) N 

∗] Tr (�∗
2 N ) ≈ 2 

T 

(
(2 N − 2) Re 

(
(a H U 2 a 

∗)(a T �∗
2 a 

+ (η−1)[(2 N−2) Re ((a H U 

′ 
2 a 

∗)(a T �

he second-order terms of (65) are given by 

 [ Tr (δ�1 ,T M ) Tr (δ�1 ,T M ) ] = vec T (M 

T )E 

(
vec (δ�1 ,T ) vec H (δ�1 ,T 

≈ 1 

T 
vec T (M 

T ) C �1 
vec (M ) , 

 

[
Tr (δ�∗

2 ,T N ) Tr (δ�2 ,T N 

∗) 
]

= vec T (N )E 

(
vec (δ�∗

2 ,T ) vec T (δ�2 ,T ) 
)

≈ 1 

T 
vec T (N ) C 

∗
�2 

vec (N 

∗) , 

here C �1 
and C �2 

denote the covariance matrices of the asym

ovariance matrices C ˜ �
of the asymptotic distribution of ˜ �T given 

 ˜ � = ( I + K (J � J ) ) 
(
( ̃  �∗

� ˜ U ) + ( ̃  U 

∗
� ˜ �) 

)
+ (η − 1) ( I + K (J � J ) )

hat implies: 

 �1 
= 

(
�∗

1 � U 1 

)
+ 

(
U 

∗
1 � �1 

)
+ K 

[(
�2 � U 

∗
2 

)
+ 

(
U 2 � �∗

2

+ ( η − 1 ) 
((

�∗
1 � U 

’ 

1 

)
+ 

(
U 

’ ∗
1 � �1 

)
+ K 

[(
�2 � U 

’ ∗
2 

)
+ 

(
 �2 

= ( I + K ) ( �1 � U 1 ) + ( U 1 � �1 ) 

+ ( η − 1 ) 
(
( I + K ) 

(
�1 � U 

’ 

1 

)
+ 

(
U 

’ 

1 � �1 

))
. 
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I tforward algebra manipulations 

E (a T �∗
2 a )] 

 U 

′ 
2 a 

∗)(a T �∗
2 a )]] 

)
, (70) 

E  

′ 
1 a )(a H �1 a ) 

)
. (71) 

I  (37) . Then (38) follows with the same lines. 

A

non-zero eigenvalues and the associated eigenvectors of the rank 

t s of S are the roots of the quadratic polynomial: λ2 − Tr (S ) λ + 

d ) , k = 1 , 2 , with α
def = 1 + βRe (ρ) and γ

def = (1 − | ρ| 2 )(1 − β2 ) where 

β 2 
s (1 + ρ∗β) − λk ] a 1 − ‖ a k ‖ 2 σ 2 

s (ρ
∗ + β) a 2 . Plugging these eigenvalues 

a  = 

σ 4 
n 

λ2 
1 

v 1 v 
H 
1 

‖ v 1 ‖ 2 + 

σ 4 
n 

λ2 
2 

v 2 v 
H 
2 

‖ v 2 ‖ 2 and using � = I − A (A 

H A ) −1 A 

H , these three ma- 

t  manipulations. 

C

endix C into (35) yields, after some tedious algebraic manipulation and 

w  involved in (39), (40) and (41) are given for arbitrary centrosymmetric 

a

h

h
 β + (β − 1)(2 Re (ρ) − 1)) 
 

h
2(1 + βRe (ρ)) h m 

(β2 − 1)(| ρ| 2 − 1) 
, 

h
+ 1)(2 Re (ρ) + 1)) 

1)) 
)

w  N 

(
ρ

′ 2 
1 ,m 

β−1 
− ρ

′′ 
1 ,m 

ρ1 ,m 

β+1 

)
and where β = 

a H 
1 

a 2 
N , ρ1 ,m 

= 

a H 
1 

a m 
N , ρ′ 

1 ,m 

= 

a 
′ H 
m a 1 
N and 

ρ

ntroducing these expressions into (68) and (69) gives after straigh

 [ Tr (δ�1 ,T M ) Tr (δ�1 ,T M ) ] ≈ 2 

T 

(
(a H U 1 a )(a H �1 a ) + Re [(a H U 2 a 

∗)

+ (η − 1)[(a H U 

′ 
1 a )(a H �1 a ) + Re [(a H

 

[
Tr (δ�∗

2 ,T N ) Tr (δ�2 ,T N 

∗) 
]

≈ 4 

T 

(
(a H U 1 a )(a H �1 a ) + (η − 1)(a H U

ncorporating expressions (66), (67), (70) and (71) into (65) proves

ppendix C. Expressions of �, U and U 

′ 

The expression of �, U and U 

′ are derived from the two 

wo matrix S = σ 2 
s (a 1 , a 2 ) 

(
a H 

1 
+ ρa H 

2 
ρ∗a H 

1 
+ a H 

2 

)
. The non-zero eigenvalue

et 

[
σ 2 

s 

(
a H 

1 
+ ρa H 

2 
ρ∗a H 

1 
+ a H 

2 

)
(a 1 , a 2 ) 

]
which are λk = ‖ a k ‖ 2 σ 2 

s (α ±
√ 

α2 − γ

def = a H 1 a 2 /N 

2 ∈ [ −1 , +1] and the associated eigenvectors v k = [ Nσ

nd eigenvectors in U = 

(
σ 2 

n 
λ1 

+ 

σ 4 
n 

λ2 
1 

)
v 1 v 

H 
1 

‖ v 1 ‖ 2 + 

(
σ 2 

n 
λ2 

+ 

σ 4 
n 

λ2 
2 

)
v 2 v 

H 
2 

‖ v 2 ‖ 2 and U 

′

rices are deduced after cumbersome but straightforward algebraic

1. Expressions of h 1 , 1 , h 2 , 1 , h 1 ,m 

, h 2 ,m 

h ′ 
1 ,m 

and h ′ 
2 ,m 

for ULA 

Substitution the general expressions of �, U and U 

′ given in App

ith the aid of symbolic algebra and calculus tools, that the terms

rrays by, 

h 1 , 1 = 

N − 2 

1 − | ρ| 2 , 

h 2 , 1 = 

η(N − 2)(1 + | ρ| 2 + 2 βRe (ρ)) 

N(1 − β2 )(1 − | ρ| 2 ) 2 , 

 1 ,m 

= 

2 

| ρ| 2 − 1 

(
(N − 2) ρ2 

1 ,m 

( Re (ρ) − 1) 

(1 + β) 2 
− g m 

(1 + βRe (ρ)) 

N(β2 − 1) 

)
 2 ,m 

= 

2 η

(1 − β2 )(| ρ| 2 − 1) 2 

(
(N − 2) ρ2 

1 ,m 

(| ρ| 2 (1 + β) − 2 Re (ρ) 2

N(β + 1) 2

+ 

g m 

(| ρ| 2 (1 − β2 ) + 1 + 2 Re (ρ) 2 β2 + β2 + 4 βRe (ρ)) 

N 

2 (β2 − 1) 

)
, 

 

′ 
1 ,m 

= 

4(N − 2) 

| ρ| 2 − 1 

(
ρ1 ,m 

ρ
′′ 
1 ,m 

( Re (ρ) − 1) 

(β + 1) 2 
− ρ

′ 2 
1 ,m 

( Re (ρ) + 1) 

(β − 1) 2 

)
−

N

 

′ 
2 ,m 

= 

4(N − 2) 

N(β2 − 1)(| ρ| 2 − 1) 2 

(
ρ

′ 2 
1 ,m 

(| ρ| 2 (β − 1) − 2 Re (ρ) 2 β − (β

(β − 1) 2 

− ρ1 ,m 

ρ
′′ 
1 ,m 

(| ρ| 2 (1 + β) − 2 Re (ρ) 2 β + (β − 1)(2 Re (ρ) −
(β + 1) 2 

− 2 h m 

(| ρ| 2 (1 − β2 ) + 1 + β2 + 2 β2 Re (ρ) 2 + 4 Re (ρ) β) 

N 

2 (β2 − 1) 2 (| ρ| 2 − 1) 2 
, 

ith g m 

def = g Alg C (θm 

) = N 

(
1 − 2 

ρ2 
1 ,m 

1+ β

)
and h m 

def = 

d 2 g Alg C (θ ) 

dθ2 | θ= θm 
= 4

′′ 
1 ,m 

= 

a 
′′ H 
m a 1 

N . 
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ppendix D. Expressions of �1 , �2 , U 1 , U 2 , U 

′ 
1 

and U 

′ 
2 

The expression of ˜ �, ˜ U and 

˜ U 

′ are also derived from the 

wo non-zero eigenvalues and the associated eigenvectors of the 

ank two matrix ˜ S = σ 2 
s ( ̃  a 1 , ̃  a 2 ) 

(̃
 a H 1 + ρ′ ˜ a H 2 

ρ′ ˜ a H 
1 

+ ̃

 a H 
2 

)
. The non-zero eigen- 

alues of ˜ S are derived from the roots of the quadratic poly- 

omial: λ2 − Tr ( ̃  S ) λ + det 

[
σ 2 

s 

(̃
 a H 1 + ρ′ ˜ a H 2 

ρ′ ˜ a H 
1 

+ ̃

 a H 
2 

)
( ̃  a 1 , ̃  a 2 ) 

]
, which give the 

igenvalues λ1 = 2 Nσ 2 
s (1 − β)(1 − ρ) and λ2 = 2 Nσ 2 

s (1 + β)(1 + 

) , and its associated eigenvectors are ˜ v 1 = ̃

 a 1 −˜ a 2 and 

˜ v 2 = 

 

 1 + ̃

 a 2 . This allows us to deduce the expressions of ˜ U = 

σ 2 
n 

λ1 
+ 

σ 4 
n 

λ2 
1 

) ˜ v 1 ̃  v H 
1 

‖ ̃ v 1 ‖ 2 + 

(
σ 2 

n 
λ2 

+ 

σ 4 
n 

λ2 
2 

) ˜ v 2 ̃  v H 
2 

‖ ̃ v 2 ‖ 2 and 

˜ U 

′ = 

σ 4 
n 

λ2 
1 

˜ v 1 ̃  v H 
1 

‖ ̃ v 1 ‖ 2 + 

σ 4 
n 

λ2 
2 

˜ v 2 ̃  v H 
2 

‖ ̃ v 2 ‖ 2 . 
hen the blocks U 1 , U 2 , U 

′ 
1 

and U 

′ 
2 

follow from the block decom-

ositions of ˜ v 1 ̃  v H 
1 

= 

(
a 1 e 

iφ1 − a 2 e 
iφ2 

a ∗
1 
e −iφ1 − a ∗

2 
e −iφ2 

)
(a H 

1 
e −iφ1 − a H 

2 
e −iφ2 , a T 

1 
e iφ1 −

 

T 
2 

e iφ2 ) and 

˜ v 2 ̃  v H 
2 

= 

(
a 1 e 

iφ1 + a 2 e 
iφ2 

a ∗
1 
e −iφ1 + a ∗

2 
e −iφ2 

)
(a H 

1 
e −iφ1 + a H 

2 
e −iφ2 , a T 

1 
e iφ1 +

 

T 
2 

e iφ2 ) . Similarly the bocks �1 and �2 follow from 

˜ � = I −
 

 ( ̃  A 

H ˜ A ) −1 ˜ A 

H with ̃

 A = 

(
a 1 e 

iφ1 a 2 e 
iφ2 

a ∗1 e 
−iφ1 a ∗2 e 

−iφ2 

)
. 
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