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ABSTRACT

The concept of threshold array signal-to-noise ratio (ASNR) which is defined as the minimal SNR at which
specific high-resolution algorithms are able to resolve two closely spaced far-field sources, allows to quan-
tify and to compare sensors array performance in localizing remote targets. This paper generalizes and ex-
tends the expressions of the threshold ASNR given in the literature for the conventional and non-circular
(NC) MUSIC direction-of-arrival (DOA) estimation algorithms in the context of uncorrelated stochastic
circular or rectilinear Gaussian sources and circular complex Gaussian (C-CG) noise, in a more general
stochastic framework. We assume that the sources are correlated with an arbitrary distribution, which is
inherent in a context of multipath or smart jammers, and that the noise is circular complex elliptically
symmetric (C-CES) distributed, which can model impulsive noise with heavy-tailed distributions. The C-
CES and NC-CES distributed observations are also considered to quantify the gain in resolution provided
when the sample covariance matrix (SCM) of the observations is replaced by M-estimates of this matrix.
Asymptotic approaches and perturbation analysis have been performed to derive closed-form expressions
of the mean null spectra of the two considered MUSIC algorithms for both observation models, which
allow us to derive, for the first time, general unified explicit analytical expressions of the threshold ASNR
along the Cox and the Sharman and Durrani criteria. These expressions allow us to quantify the impact
of the non-Gaussianity of noise and observations, as well as of the phase and magnitude of the corre-
lation on the resolution threshold, and to quantify the benefit provided when the SCM is replaced by
M-estimates of this covariance matrix for CES observations. Finally, numerical illustrations are included
to support our theoretical analysis.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

two sources are resolved if the midpoint mean null spectrum is
greater than the mean null spectrum in the two true source DOAs.

The ability to resolve two closely-spaced narrowband far-field
sources is an important performance measure of sensor arrays in
localizing remote targets with wide-ranging application in, among
others, astronomy, radar and wireless communications [1]. This
very old problem has been extensively studied in the literature and
is still the object of active research in many applications (see e.g.,
[2,3]). There are usually four different approaches in the literature
to determine the resolution limit of two closely spaced signals. The
first one rests on the analysis of the mean null spectrum concern-
ing specific high-resolution algorithms. More precisely, two main
criteria based on the mean null spectrum have been introduced by
Cox [4] and Sharman and Durrani [5]. The first criterion states that
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While for the second criterion, two sources are resolved if the
second derivative of the mean spectrum at the midpoint is neg-
ative. The two criteria were applied to derive the threshold ASNR
for specific high-resolution algorithms, including conventional MU-
SIC and Min-Norm (the first one in [6-10] and the second one
in [11,12]). Then, they have been used to compare the threshold
ASNR for the conventional MUSIC and NC MUSIC algorithms [13] in
the context of uncorrelated circular and rectilinear sources, respec-
tively. The second approach is based on a hypothesis test using the
generalized likelihood ratio test [14,15] or the Bayesian approach
[16]. The third approach relies on the estimation accuracy, capital-
izing on the Cramér-Rao bound (CRB). It compares the DOA sep-
aration of two sources to the square-root of the CRB of the DOA
[17] or to the CRB of the difference between the two DOA’s intro-
duced in [18] and then used in numerous papers (see e.g., [19-22]).
The last approach is based on the information theory and more
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specifically on the Stein’s lemma which links the false alarm prob-
ability resulted from the Neyman-Pearson decision criterion to the
relative entropy between two hypothesis [23], or on the mutual
information between DOA, scattering properties and the received
signal [2]. In all these works, however, the sources embedded in a
spatially uncorrelated C-CG distributed noise are considered either
deterministic or uncorrelated stochastic Gaussian distributed, ex-
cept in [9] which presents some simulation results using the null
spectrum with correlated and coherent C-CG distributed sources,
and in [22] which uses the Smith’s criterion [18] in the MIMO
radar context under K-distributed clutter.

This paper is dedicated to the threshold ASNRs derivation based
on the first approach and its aim is twofold. First, it gives the-
oretical approximate interpretable closed-form expressions of the
threshold ASNR for which MUSIC-like algorithms are able to re-
solve two closely spaced sources in a much more general statistical
framework than in the previous works. More precisely, we assume
here that the directional sources are circular or rectilinear corre-
lated with arbitrary distributions, which is inherent in a context
of multipath or smart jammers. We also consider that the noise is
spatially uncorrelated and C-CES distributed, which can model im-
pulsive noise with heavy-tailed distributions. This kind of noise can
be encountered in radar clutter [24,25], made-man noise and in-
terference in indoor and outdoor mobile communications channels
[26,27]. In these adverse conditions, this allows us, in particular,
to quantify the increase of threshold ASNR required to resolve two
closely-spaced equipowered sources with the conventional MUSIC
and NC MUSIC algorithms based on the SCM of the observations,
with respect to the standard conditions of uncorrelated sources
embedded in C-CG distributed noise. Second, it aims is to quantify
the gain in resolution brought when this SCM is replaced by an M-
estimate of the covariance matrix of the observations. For this pur-
pose, interpretable closed-form expressions of the threshold ASNR
are also derived for C-CES and NC-CES distributed observations.

The paper is organized as follows. Section 2 gives a brief re-
minder on CES distribution and specifies the data models and the
involved MUSIC-based DOA estimation algorithms. It first describes
a standard array data model with two equal-power arbitrary dis-
tributed correlated sources, which are either circular or rectilinear,
and a spatially white C-CES distributed noise. Then, a robust distri-
bution model, where the observations are either C-CES or NC-CES
distributed, is introduced. This section ends with a brief review
of the conventional and NC MUSIC algorithms and the statistical
distributions of the SCM and M-estimators of covariance matrices.
Section 3 presents the resolving power of MUSIC-like algorithms.
After a brief review of the Cox, and of Sharman and Durrani cri-
teria on which resolving power is based, two preliminary lemmas
based on perturbations of noise projectors are given. They allow
us to give closed-form expressions of the mean-null spectrum as-
sociated with the conventional and NC MUSIC algorithms for the
two models introduced in Section 2. Two general closed-form ex-
pressions of the threshold ASNR applicable to the two models and
criteria for each conventional MUSIC and NC MUSIC algorithms
are deduced. Then, comments to explain how the non-Gaussianity
of the noise and observations, and the phase and magnitude of
the correlation of the sources impact the threshold ASNR are dis-
cussed. Numerical illustrations of the threshold ASNR are given in
Section 4, with particular attention paid to the phase and magni-
tude of the correlation of the sources and to the robustness of M-
estimates of covariance matrices of the observations. Finally, the
paper is concluded in Section 5.

The notations used throughout this paper are the following. The
abbreviation [resp. ] stands for respectively. Vectors and matrices
are denoted by bold-faced lowercase and uppercase letters, respec-
tively. *, T, and " respectively represent the conjugate, the trans-
pose and the conjugate transpose operators. E(.), Re(.), |.| and #
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are the expectation, real part operator, determinant and Moore-
Penrose inverse, respectively. =; stands for "shares the same dis-
tribution as”. vec(-) is the vectorization operator that turns a ma-
trix into a vector by stacking the columns of the matrix one below
another which is used in conjunction with the Kronecker prod-
uct A® B as the block matrix whose (i, j) block element is g; ;B
and with the vec-permutation matrix K which transforms vec(C)
to vec(CT) for any matrix C. The matrix J is the exchange matrix

(? (I)> and e, denotes the k-unit vector.

2. Data model and MUSIC-like algorithms

In this section, we specify two data array models with two
equal-power arbitrary distributed correlated sources impinging on
an arbitrary array of N sensors with spatially white noise. In the
first model, the sources are either arbitrary or rectilinear with a
C-CES distributed noise and in the second one, the observation is
either C-CES or NC-CES distributed. For the ease of the readers, we
begin by giving a brief reminder on C-CES and NC-CES distribu-
tions.

2.1. Brief review of C-CES and NC-CES distributions
In this paper, we use N-dimensional zero-mean C-CES [resp.,

NC-CES] distributed random variables (r.v.) y; possessing probabil-
ity density functions (p.d.f.) given by

1o 1o
pOy0) = Ry "'g(yi'Ry o). [resp., [Ry|"2g(5§7R;'§0)]. (1)

where §; & [yl yH]" and Ry def c{ ;{) with R, and C, are N x
y Ny

N Hermitian positive definite and complex symmetric matrices,
respectively called scatter and pseudo-scatter matrices. The func-

tion! g(): R > R* satisfies Sy g def Joo tN-1g(t)dt < co. The rv.

y: admit the following stochastic representation: y; =4 «/QtR}/ zut

(28] [resp,, § =q vOIRy i [29] with i, % ! u]T], where the

non-negative real r.v. Q; and the complex r.v. u; are independent
and u; is uniformly distributed on the unit complex N-sphere.

2.2. Standard data model

Consider two equal-power narrowband uncorrelated or corre-
lated (but non-coherent) signals impinging on an arbitrary array of
N sensors. The signal received in baseband at the time instant ¢ is
modeled as

y[ZAXt-‘rnt, t:],...,T, (2)

where {yi,....¥:....,yr} are independent and identically dis-
tributed. A = [aq, a;] is the steering matrix where each vector a; =
a(6y) is parameterized by the real scalar parameter 6, accord-
ing to the parametrization introduced in [10] where |la.||%2 = N.
Xt = [%.1,%2]" and n; model signals transmitted by sources and
additive measurement noise, respectively. X; and n; are zero-mean
with finite fourth-order moments and not correlated with each
other. n; is assumed to be C-CES distributed and spatially un-
correlated with E(n:nf') = 621. The fourth-order moments of n;

T To remove the so-called scale ambiguity, the density generator g is here con-
strained such that Sy.1¢/8ng = N, [28] to ensure that the scatter Ry, and extended
scatter R; matrices are equal to the covariance E(y;y!) and extended covariance
E(§:§1"), respectively. The expressions of these p.d.f. are consistent with the ones
given in [28] and [30], respectively, because the normalizing constant is here in-
cluded in the function g.
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are proved to be characterized by a single parameter 7. This pa-

rameter is defined by n = def NE((N%]) from the stochastic represen-

tation n; =4 on+/Qru;. This parameter satisfies the conditions 7 >
N/(N+1) [31], n = 1 for C-CG distributions and can take very large
values for very impulsive noise, such that for the circular com-
plex Student t-distributions with heavier tails than the C-CG dis-
tribution as shown in Section 4.1. The signal sources x; are ar-
bitrary distributed (circular or non-circular to the second-order),
with covariance Ry = E(x[xf ) and complementary covariance Cy =
E(x;x]). Consequently, this leads to the following covariance and
complementary covariance of y;

R, = ARA" + 621 'S+ 621 and C, = AGA', (3)

where

pr 1
We will also consider the specific case where x; ; and x;, are

rectilinear (also called strictly second-order non-circular), i.e., de-
scribed by

Ry :ze(l ,0) with p d:EfE(xmxgﬂz) eC and |p| <1. (4)

i def
X = st,ke"l’k where s, are real-valued with A¢ = S

€ [0, +m]. (5)

The phases ¢, associated with different propagation delays are as-
sumed fixed, but unknown during the array observation. To derive
MUSIC-like algorithms exploiting the prior knowledge of rectilinear
sources, the model (2) can be rewritten according to the following
equivalent extended model:

¥ & B] As; + 1,
t

where A%

and n; def

t=1,...,T, (6)

[31 a,] with 3k = [3T iy 3He_l¢"]T St & [Srl se2l”
(n],nf)T. Consequently the covariance Ry def E(y[yt)

and complementary covariance C; défE@t?tT) of the extended sig-
nal y; are given by

R; = ARA" + 621<'S + 021 and C; = RyJ =JR;, 7)
where if
/
R, £ E(ssT) = o7 (;, /; ) with p’ e (-1, +1), (8)
Ry in (3) is written in the following form:
1 /eiA¢
Rx = 09(2 (p/e—iA¢ P 1 ) (9)

Consequently, in the specific case of rectilinear sources, the phase
separation A¢ associated with the sign of o’ corresponds to the
phase Zp of the correlation of the sources.

Assuming that A and A are full column rank, whose column
spaces characterize the DOA (60, 6,), the conventional and NC MU-
SIC algorithms are usually based on the SCM and extended SCM

Ryr =1 Z[ 1yty[ and Ry = 1 Zt 1ytyt , respectively.

2.3. Robust distribution model

Many papers in the literature (see e.g., [28,32]) have shown by
numerical simulations that the MUSIC sample null spectrum pre-
sented a loss of resolution for heavy-tailed distributed noise. To
mitigate this loss in resolution performance of MUSIC-like algo-
rithms for heavy-tailed C-CES distributed noise, the SCM and ex-
tended SCM can be replaced by the ML estimate of R, and Ry,
respectively. However, these ML estimates cannot be obtained for
arbitrary distributed x; and arbitrary C-CES distributed n; in (2).
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To overcome this difficulty, we consider here an alternative model
used in [31], [29] and [33], where the observations y; in (2) are
CES distributed. In this case the distributions of X; and n; are not
specified, but only their second-order statistics are imposed. More
specifically, in the cases where the signals x; are circular to the
second-order [resp., rectilinear], where {yi,...,¥:,...,yr} are as-
sumed independent zero-mean C-CES [resp., NC-CES] identically
distributed whose p.d.f. are given by (1).

The ML estimate of Ry [resp., Ry] in this model is solution of
the implicit equation:

1 7
=7 Zw()’?
t=1

r, 1Oy

|:1'35P-- Iyr = T Z W( flry TYt)Yth j| (10)

where ¥ (t) d_ef—ﬁ%. Existence, uniqueness of the solution of
(10) and convergence in probability of the sequence I'yr to Ry
have been proved in [28]. These properties have been extended in
[29] to the sequence I’y r which converges in probability to Ry.

These estimates belong to the class of M-estimators of scat-
ter matrices introduced by Maronna [34], where 1 (.) does not
need to be related to the density generator of any particular C-
CES/NC-CES distribution. Existence and uniqueness of the solution
of (10) where v/ (.) is replaced by a function u(.) have been proved
in the real case, provided u(.) satisfies a set of general conditions
(called Maronna conditions) stated in [34].

Tyr= Zu(y[ | B3N A AN

[resp. Tyr=5 Z ( yi'T; Tyr)yty[} (11)

These conditions have been extended to the complex case in
[35] and [28]. These sequences denoted by I'y . and I'y ;. to spec-
ify their dependence in u(.) converge in probability to oyRy and
oyRy, respectively where o, given by [28, (46)] depends on u(.)
and the C-CES [resp., NC-CES] distribution of y; [resp., ¥;]. Note
that Tyler's M-estimator [36] is also solution of (11) with the spe-
cific weight u(t) = ¥ does not satisfy Maronna conditions. It is a
distribution-free estimator within the family of C-CES/NC-CES dis-
tributions. However, it has been proved for real elliptically sym-
metric (RES) distributions in [36] and for C-CES distributions in
[37], then extended to NC-CES distributions in [29], that after nor-
malizing, the solutions l";T and I‘y’iI of (10) also converges in
probability to o,Ry and oyRy, respectively with oy, = 1.

2.4. MUSIC-like algorithms

For the standard and robust distribution models, we consider
the conventional MUSIC algorithm associated with R, and I‘yT,
respectively. The DOAs estimated by this algorithm are given by

the two smallest minima of the following so-called sample null
spectra g‘}“gc (@) and g';‘lgc ) [38]:

@fczarg%nfgc(G) and 0” _argnbing';\lgg(e), k=1,2,

(12)
with
2l 9) Lat ) Mra@) and g% 0) Lal@O)MLa@), (13)

where Iy and I1} denote the projector matrix associated with the
noise subspace of R, ; and F;T, respectively.
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Table 1

Table 1 Different models and algorithms studied in this paper.
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Standard data model

Robust distribution model

Circular noise: C-CG or C-CES

C (or NC)-CES distributed observations y; with scatter matrix:

arbitrary sources rectilinear sources

C-CES: Ry = ARAH + 021

NC-CES: Ry = ARA" + 021

conventional MUSIC algorithm
Ry — M1

NC MUSIC algorithm
Ry — It

conventional MUSIC algorithm

y.T

NC MUSIC algorithm

u u u
— I} ry:, — II§

In the specific case where X; is rectilinear, we consider for both
models, the NC MUSIC algorithm devised in [39] associated with
R;r and l“;; 7 respectively. The DOAs are also estimated by the two

smallest minima of gj;lgNC (0) and g;\lgﬁc (0), respectively

5:1;;’“ = arg m@ing‘;"g”C ®) and 5}:\-ng§( = arg meing'T\lgac ), k=1,2

(14)
with
2o (9) € (@ (0)I1, ra(6))*~|a’ (6)I3 ra(®)* and
&%) (a" ()14 7a(0))” -2’ (0)T147a(60) . (15)

where Il;r and I [resp., I}, and II} ;] are Hermitian and
complex symmetric respectively, given by the projector matrices
Iy and I} structured as

Iy Iy and HE“T H%.T

* * * *

5, My oy Iy
associated with the noise subspace? of Ry r and l“y!yT, respectively.

The following Table 1 summarizes the different models and al-
gorithms that are defined in this paper:

2.5. Statistical distributions of the SCM and M-estimators of
covariance matrices

For deriving in Section 3.3 the resolving power of these MU-
SIC algorithms based on Ry 7 and Ry r, we will need the covariance

R, Cl:efE[(vec(RyVT) — vec(Ry))(vec (R, 1) — vec(Ry))] and Ry, def

E[(vec(RyT) — vec(Ry))(vec” (Ry 1) — vec(Ry))] of these SCM. They
are given in [31] and [40], respectively, by

R, = %[(R; ®R))+K(C, ®C) + (A* @ A)Q (AT ® A¥)+Q;]. (16)

Ry, = £(R; R +K(C; 0 G)+ (& 0 HIQ AT @ A) ], (17)

where Qy, Qs, Q, and Q; are the quadrivariance® of x;, s¢, n; and
ny, respectively. For C-CES distributed noise Q, and Q; are given in
[31] and [29], respectively by

Q. = o, (n — D1+ vec(Dvec’ (1)], (18)

Q=0l(n-D[AeD +KJ®]J) +vec)vec' (I)]. (19)

Similarly to the standard data model, we will need the co-
variance of I';’,T and F;.T for deriving in Section 3.3 the resolv-
ing power of the MUSIC algorithms based on these M-estimators.
But only their asymptotic distributions are available. Under these

2 Similar to_the projector matrix Iy associated with Ry from its EVD, the projec-
tor matrices Iy and II} are defined by the EVD of Ry and F;._T, respectively, by
collecting the eigenvectors associated with their 2N — 2 smallest eigenvalues.

def . PR
3 For example [Qulira(-1)ks20-1) = Kijki = Cum(x; ;. Xei Xe 1. X7 ), 1 J k. Te {1,2}

Maronna conditions, it has been proved for RES distributions
[41] and for C-CES distributions in [28,42], then extended to
NC-CES distributions in [29], that the sequences ~/T (vec(l“;’yT) -
vec(oyRy)) and VT (vec(l"y?T) —vec(oyRy)) converge in distribu-
tion to the zero mean Gaussian distribution A (0, RF;,CF;,) and
N(O0, Rr},, CI-;; ), respectively, where

Rry = 91 (R; ® R)) + ¥vec(Ry)vec” (Ry). (20)

Rry = 01((R; ® Ry) +K(G; © C;)) + vec(Ry)vec’ (Ry)  (21)

and with CF}‘ = RI—;K and Cru = RruK, where ¢ and ¢, are given
y y
by [28, (48-49)].

3. Resolving power of MUSIC-like algorithms
3.1. Review on the resolving power

Based upon the assumption [6] that the standard deviation

,/Var[g‘?lgc (8)] of the sample null spectrum associated with the
conventional MUSIC and Min-Norm algorithms for circular Gaus-
sian signals is small compared to its mean value E[g’;‘lgc (8)] in the
vicinity of the true DOAs, the mean value of the sample null spec-
trum can be reasonably taken as representative of the ensemble of
sample null spectra. We note that this assumption has been spec-
ified in [43], for which its validity has been proved in the condi-
tions N> 1 and T >» N for the conventional MUSIC algorithm. We
suppose it is also valid for non-Gaussian signals and as well as for
the NC MUSIC algorithm. Based on this assumption, we continue
to use the Cox [4] and the Sharman and Durrani [5] criteria which
respectively state that two closely spaced equal-power sources are
resolved if the following respective conditions are satisfied:

E[g}®(61)] = Elg}'*(62)] < Elg}'* (6] (22)
dZE Ig 9 .
%w:em < O, fOl‘ Qm d:f (9] —+ 82)/2 (23)

3.2. Preliminary lemmas

Approximations to the resolution threshold are deduced from
equalities in (22) and (23). Consequently, the key point to derive
these resolution thresholds depends on the expectation of the ran-
dom variables g‘;‘lgc (#) and g‘?lgNC (0). To obtain these expectations,
we resort to an analysis based on perturbations of the noise pro-

jector [38] instead of those of the eigenvectors (e.g., [6,10]). There-

fore, we consider the following second-order expansion of §IIt def

I — I (where w.rt. IT denotes the projector matrix associated

with the noise subspace of Ry) w.r.t. Ryt def Ryt —Ry proved in
[38]:

8y = — (TSR, rS* + S*SR, v )
+8* (SR, 1 ISR, 1)S* — T (R, 1S*?5R, 1)1
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+S*(8Ry rS*SR, 1) 1T
+I1(8Ry rS*SR, 1)S* — S*2 (SR r ISR, 1) IT
—TI(5R, rTISR, 1)S* + 0(5R} ;). (24)

This relation is also valid for the extended model (6) by replacing
I, My, 8y, 6Ryr and S, by I, My, §I7, SRy and S, respec-
tively. It is also valid for the robust distribution model, by replacing

(8T1y.8R, 1) and (8T 8Ryr), by (STIY. ORY, &0 16T% ) and

(811, SRY dffou181‘“ ), respectively.

To proceed we need the expressions of E(SRy,rB;6Ry 1) and
E(SR; rBydR; 1) for arbitrary N x N matrices By and 2N x 2N ma-
trices B,, which are given by the following lemma proved in
Appendix A:

Lemma 1. For the standard data model, we have
! (Tr(B1Ry)Ry +GBIC;

D>

i,j.k,le{1,2}
+0,(n = 1)[By + Tr(BI]), (25)

E(SR,,rB; SRy 1) =

K,-,j,k,,AejegA”B] AE’ el-TAH

E(SR;.rB2OR; 1) = = (Tr(B2Ry)R; + C;B3C;

>

i,j.k,le{1,2}
+oi(n— 1By +JBL + TrBN),  (26)

and for the robust distribution model:

E(SRY;B;SRY,) ~

~| =

Kj.j,k.]Ae]'e,T(‘AHBerlE;rAH

(191Tr(B1Ry)Ry + %,R,BIRy). (27)

1
E(ORy 1B2ORy 1) ~ = (1 Tr(B;Ry)Ry + 1 C;BSC; + U2R;B,Ry).
u

(28)

Then using Lemma 1 with B; = IT,S* and $*2, then with B, =
M,$* and S$*2 in the derivation of the mean of §IIr given in
(24) and the mean of (SHT, we get after some algebraic manipu-
lations based on the identities RyIT = 0TI, IIC, = 0, S*IT = 0 and
Ryﬁ =020, JAT) = 11, J$#'J = $* and J§¥2'] = §#2, the following
lemma:

Lemma 2. In the standard data and robust distribution models, the
mean of §Iy and 811} are given respectively by

E(8Iy)~ %(Tr(l’[)U ~Tr(O)I + (n - (Tr(MU' - Tr(U)IT)),
(29)

E(STIY) ~ 012 (Tr(I)U — Tr(U)IT), (30)

with U %' 25#R,S* and U &' o 4s#2,
For the two extended models, the mean of 81'[1 T 81'12 T 51'[
and SH%,T are given respectively by

BT 1) ~ 7 (Tr()U, ~ Te(U) T,
+(n = 1)(Tr(M)U; - Tr(U;) ;) (31
BTl ) ~ 7 (Tr(IT)U; — Te(U) T,
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+(n = 1)(Tr(Iy)U, — Tr(U)) ) (32)
214
E(SITY T~ To? (Tr(l‘[1)U1 —Tr(Uy)1Iy), (33)
" 2191
E(SIN; ;) ~ (Tr(l‘[l)Uz —Tr(Up)1I,), (34)

!

where U; and Uz, U, and Uz, II; and M, are NxN sub-
block matrices of the 2N x 2N Hermitian positive semidefinite matri-

ces UL 628#R;S* = U W) Ll pag#2 — U U
U; Ui Uy Uy

= (I I, .
II= <H§ I y{> respectively.

Using (29) and (30) in (13), allows us to straightforward derive
the mean null spectra associated with the conventional MUSIC al-
gorithm based on the SCM, then on an M-estimate covariance of
y:, which are given respectively by:

E(gr'%(0)) ~ g% (0) + = ((N 2)al (9)Ua() — Tr(U)ge (0)

+ (n— 1)((N -2)a"(@)Ua(®) - Tr(U)g"=(0)))
(35)

E(g)%(8)) ~ g

((N 2)a"(B)va(d) - Tr(U)g"e (9)),
(36)
with ghec (9) 4 aH (0)Ta(8).
For the NC MUSIC algorithm, the derivation of the mean null
spectra is more involved, but using asymptotic distribution of I ,
I, r, MY ; and II§ ; given in [29], the mean null spectra for this

algorithm based on the SCM and then on an M-estimate covariance
of §: are proved in Appendix B and given respectively by:

E(g}®(0)) ~ g ()
20N -3)@O)U:a6) @ () Ta(6))
~ Rel (@' (0)Usa* (9)) @' (0)TI32(0))]]
+ 2021 on - 3)(@f 0)uja0)) @ (6)TT,a(9))
 Rel @)U 6) @O 3@ ]

= 2[R + 7 - DTRW)) g5 6) (37)

~ gAlch )
2291

E(gh®c(6))

1(®)U1a(0))@"(0)M1a(0))

- Re[(a”(G)Uza (0@ () M3a(0))]]
4w,
To}

with ghevc (0) & (a (0)T11a(0))” ~ [T (6)TI5a(6) >

We check that (35) and (37) reduce to [13, rel. (3.6)] and [13,
rel. (4.4)], respectively, for circular Gaussian noise for which n = 1.
Likewise, (36) and (38) reduce to [13, rel. (3.6)] and [13, rel. (4.4)],
respectively, for Gaussian observations associated with the SCM for
which oy =9 = 1.

Finally, note that all the results of this subsection apply to an
arbitrary number K of sources necessarily equi-powered by replac-
ing N—2 by N-K in (35), (36) and 2N —3 by 2N - K —1 in (37),
(38).

Tr(Uy)gh®< (6), (38)
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3.3. Derivation of the threshold ASNR

First, we note that mean null spectra associated with the
standard data model (35) and (37) reduce to those of the ro-
bust distribution model (36) and (38) if =1 and T replaced by
To?2/9;. Consequently, the threshold ASNR for the robust distri-
bution model is directly deduced form those of the standard data
model. Let us start with the derivation of the threshold ASNR given
by the Cox (22) and the Sharman and Durrani (23) criteria, ap-
plied to the conventional MUSIC algorithm for the standard data
model. To obtain these threshold ASNRs, we must get closed-form
expressions of af (9)Ua(#), a"(0)UWa(f) and a"'(§)Ma(h) in (35).
To simplify notations and to make the calculations of these ex-
pressions easier, we derive in Appendix C, the matrices II, U and
U’ for only centrosymmetric arrays where the coordinate system
has its origin at the centroid of the arrays.* Plugging their expres-
sions in (35) and using symbolic calculus akin to a high level lan-

25 Al
guage, the terms E(g‘;\lgc ®1)), E(g/T\lgC (@m)) and Wlez(’m of

the Cox and the Sharman and Durrani criteria, can be written in
the following form:

171 1
E@™00) ~ 1] 7h1 + o (39)
g Ig 171 1
E@)™ (0n) ~ 8% On) + [ 1h1n + 3 (40)
PRGN e Ay
o2 o<6n  dOZ jo—e,  TLr tm T pz2m]
def 2

where r = NoZ/o? and the terms hy 1, hyq, hym, hymh} ,, and
h, ., given in C.1 for arbitrary centrosymmetric arrays are functions

. ’ "
of the real-valued geometric terms ala,, allan, affa; and a,a;.

Using expansions of these terms with respect to 60 def 6, — 67 ac-
cording to the parameterization of [10] for closely-spaced sources
allow us to prove the following result:

Result 1. The threshold ASNRs deduced from the Cox (22) and
the Sharman and Durrani (23) criteria given by the conventional
MUSIC algorithm (12) for both standard data (Section 2.2) and ro-
bust distribution (Section 2.3) models with two correlated equal-
power sources and an arbitrary centrosymmetric array are given
for closely-spaced sources and a large number T of snapshots, by
the following approximations:

o 8182 1+Re(,0) ON 83T (A9)2
%—C—MUSICNT( =102 )(A9)4(1+ 1+m B ),

(42)

where A denotes the measure® of the angular separation be-
tween the two sources defined by [10, rel. (8)] and where the pa-
rameters 81, 8, and 83 are defined in Table 2.

In the specific case of ULA associated with the symmetric steer-
ing vectors

T
Y YV VR Y (1Y)
a(@):(e’ 7o ,e 'z ez ez > (43)

4 We note that this structure is very used in practice because uniform linear,
uniform circular and regular hexagonal shaped arrays [44], cross-based centro-
symmetric arrays, square-based centro-symmetric array are centrosymmetric.

5 This measure is defined by (A)> % ‘)\22”,\,)22 SN [xT(s1 —s2)]2, where r,, s; and
s, denote vectors pointing from the centroid of the array to the nth sensor and to

the two sources, and A is the wavelength.
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Table 2

Parameters §;, &, and Js.
Cox criteria §51=2
Sherman and Durrani criteria S =1

Standard data model
Robust distribution model

(82,83) = (1,1)
(82, 83) = (B1/02. 1)

where the coordinate system has its origin at the centroid of the
array, this measure of angular separation A for closely-spaced
sources is given by

AB ~ N8O cosOp/(2v/3) where 6, & %(91 +6,) (44)

and oy and By are given by:

10N cos? O, 5N2 cos2 6,
(N2 =1)(N+2) 2(N+2)

For the NC MUSIC algorithm, the derivation of the threshold AS-
NRs given by the Cox and the Sharman and Durrani criteria fol-
lows the same steps. Closed-form expressions of the blocks IIj,
I,, Uy, U, and U}, U, of II, U and U/, respectively, are derived in
C.1 and Appendix D. Note that the expression [a el ale=i®]T of
the extended steering vectors allows for simpler calculations than
for the expression [al, afe=2%]" used in the literature. Using sym-
bolic calculus, (39), (40) and (41) can also be derived for the mean
spectrum E[g‘;\lgNC (8)] where now hy 1, hy 1, hy m, ha b}, and b
are functions of both Af and A¢. Using expansion of these spatial
terms with respect to A6 for closely-spaced sources allow us to
prove the following result:

oN = and ﬂN =

Result 2. The threshold ASNRs deduced from the Cox (22) and the
Sharman and Durrani (23) criteria given by the NC MUSIC algo-
rithm (14) for both standard data (Section 2.2) and robust distribu-
tion (Section 2.3) models with two correlated equal-power sources
and an arbitrary centrosymmetric array are respectively given for
closely-spaced sources and a large number T of snapshots, by the
following approximations:

010 1+p'cos(Ad) \ wn
NC—MUSIC T (1—p’2)sin2(Aqb) (AD)?

2
03T (A6)2 P’ +cos(Ag)
1+ — 1 — , 45
+8182 YN + 1+ p’ cos(A¢) (45)
except for "very small” A¢ mod 7 for which:

N (S](SZ 1 oN 53T (A9)2
Enc-music ~ T(l—p’) (AO) <1 + 1+m By ) (46)

where §1, 6, and &3 are defined in Table 2.

x| 1+

In the specific case of ULA whose steering vector given by
(43) and where A#@ is defined by (44), we have

_ N?(2N —3) cos? Oy, _ 5N*(2N —3) cos* Oy,

= o1 T Tmweonee-4
By = 5N2(2N — 3) cos2 O,
N= N2 —4 '

We note that for Gaussian distributed noise in the standard data
model for which n =1 and Gaussian distributed observations in
the robust distribution model for which #; = o, = 1, we have §, =
83 =11n (42), (45) and (46), In this case, for uncorrelated sources
(p = p’ = 0), the threshold ASNRs (42), (45) and (46) reduce to [13,
(3.7)(3.8)], [13, (4.5)(4.6)(4.8)] and [13, (4.5)(4.6)(4.7)], respectively.
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3.4. General comments

This section attempts to explain the influence of the signal and
noise parameters on the ASNR thresholds in Results 1 and 2.

3.4.1. Influence of the non-Gaussianity of the noise and observations

In the standard data model for which §, =1 and &3 = n, the
non-Gaussianity of the noise can strongly impact the threshold
ASNR. This is particularly the case of the C-CCG noise distribu-
tions [28] including the circular complex Student t and general-
ized Gaussian distributions, for which n > 1 where 7 is very large
for heavy-tailed distributions. Thus for these distributions, the re-
quired ASNR to resolve closely-spaced sources can be very large, as
it will be illustrated in Section 4.

In the robust distribution model for which 8, = ¥;/02 and
83 = 1, the non-Gaussianity of the observation impacts the thresh-
old ASNR through the equivalent number T/8; = 62T/ of snap-
shots. For ML estimates of R, and Ry, ou =1 and ¥; is close to
1 for many heavy-tailed CES distributions. Likewise, for the Tyler’s
M-estimate, © = (N + 1)/N [37]. Consequently, the threshold AS-
NRs (42), (45) and (46) required for heavy-tailed CES distributions
are very similar to those obtained in the case of Gaussian distri-
butions. In contrast if the SCM have been used to estimate Ry and
Ry, u(t) =1 gives oy, =1 and ¥ =7 and the equivalent number
T/6, = T/n of snapshots is dramatically reduced for heavy-tailed
distributions and thus, the required ASNR to resolve closely-spaced
sources would be very large.

3.4.2. Influence of the correlation (magnitude and phase) for the
conventional MUSIC algorithm

The threshold ASNR (42) is a function of the magnitude of the
correlation of sources, but also of its phase. Note that many perfor-
mance analysis of the conventional MUSIC algorithm seem to have
always assumed that the correlation phase is zero or 180° (e.g.,
in [45]). Whereas, it is known [46] that the correlation phase has
a strong effect on the associated Cramér-Rao bound under certain
conditions (small aperture arrays, large correlation magnitude and
closely-spaced sources).

As expected, the threshold ASNR generally increases strongly
as the magnitude of the correlation approaches one for which
the sources are coherent. In this case, the signal subspace is one-
dimensional and the conventional MUSIC algorithm fails. More pre-
cisely, the relevant correlation term in (42) satisfies the following
property:

1+Re(,o)| _ 1+|,o|cos(4,o)|

1—[p2 <777 T—[pl2 7 pien

1+ Re(p) 1

Wukn = 1/2. (47)

_
1+ [pl lpl=+1

In this latter case the threshold ASNR reaches half the value for
uncorrelated sources. This singular case occurs when the distance
E|x; 1 — X 2|2 reaches its maximum.

However, for a fixed magnitude correlation, the phase correla-
tion can also strongly impact the threshold ASNR. We can clearly
observe that the threshold ASNR (42) is maximal [resp., minimal]

for Zp =0 [resp., Zp = | where the term 1:_'{'%‘;) of (42) takes
1

the value %w and it respectively. We can deduce that for
Zp =1, two correlated sources are better resolved than uncorre-
lated sources with the conventional MUSIC algorithm.

3.4.3. Influence of the correlation and phase separation of rectilinear
sources for the NC MUSIC algorithm

It can also be seen, comparing (45) to (42), that the NC MUSIC
algorithm always largely outperforms the conventional MUSIC al-
gorithm used for rectilinear sources, due to the proportionality of
Encmusic and Ec_music to 1/(A0)2 and 1/(AH)4, respectively.
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In contrast, for very weak A¢ (mod m), the behavior of the
conventional and NC MUSIC algorithms are similar due to the sim-
ilarity of the dependence in (A8)* in (42) and (46). The weak A¢
(mod m) correspond to the worst resolution capability of the NC
MUSIC algorithm. Consequently, the phase separation A¢ plays a
crucial role from the resolution point of view for any distribution
of noise and observations.

For uncorrelated sources (p’ =0), (45) clearly shows that the
threshold ASNR deduced from the Cox and the Sharman and Dur-
rani criteria given by the NC MUSIC algorithm is minimum for
A¢ = /2. Furthermore (45) shows that &yc_music is a symmet-
ric function of A¢ with respect to /2. This property is consis-
tent with the asymptotic variance of the NC MUSIC DOA estima-
tion algorithm, which has been observed numerically minimal for
A¢ =1/2 [47].

For correlated sources, the role of A¢ in (45) is more compli-

; / 1+p’ cos(A¢p)
cated to analyze. However, noting that for p’ > 0, o) st (0d)

, 2
and (%) are decreasing functions of A¢ in [0,7] and

[0, A¢y], respectively (where Agy is solution of p’ + cos(A¢gg) =
0), the threshold ASNR (45) is minimum for A¢ = A¢; > A¢gg >
/2, where A¢; increases as p’ increases. With the same ap-
proach, for p’ <0, the threshold ASNR is minimum for A¢ =
A¢q < Ay < /2, where A¢py decreases as p’ decreases. This de-
pendence of &yc_music to A¢ for different values of p’ will be il-
lustrated in Fig. 5 in Section 4. Furthermore, we note that for A¢ =
/ , 2
/2, Wm = 17}0,2 and (ﬁ;ccooim) = p’2, and therefore
the threshold ASNR does depend on the sign of p’ € (-1, +1).
Note also that the threshold ASNR associated with NC MUSIC
algorithm generally increases strongly as the magnitude of the cor-

relation approaches one because _plcos(Ad) 4o for A¢ #0

(1-p)sin* (A)
and p’ — +1 in (45) and ljp, — +oo for A¢p =0 and p’ — +1 in

(46). However, # — 1/2 for A¢ =0 and p’ — —1 in (46), which
is consistent with the singular case of the conventional MUSIC al-

gorithm, whose performances are similar for A¢ = 0.

3.4.4. Fluctuation of the correlation phase

Finally note that the phase of the correlation p of the sources
for the conventional MUSIC algorithm (which corresponds to A¢
for rectilinear sources, see (9)) is a highly variable and unpre-
dictable parameter in a multipath environment for which it is
very sensitive to the difference between the propagation delays in
the direct and secondary paths. Consequently, the threshold ASNRs
may vary significantly from time to time and thus the resolution
performance are rather given by the mean of the threshold ASNRs
with respect to the correlation phase. For the conventional MUSIC
algorithm, (42) gives:

616 1 o
E(&c_music) ~ %(*1 — |p|2>7(Ag)4 <1 +. /1+

816, B

(48)
which also clearly increases with the magnitude of the correlation.
For the NC MUSIC algorithm, the expression of mean of the thresh-

old ASNRs (45)(46) which is not reachable will be illustrated in
Section 4.

53T (A@)Z)

4. Illustrative examples

This section illustrates the dependence of the threshold ASNR
given by Results 1 and 2 on the non-Gaussianity of the noise and
observations, and the phase and magnitude of the correlation of
the complex circular and rectilinear sources by considering two
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(a) Conventional MUSIC algorithm with p = 0
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(b) NC-MUSIC algorithm with p’ = 0 and A¢ = 7/2

Fig. 1. Threshold ASNRs (42) (45) given by the Cox criterion and the Sharman and Durrani criterion as a function of the parameter v associated with the conventional MUSIC

and NC MUSIC algorithms for circular complex Student t-distributed noise.

Fig. 2. Ratio r = &c_musicl|p|/Ec—musicljpi—o given by the Cox criterion (42) for the

magnitude (b) of the correlation.

illustration parts corresponding to the standard data and robust
distribution models. Let us assume that two narrowband equal-
power rectilinear correlated signal sources with power 0,2 impinge
on a uniform linear array of N = 10 sensors separated by a half-
wavelength for which the steering vectors are a(6,) is given by
(43) where 6, = m sin(wy), k=1, 2, with w, is the DOAs relative
to the normal of array broadside. The phases ¢, k = 1, 2 associated
with different propagation delays are assumed fixed, but unknown

during the array observation and the threshold ASNR depends only

on Ap ® ¢, — ¢,. The SNR is defined as 10log(02/02) dB.

4.1. Standard data model

In the first experiment, the noise n; is either circular com-
plex Student t-distributed with parameter v >4 to have finite
fourth-order moment for which n = % > 1, which has heavier
tails than the Gaussian, or C-CG distributed (with n =1 obtained
also for v — oo). We suppose the sources in model (5) consist of
two multipaths issued from two independent BPSK modulated sig-
nals e;; and e; 5, for which we have s;; =e;; and s, = p’e; 1 +

(b)

conventional MUSIC algorithm with A6 = 0.05rd as a function of the angle (a) and

V1-p'%e.s with p" € (~1,+1). The two sources x;; and x; , are
thus equal-powered with correlation p = p’eA%,

4.1.1. Influence of the non-Gaussianity of the noise

Figs. 1 a and 1b exhibit the threshold ASNRs given by the Cox
criterion and the Sharman and Durrani criterion as a function of
the shape parameter v for circular complex Student’s t-distributed
noise associated with the conventional MUSIC and NC MUSIC algo-
rithms for uncorrelated sources. These figures show that the non-
Gaussianity of the noise strongly impacts the threshold ASNR for
large heavy-tailed distributions, i.e., when v approaches 4. We also
note that the threshold ASNR loss is of the order of 2dB when
the C-CG distributed noise becomes circular complex Student’s t-
distributed for v = 4.1. Furthermore, these figures confirm that the
NC MUSIC algorithm greatly outperforms the conventional MUSIC
algorithm for large phase separations.

4.1.2. Influence of the correlation (magnitude and phase) for the
conventional MUSIC algorithm with C-CG noise

Fig. 2 a and b show the crucial role played by the phase of
the correlation. One can see that the resolution threshold ASNR
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Fig. 3. Threshold ASNR given by the Cox criterion (45) for the NC MUSIC algorithm
Af = 0.05rd for negative (a) and positive (b) values of p’ as shown in (8).

w

of the conventional MUSIC algorithm is minimal [resp. maximal]
for the phase of correlation Zp = 7 [resp., Zp = 0] as predicted by
3.4.2. Fig. 2a shows that there is a resolution gain of 3dB when the
sources are practically in phase opposition (/p ~ ) compared to
uncorrelated sources. We also naturally see a severe degradation
for a large magnitude of the correlation (13dB for |p| = 0.95) for
a zero phase with respect to uncorrelated sources. Fig. 2b shows
the threshold ASNR loss ratio = schUSld ‘p|/gc,MUS]C||p|:0 varies

with respect to |p| in %m and %\M' for respectively Z/p = 0 and

/p =1 as depicted by 3.4.2.

4.1.3. Influence of the correlation (magnitude and phase) for the NC
MUSIC algorithm with C-CG noise

Fig. 3 illustrates that the threshold ASNR given for the NC MU-
SIC algorithm is maximum for A¢ = Ord mod 7, but only mini-
mum when A¢ = m/2rd for uncorrelated sources. For correlated
sources, the threshold ASNR is minimum for A¢; > /2 for p’ > 0
and for A¢q < /2 for p’ < 0 and this value of A¢; deviates from
/2 when |p’| increases, as depicted by 3.4.3.

Fig. 4 shows that the threshold ASNR of the NC MUSIC algo-
rithm with the particular value A¢ = /2 does not depend on the
sign of p’ as depicted by 3.4.3 and naturally increases when A6
decreases.

4.14. Mean of the threshold ASNRs with respect to the correlation
phase

Fig. 5 a and b represent the mean of the threshold ASNR with
respect to the correlation phase given by the Cox criterion for the
conventional MUSIC and NC MUSIC algorithms, respectively, with
C-CG distributed noise, as a function of the magnitude of the cor-
relation. This mean is derived from (48) for the conventional MU-
SIC algorithm and by averaging 12,000 realizations for both con-
ventional MUSIC and NC MUSIC algorithms. Fig. 5a shows that the
approximate value of the threshold ASNR given by the closed-form
expressions (48) is very close to the mean derived from (39) and
(40). We clearly see a great degradation in resolution for correlated
sources compared to uncorrelated sources (about 7dB for |p| = 0.9
for both algorithms). This figure also shows the advantage of us-
ing the NC MUSIC algorithm rather than the conventional MUSIC
algorithm for rectilinear sources.
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Fig. 4. Threshold ASNR given by the Cox criterion (45) for the NC MUSIC algorithm
with C-CG distributed noise as a function of p’ for A¢ = 7 /2.

4.2. Robust distribution model

In this second experiment, we assume that the observations
y: follow either a circular or a NC complex Student t-distribution
with parameter v > 4, with associated structured covariance Ry
given by (3), or extended covariance Ry given by (7), respectively.
These robust distribution models can be considered as second-
order approximative models of the actual ones.

We consider here three estimates of covariance and extended
covariance based on the circular or NC complex Student t-
distribution: the complex Student’s ML, M-estimator and the com-
plex Tyler’'s M-estimator for which the associated weight functions
¥ (t) and u(t) are respectively defined in [28] by ¥ (t) = 252 and
u(t) = % The SCM estimator corresponding to the ML in the Gaus-
sian case is obtained with u(t) = 1. The parameters ¥#; and o, of

this complex Student ¢t-distribution are also given by ¥ = N;gi{)z/;l

and oy =1 for ML M-estimator, #; = Y1 and o, =1 for Tyler's
M-estimate and by ¢ =n = “j—j and oy, =1 for the SCM [30].
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Fig. 5. Mean of the threshold ASNR with respect to the correlation phase given by the Cox criterion (42),(45) for the conventional MUSIC algorithm (a) and NC MUSIC
algorithm (b) with C-CG distributed noise, as a function of the magnitude of the correlation.
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Fig. 6. Threshold ASNRs (42), (45) given by the Cox criterion for circular [resp., NC] complex Student t-distributed observations with v = 4.1 associated with the conventional
[resp., NC] MUSIC algorithms, based on ML M-estimate, Tyler's M-estimate and SCM of the covariance [resp., extended sample covariance], as function of A6, with A¢ = 7 /6.
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Fig. 7. Probability of resolution as function of the ASNR for NC complex Student’ t-distributed observation models with v = 4.1, p’ = 0.95 and A6 = 0.2rd; given by the Cox
and the Sharman and Durrani criteria associated with the NC MUSIC algorithm for two values of A¢.
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Fig. 6 exhibits the threshold ASNRs given by the Cox criterion
for circular [resp., NC] complex Student t-distributed observations
associated with the conventional [resp., NC] MUSIC algorithms,
based on ML M-estimate, Tyler's M-estimate and SCM of the co-
variance [resp., extended covariance], as a function of Af. We see
that for heavy-tailed distributions (v =4.1), the threshold ASNRs
provided by Tyler's M-estimate reaches that of the ML M-estimate
and outperforms those of the SCM by about 10dB. Furthermore,
naturally, the NC MUSIC algorithm applied to rectilinear sources
outperforms the conventional MUSIC algorithm applied to circu-
lar sources, associated with the same structured covariance Ry (3).
Fig. 7 shows estimation of probability of resolution related to the
Cox and to the Sharman and Durrani criteria for NC complex Stu-
dent t-distributed observation models (with v = 4.1) obtained by
Monte Carlo simulations® for highly correlated sources (o’ = 0.95)
and A6 =0.2rd. 1000 independent Monte Carlo runs have been
performed where the number of snapshots is fixed at T = 500. We
see that the ASNR threshold given by our non-probabilistic ap-
proach based on the mean null spectrum gr(6) confirms the re-
sults of Fig. 6.

5. Conclusion

In this paper, we have derived interpretable unified closed-form
expressions for the threshold ASNR along the Cox and the Sharman
and Durrani criteria associated with the conventional MUSIC and
NC MUSIC algorithms in the context of arbitrary circular or recti-
linear distributed correlated sources and circular CES distributed
noise, as well as of C-CES and NC-CES distributed observations.
Using these expressions, we investigated the impact of the non-
Gaussianity of the noise and observations, as well as of the phase
and magnitude of the correlation of the sources. In particular, we
proved for the first time that the phase of the correlation, which
is the non-circularity phase separation for rectilinear sources, may
have a strong impact on the resolution and a zero phase may lead
to overly optimistic resolution. Otherwise, we quantified the reso-
lution benefit provided when the SCM is replaced by M-estimates
of the covariance matrix for CES observations.
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Appendix A. Proof of Lemma 1

We will make use of the following relations proved in [48,
chp.16] which hold for any conformable matrices A, B, C, and D

6 In each simulation trial, the two sources are considered resolved for the
Sharman and Durrani criterion if g% (9, +0.002 AQ) + gV8* (8, — 0.002 Af) —

288 (0) < 0.

1
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and vectors a and b.

vec(ABC) = (CT @ A)vec(B), (49)
(A®B)(C®D) = AC® BD, (50)
vec(ab’) =bw®a, (51)
Tr(AB) = vec” (AT )vec(B), (52)
KA®B) = (BoAK, (53)
vec(A®B) = I®K®I)[vec(A) ® vec(B)], (54)
(I K ® I)vec(K) = vec(K). (55)

Let us first consider the standard data model and start to prove
(25). Using the vectorization operator, it follows form (49) that

vec[E(8R,rB18Ry1)] = E(SR} ; ® SRy r)vec(By), (56)
with Ry, 7 def R, r — Ry gives after straightforward manipulations

1
E(SR]; ® 6R, 1) = T (E(y;y! ®viyi) —R) ®R))

1
= 7 (Elvec(yey ) vec” (yiyi)] - Ry ® Ry)

— 1(TR,, + vec(R,vec (R,) — Rl ®R,), (57)

T
where (50) and (51) is used in the second equality and where Ry,
is also the covariance of the random vector -

ﬁvec(ytyﬁ). Using its
expression in (16) and(18), we get

1
E(SR]; ® 6R, 1) = T (vec(Ry)vec” (R)) + K(C, ® C;)

+ (A" ®A)Q (AT ® A™)
+ 0 (n = D[I+ vec(vec” ()]). (58)
Plugging (58) into (56) and using (49), (52) and (53), (25) is
proved. The proof of (26) follows the same steps as the proof of
(25) using (17) and (19).
Consider now the robust distribution model and let us start to

prove (27) for the conventional MUSIC algorithm. From the asymp-

totic distribution of RY ; def 5 -1ru

1 We deduce that

(59)

v

E[vec(8RY )vec (5RY )] ~ #Rf"
u

for large enough T, where Rr; is given by (20). By vectorization of
(59) and using (51), we get
E[vec(SR;TT) ®vec(SR) 1)]
1
~ To? [91vec(R; ® Ry) + U,vec(R;) ® vec(R,) |- (60)

Using (54), we deduce that (60) is equivalent to

1
E(SRY," ® 8R! ;) ~ W[z%vec(ky)vec” (Ry) + (R, ®Ry) |-
u

(61)

Plugging (61) into (56) where &R 1 is replaced by SR;T and using
(49) and (52), (27) is proved.
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The proof of (28) for the NC MUSIC algorithm begins in the same way, where (60) yields
1
E[vec(SR'yi_TT) ® vec(SRY ;)] ~ To? [91{vec(R; ® Ry)+vec(K(C; @ C;))}+,vec(R;) ® vec(Ry)]. (62)

But now the rest of the proof is more complex because the permutation matrix K comes into (62). To exclude it, we premultiply to the
left (62) by I® K® 1, and thanks to (54), we obtain

T 1 * "k *
vec[E(SRY ;' ® SRY )]~ m[ﬂl {vec(R}) ® vec(Ry)+ (1@ K ® I)vec(K(C; ® C)))}+,vec(R; @ Ry) | (63)
We then prove after some algebraic manipulations, using (49) and (55), that (I® K® I)vec(K(C; ® C;;)) = vec(K(G; ® C;?))- It follows from
(51) that vec(Rj’;) ®vec(Ry) = vec[vec(Ry)vecT (R%)], and hence (63) is equivalent to

1

ECGRY, ® SRY ) ~ To2 [91{vec(Ry)vec" (R]) + K(C; ® C;)} + 92(R; @ Ry) |- (64)
Plugging (64) into (56) and using (49), (52) and (53), (28) is proved.
Appendix B. Proof of relations (37) and (38)

To simplify the derivation of E(g/;‘lgNC (0)), let us introduce M d=efa(9)aH (@) and N d=Efa(9)aT (0) for which we have:

249 (6) = Tr(II; sM)Tr(IT; tM) — Tr(IT3 ;N)Tr(TI, rN*),
which gives with 8H1,T dzef H],T — H] and 81-[2_'[ dZEf HZ,T — H2

E(gr™(0)) = "< (0)
+ 2Tr[E(8 T, 1)M]Tr(IT;M) — 2Re(Tr[E(8 T, 7 )N*]Tr(IT;N))
+ E[Tr(8Ty M) Tr (8114 rM)] — E[Tr(8TT5 :N)Tr (8T, rN*)]. (65)

The first-order terms of (65) are deduced from (31) and (32), which gives from Tr[ﬁ) = 2Tr[II{) = 2N — 2 where a d=3fa(9) (for sake of
brevity)

THESTI, 1)M] ~ %((21\1 _ 2)(a"U,a) — 2Tr(U;) @I, a)

+ (1= DI2N -2)@"Uja) - 2Tr(U)) (@"a)]),
Tr[E(8, 1 )N*] ~ %((21\1 —2)(a"u,a*) — 2Tr(U;)a"" ,a*

+ (n— D[N - 2)(@"Uya*) - 2Tr(U)) (@ Mpa")]).

Introducing these expressions into (65), the first-order terms are given by

2Tr[E(8T11 1)M|Tr(IT; M) ~ %((ZN ~2)(a"U;a)(a"Ma) - 2Tr(U1)(aH1'[13)2 + (- 1)[(2N -2)(a"u,a)(a""M;a) - 2Tr(U'1)(aH1'Ila)2]>’

2Re(Tr[E(8 T, 1 )N*|Tr(IT;N) ~ %((ZN— 2)Re((a"Uya*) (@' M3a)) — 2Tr(Uy ) [a" TLa"|?),
+ (n-1[(2N-2)Re((@"U,a")(a" M3a)) - 2Tr(U) ) [a" M,a*|?]) (67)

The second-order terms of (65) are given by

E[Tr(8T1; M) Tr(8T; tM)] = vec” (M")E(vec(8 T, r)vec (8T, 1))vec(M)

~ %vecT (MT)Cpy, vec(M), (68)

E[Tr(8T15 {N)Tr(8TI2,rN*) | = vec” (N)E(vec(8TT3 ;)vec’ (§T,.r))vec(N*)
~ %vecr (N)Cfj, vec(N*), (69)

where Cp, and Cpy, denote the covariance matrices of the asymptotic distribution of II; 7 and II,r, respectively, deduced from the
covariance matrices Cg of the asymptotic distribution of Iy given from [47] by:

Ci = A+ K(J o)) ((M* e U) + U e ) + (n - DA+ KJ))((T* 0 U) + (U  I)),

that implies:

Cn, = (MeU)+(Ujel)+K[(MTaU;)+ (U, I3)]
+ -D((MeU))+ (U7 e M) +K[(M2 @ Us) + (U, ® T13)]).
Cn, = I+K)(IT; o Up) + (U @ ITy)

+ (1 =-D(A+K) (T o)) + (U, ® TTy)).

12
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Introducing these expressions into (68) and (69) gives after straightforward algebra manipulations

E[Tr(STI; ;M)Tr(SI1; tM)] ~ %((aHU@)(aHl’I]a) + Re[(@"Ua%) (@ IT3a)]
+ (- D[(@"U;a)@"M;a) + Re[@"U5a%) (' M3a)]]). (70)

E[Tr(8T13 ;N)Tr(8TI,,rN") | ~

|

(@"Uy2)@"Ma) + (n - 1)(@"Va)(@"M;a)). (71)

Incorporating expressions (66), (67), (70) and (71) into (65) proves (37). Then (38) follows with the same lines.

Appendix C. Expressions of I1, U and U’

The expression of II, U and U’ are derived from the two non-zero eigenvalues and the associated eigenvectors of the rank

H H
two matrix S=02(a;,ay) a}a:,r _'izz,_,). The non-zero eigenvalues of S are the roots of the quadratic polynomial: A2 —Tr(S)A +
1 2
H H
det |:052 @;aj;fzz,,) (al,az)] which are Ay = ||ag|202(a £ /a2 —y), k= 1,2, with o %114 BRe(p) and ¥ % (1 - |p|?)(1 — B2) where

B defa”a »/N? € [-1,+1] and the associated eigenvectors v;, = [No2(1 +,0*,3) )\k]a1 — llagll202 (p* + B)a,. Plugging these eigenvalues
_ (9% o\ vivi o? 05‘) Vvl r_oof vl ot wvd _ A(AHA)-1AH }
and eigenvectors in U = (M + )”v izt (/\2 + iz an nd U = 2w ”2 + 2 T,z and using IT =1—- A(A"A)~'A", these three ma

trices are deduced after cumbersome but straightforward algebraic mampulatlons

C1. Expressions of hy 1, ha 1, hym, hamhf ,, and b, for ULA

Substitution the general expressions of IT, U and U’ given in Appendix C into (35) yields, after some tedious algebraic manipulation and
with the aid of symbolic algebra and calculus tools, that the terms involved in (39), (40) and (41) are given for arbitrary centrosymmetric
arrays by,

N-2
h],lzmy
By, = TN =2 +1p[* +2BRe(p))

‘ N(1 - B2)(1 - |p]?)? '
ho_ 2 ((N—zmim(Re(m—l)_gm<1+ﬂRe<p>>>
M el -1 (1+B)? N(BZ-1)
P 2n ((N—Z)pf_m(lplzﬂ+ﬂ)—2Re(p)2ﬁ+(ﬂ—l)(ZRE(p)—l))
2T A= (pF-1)2 N(B +1)2

L &mlplPa - ﬂ2)+1+2Re(p)2/82+ﬂ2+4/3Re(p))>

NZ(B2 1)

,_ AN=2) [ pimp;n(Re(p) —1)  p2,(Re(p) +1) 2(1 + BRe(p))hm
1"”_|p|2—1< (B+1)2 CEE >_N(ﬂ2—1)(lp|2—1>’
h/

3 4(N-2) (Pm(lpl (B —1) —2Re(p)’B — (B+1)(2Re(p) + 1))
2M N2 -1D(IpP - 1)2 (B -1)

_ PimPrm(I01P(1+ B) — 2Re(p)*B + (B —1)(2Re(p) — 1)))

(B+1)2

_ 2hm(p2(1 = p?) + 1+ B> +26°Re(p)? + 4&Re(p) B)
N2(B2 —1)%(|p|2 — 1)?

! 2 " H H i
with gy, % ghsc (6,) = <1 ) 2’%2) and hy & ELEO N (% - ) and where = ¢, py = 5", pf , = ¥ and

"
_ agfla

pl,m - N
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Appendix D. Expressions of I1;, I, Uy, Uz, U] and U,

The expression of M, U and U are also derived from the
two non-zero eigenvalues and the associated eigenvectors of the

I ~ ~ A+ pd .
rank two matrix S =o02(a;,3;) Iy’ ~%). The non-zero eigen-
aj +aj
values of S are derived from the roots of the quadratic poly-
~ H /3 ~ ~ . .
nomial: A2 — Tr(S)A + det I:USZ é]"aj’; ig:%,) (al,az):|, which give the
1 2

eigenvalues A; = 2No2(1—B)(1—p) and Ay = 2No2(1+B)(1 +
p), and its associated eigenvectors are V; =a; —a, and V, =
a; +a,. This allows us to deduce the expressions of U=
of ﬂ) v, o (ﬁ ﬁ) v, i _ of W o W
(M t2)Er T \m ) me M V=Rt R
Then the blocks Uy, Uy, U} and U, follow from the block decom-

-, ~ ~ aei?1 — a,ei¢2 » » .
positions of V;VH = Q‘{e—"‘?’l —a;e—"‘f’z (alle i1 —afle :¢z,a{ez¢1 —
) iy 1) . ) .
Teid Tl = (218 02N iy | aHeids aT it
aZel ) and v = Qfe—idﬁ +a§e—i¢2 (ale ! T+aze ! Z’alel T+
agei‘f’z). Similarly the bocks II; and II, follow from I =1-

~ e~ ~ it i
A@R) A" with A= (B1€, 22.0).
je'?1aje™'®2
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