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This paper focuses on a theoretical performance analysis of subspace-based algorithms for the localization
of spatially correlated rectilinear sources embedded in circular complex elliptically symmetric (C-CES)
distributed noise model and also when the observations are non-circular CES (NC-CES) distributed with
dependent scatter matrices on the direction of arrival (DOA) parameters. A perturbation analysis has been
performed to derive closed-form expressions for the asymptotic covariance matrices of DOA estimates
for non-circular subspace-based algorithms in two CES data models. Robustness of subspace-based algo-
rithms is theoretical evaluated using robust covariance matrix estimators (instead of the sample covari-
ance matrix (SCM)). We prove, for the first time, interpretable closed-form expressions of the asymptotic
variance of the estimated DOA of two equi-power correlated sources, which allows us to derive a number
of properties describing the DOA variance’s dependence on signals parameters and non-Gaussian distri-
bution of the noise. Different robustness properties are theoretically analyzed. In particular, we prove in
the framework of NC-CES distributed observations, that Tyler’'s M-estimator enhances the performance
for heavy-tailed distributions w.r.t. the SCM, with negligible loss in performance for circular Gaussian
distributed observations. Finally, some Monte Carlo illustrations are given for quantifying this robustness
and specifying the domain of validity of our theoretical asymptotic results.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Far and near-field narrowband source localization have received
considerable attention over the last two decades (see e.g., [1,2]).
Most of the existing algorithms concentrate on the second-order
statistics of the observations. Originally these algorithms were de-
signed to process complex circular signals, but then they became
interested in mobile communications systems for which the mod-
ulated signals can be complex non-circular (NC). In this case, these
algorithms were based not only on the sample covariance ma-
trix but also on the complementary (or unconjugated) sample co-
variance matrix. The most popular among these algorithms are
the subspace-based algorithms which exploit the orthogonality be-
tween a sample subspace derived from these sample covariance
matrices and a parameter-dependent subspace. However, it has
been proved in [3] that the gain in performance of the subspace-
based algorithms build from these two covariance matrices was
significant only in the particular case of rectilinear (called also
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strictly non-circular or with a non-circularity rate equal to 1) sig-
nals, such as binary phase shift keying (BPSK) and de-rotated offset
quadrature phase shift keying (OKPSK) modulations.

Many studies of subspace-based algorithms have focused on
narrowband NC signal sources in the presence of spatially white
circular complex Gaussian (C-CG) noise. In particular, NC MUSIC
[4], and NC Root-MUSIC [5] algorithms have been proposed for
the DOA estimation problem. A NC standard ESPRIT algorithm has
also been proposed in [6] for shift-invariant arrays, where the DOA
estimates are directly given instead of being found with search
over the DOA space. Then a NC unitary ESPRIT algorithm that
does not require a centro-symmetric array structure, but only the
shift-invariance property with reduced computational complexity
has been introduced in [7]. A performance analysis of different
NC MUSIC-like algorithms in terms of variance and resolution has
been presented in [8,9] under the assumption of stochastic sources.
The NC ESPRIT-like algorithms were also the subject of a perfor-
mance analysis but under the assumption of deterministic sources.
In particular, a gain calculation provided by the NC standard ES-
PRIT, compared to the standard ESPRIT has been developed in
[10] for two uncorrelated sources with maximum phase separa-
tion. A comparison between NC standard and unitary ESPRIT al-
gorithms has been investigated in [11], proving that these two al-
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gorithms have the same asymptotic performance when the signal-
to-noise ratio (SNR) tends to infinite. A MUSIC-like and an ESPRIT-
like algorithms under the co-existence of both circular and non-
circular sources were presented in [12] and [13], respectively. To
process temporally and spatially correlated rectilinear sources, a
signal subspace fitting method has been proposed in [14]. In [15],
a sparse representation technique has been introduced to estimate
the DOA of NC signals. Note that the aforementioned papers re-
late to NC far-field signals, and some research works have been
recently devoted to the localization estimation of near-field [16,17],
and mixed far-field and near-field [18,19] uncorrelated NC signals.

All of the localization estimation algorithms mentioned above
are based on the SCM, and have been studied in C-CG noise envi-
ronment and mainly for uncorrelated sources. But sometimes, this
Gaussian assumption presents a poor approximation of underlying
physics for which noise can be spiky and impulsive i.e., have heav-
ier tails than the Gaussian distribution. In this context, the C-CES
distributions and the subclass of the circular complex compound
Gaussian (C-CCG) distributions (also referred to as spherically in-
variant random vector (SIRV)) (see e.g., [20]) are widely used in
the engineering literature. Similarly, the assumption of uncorrela-
tion of the rectilinear sources is not realistic in the presence of
multipaths. In a non-Gaussian noise environment, these algorithms
may perform poorly, resulting in unreliable DOA estimates. Robust
subspace-based DOA estimation algorithms based on M-estimates
of the covariance matrix rather than based on the SCM have been
introduced (see e.g., [21-23]) to compensate for these poor per-
formances. But these performances have been assessed only by
Monte-Carlo experiments. It is the same for the algorithm [24] in
which the SCM is replaced by a normalized SCM.

The aim of this paper is twofold. First, it is to show that all
the NC subspace-based algorithms built from the SCM designed for
uncorrelated rectilinear sources embedded in spatially white C-CG
noise can be also applied for correlated rectilinear sources in the
contexts of SCM estimate with C-CES noise and M-estimate with
NC-CES observations. Second, it is to extend the asymptotic per-
formance analysis of NC [resp., circular] MUSIC-like DOA estima-
tion algorithms given in [8] for SCM estimate with Gaussian noise
[resp., given in [26] for SCM and M-estimates with circular signals],
to the contexts of SCM estimates with NC deterministic or stochas-
tic sources embedded in C-CES noise and M-estimates with NC-
CES observations. More precisely, closed-form expressions of the
covariance of the asymptotic distribution of the estimated DOA for
different data models are given. This allows us, in particular, to
give for the first time an interpretable closed-form expression of
the asymptotic variance of the estimated DOA of two equi-power
correlated sources to assess the impact of the correlation of the
sources and the non-Gaussian distribution of the noise.

This paper is organized as follows. Section 2 specifies the gen-
eral array data model with correlated rectilinear sources and spa-
tially white noise and describes the two statistical models with
C-CES distributed noise and NC-CES distributed observations. It
ends with a brief review of different NC MUSIC-like algorithms.
Section 3 presents a theoretical asymptotic performance analysis of
these algorithms under the two statistical models. Section 4 gives
interpretable closed-form expressions of the asymptotic variance of
the estimated DOA of two equi-power correlated sources, which
have never been reported in the literature including for circular
sources. Then, some remarks and properties are derived from these
expressions. Numerical illustrations of the performance of these al-
gorithms with Monte-Carlo simulations are given in Section 5. Fi-
nally, the paper is concluded in Section 6.

The following notations are used throughout the paper. Ma-
trices and vectors are represented by bold upper case and bold
lower case characters, respectively. Vectors are in column orien-
tation, while T, H and * stand for transpose, conjugate transpose

and conjugate, respectively. E(.), Det(.), Tr(.), (.)* are the expecta-
tion, determinant, trace and Moore-Penrose inverse, respectively.
vec(-) is the vectorization operator that turns a matrix into a
vector by stacking the columns of the matrix one below another
which is used in conjunction with the Kronecker product AQB as
the block matrix whose (i, j) block element is g;;B and with the
vec-permutation matrix K which transforms vec(C) to vec(CT) for

any square matrix C. The matrix J is the exchange matrix (] [) and
® denotes the element by element matrix product.

2. Data model and problem formulation
2.1. Data model

Consider K zero-mean narrowband signals (X y)x_1 g imping-
ing on an arbitrary array of N sensors. These signals are supposed
rectilinear (also called strictly second-order non-circular), i.e., de-
scribed by the following model:

X =S, x€% with s, real-valued, (1)

where the phases ¢, associated with different propagation delays
are assumed fixed, but unknown during the array observation. The
array output at time t is modeled as

Ve =RAgAgsi+n,, t=1,....T (2)

where Ay def [a1,...,ak] denotes the steering matrix, where each

vector a; is parameterized in a simplified case? by a single real

scalar parameter 6 (with [a,|| not depending on 6;) and A, def

Diag(e1. ..., e#). s & (s,1.....500)7 Where (Si)ic1 kemt T
are either real-valued deterministic unknown parameters (in the
so-called conditional or deterministic model), with sample covari-
ance matrix Ryt = % ZL] sts] (where limp_ o Ry 1 def R exists) or
zero-mean real-valued with finite fourth-order moments of ar-
bitrary distribution and with covariance E(s¢s]) = Ry (in the so-
called unconditional or stochastic model). Unlike previous works,
we assume here that R is unknown non-singular. (y¢),—1 7 are
independent and (m¢);—;
related with (s;;)¢—1 T k=1. x and assumed zero-mean C-CES or C-
CCG distributed with finite fourth-order moments, spatially uncor-
related with E(n;nf') = ¥ = ¢2I. Using the stochastic representa-
tion theorem of these distributions (see e.g., [20, th.3 and def.3]),
n; is distributed as

J9: X'2u, for C-CES distributions,
VT TV?w; for C-CCG distributions, (3)

where Q; and t; are non-negative real random variables, u; and
w; are respectively uniformly distributed on the unit complex
N-sphere and zero-mean C-CG distributed with covariance I, QO
[resp., T¢] and u; [resp., w;] are independent and X is the scat-
ter matrix of the distribution of n;. It is proved in [26] that the
fourth-order moments of n; are characterized by the parameter 7
defined by
RCHN [resp..n = E(t?2)]for C-CES C-CCG] distributi
n= NN+ 1) p..n = E(t/)]for [resp., | distributions,
(4)
for which n =1 for C-CG distribution of n;. We note that E(Q;) =
N, E(tt) =1 and the Cauchy-Schwarz inequality implies:

n> NL—H [resp., n > 1] for C-CES [resp., C-CCG] distributions.
(5)

2 The extension to several parameters as DOAs (azimuth, elevation), range or po-
larization is straightforward.
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To derive subspace-based algorithms exploiting the prior
knowledge of rectilinear sources, the model (2) can be rewritten
according to the following equivalent extended model:

37def[yf]z;:\_c,[+1~1t, t=1.....T, (6)
\A
where A %' [AGA ¢]=[&),.... 3] with 3 < [afe, alfe ] and

fi, &f (n], nH)T Consequently the covariance matrix of the ex-
tended signal ¥; is given by:

def

R; £ EFI) = ARAY + 021 E'S

S+0o7l, (7)
assuming that the 2N x K (with K< 2N) matrix A is of full col-
umn rank, whose subspace generated by its columns characterizes
the DOAs (6, ...,6k). This condition applies to many array struc-
tures including some sparse linear arrays (see e.g., [27,28]). Conse-
quently, all the NC subspace-based algorithms proposed in the lit-
erature in the specific case of uncorrelated rectilinear sources (e.g.,
NC MUSIC-like algorithms [8] and NC ESPRIT-like algorithms [6,7]),
also apply to arbitrary noncoherent rectilinear sources. In particu-
lar the NC MUSIC-like algorithms can be considered as the follow-
ing mapping derived from the extended SCM:

1 e o lg » ~ ~
Ryr = T > OV — My R 0r = (O, ..., Ocn), (8)

t=1
where Il;; denotes the orthogonal projection matrix associated
with the so-called noise subspace of Ry 7 (built from the SVD of

R; 7). The functional dependence 6 = alg(II;; 1) constitutes an ex-

tension of the mapping II; :I—K(T\f\”)*lf\g 0 in the neigh-
borhood of Iy. Each extension alg specifies a particular subspace
algorithm.

2.2. Robust distribution model

To mitigate the loss of performance of subspace-based algo-
rithms for heavy-tailed C-CES distributed noise, the extended SCM
can be replaced by the ML estimate of Ry. However, this estimate
cannot be obtained for arbitrary distributed s; and arbitrary C-CES
distributed n; in (2). To overcome this difficulty, we consider here
an alternative model where the observations y; in (2) are indepen-
dent zero-mean NC-CES [25] identically distributed, with extended
scatter matrix I'; whose p.d.f. is3:

Py = Tyl 259755, (©)

where the function g(.): R* — R* satisfies Sy g def Joo tN=1g(t)dt <

oco. The r.v. y; admits the following stochastic representation [29]:

Ve =q v/ QI 0T %a, (10)
where @; def (uf ,u)T, O and u; are independent, u; is uniformly

distributed on the unit complex N-sphere and 9 has the p.d.f.
P(Qr) = 8301 '8(Qr). (11)

Furthermore, to remove the so-called scale ambiguity, the density
generator g is here constrained such that 8y, ¢/ng = N, or equiv-
alently E(Q;) = N given the 2nd-oder moments exist [20] to ensure
that the extended scatter matrix I'; is equal to the structured ex-
tended covariance matrix Ry in (7).

3 This expression given in [29] is consistent with the one given in [25], because
the normalizing constant is included in the function g.

The ML estimate of Ry in this model is solution of the implicit
equation:

T
Lyr %Z < yTyt)yty[v (12)
where

def 1 dg(t)
vO=-zoa (13)

and it is proved in [26] that the solution T’y of (12) converges in
probability to Ry and can be derived from the fix point algorithm,
given any positive definite Hermitian matrix I'; o and mild regular-
ity conditions on (yq,..., yr) similarly as for the RES distribution
[30].

When the density generator g(.) is unknown, M-estimators have
been proposed to estimate Ry which are also solutions of the im-
plicit Eq. (12), where ¥(.) in 12) is replaced by a real-valued non-
negative weight function u(.) which is not related to a particu-
lar NC-CES distribution. Tyler’'s and Huber’s M-estimators are ex-
amples of such estimators (see e.g., [20, sec.V.C]). Existence and
uniqueness of the solution r;,r of (12) (where (.) is replaced by
u(.)) have been proved for RES distributions, provided that u(.) sat-
isfies a set of general conditions (called Maronna conditions) stated
by Maronna in [31]. These conditions have been extended to C-CES
distributions in [22] and [20]. Under these conditions, it has been
also proved for RES distributions, that the solution of (12) can be
derived by an iterative fix point algorithm [30] and converges in
probability to a matrix proportional to the scatter matrix. Using an
equivalence between RES and NC-CES distributions, theses proper-
ties have been extended to NC-CES distributions [29]. The sequence
T} ; of solutions of (12) converges in probability to l“yE proportional

toy’Ry~ [20, (45)]:

I; = ouRy = 0uTy, (14)

where o, depending on u(.) and the NC-CES distribution of y;,
[29] is solution of

E[u(Q:/ou)Qt/ou] = N. (15)

Note that Tyler’'s M-estimator is also solution of (12) with
weight u(t) = ? does not satisfy Maronna conditions [31]. It is a
distribution-free estimator within the family of CES distributions.
However, it has been proved for RES distributions in [32] and for
C-CES distributions in [33], then extended to NC-CES distributions
in [29], that after normalizing, the solution I'yl{T of (12) converges
in probability to F” Ry, ie, satisfies (14) with oy = 1.

With this new model all the subspace-based (MUSIC or ESPRIT)
algorithms proposed in the literature in the specific case of uncor-
related rectilinear or deterministic rectilinear sources, also apply
to arbitrary noncoherent rectilinear sources by replacing in (8) the
SCM matrix Ry 1 by Iyt

2.3. Subspace-based estimation

We specify some examples of such NC MUSIC-like algorithms
built from IT; ; which is structured [8] as:

(I Myr
Myr = (H;T TT) (16)

where II 7 and II,r are Hermitian and complex symmetric ma-
trices, respectively. The following three NC MUSIC-like algorithms
introduced firstly in [4,8] and [5] for uncorrelated sources, respec-
tively, can fully apply without any changes to the models presented
above. Specifically, the estimated DOA (Gk T)k=1...x given by the
first two algorithms are obtained as the locatlons the K smallest
minima of localization functions:

Ops = argmina® ()M, ra(9) — |a" (O)TL5 ra(®)]. (17)
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6% = argmin (" (0)M1 1a(9))? — (a7 (0)T3 7a(0)) (3" () M2 ),

(18)

where a(6) denotes the parametrized steering vector. For the third
algorithm introduced in [5], the estimated DOAs are given by the
arguments of the roots of a polynomial:

§,fl$3 =arg(z,) withz, K roots,_; of (19)

@'z HMira@)* - (@' @Mz ra@) (" z Hraz "))
closest to the unit circle, (20)

with a(z) &' (1,7, ...,z )T, in the particular case of uniform lin-
ear arrays of generic steering vectors a(9) = (1,e?, ..., el(N-1)0\T
with 6 = 7 sinw, where w is the DOA relative to the normal of
array broadside. Note that this NC root MUSIC algorithm also ap-
plies to nonuniform linear arrays whose sensors are located on a

uniform grid with missing sensors such that there is no ambigu-

ity, for which a(z) def (1,25, ..., z%%1)T where c;,...,cy_; are in-

tegers, associated with a(0) = (1,e1?, ... eitn-19)T  Also note that
the NC root MUSIC algorithm would apply for example to nested
and coprime arrays for the case where the number of rectilinear
sources is strictly less than 2N whether the sources are correlated
or not.

3. Statistical performance of non-circular MUSIC-like
algorithms

3.1. Asymptotic distribution of DOA estimates for C-CES distributed
noise

This subsection is devoted to the theoretical studies of the
asymptotic performance of NC MUSIC-like DOA estimation algo-
rithms presented in Subsection 2.3 for C-CES distributed noise
model given in (3). Following a similar approach to those pre-
sented in [8] and [26], the following result is proved in Appendix:

Result 1. In the stochastic and deterministic models_ presented
in Subsection 2.1, the sequences f(07—0) where 0T are the
DOA estimates given by the three NC MUSIC-like algorithms (17),
(18) and (19), converge in distribution to the same zero-mean
Gaussian distribution with covariance matrix:

Rnc(0) = Ho (APUA) +(n — 1)[H o (AFU'A)], (21)
R;(0)

where Rg(0) is the asymptotic covariance matrix of DOA estimates
for C-CG distributed noise and 7 is a fourth-order noise parame-

ter defined by (4) which takes the unit value for C-CG distributed

noise. U d_Efazs# +or(S *2, U def o4(S*)2 and H is a purely geo-

metric and phase matrix such that:

where

det[DH (6. $i)) D (6. ¢)] > 0 with D6, ) < [a, . &), ]

According to (21), the subspace-based algorithms are robust to
the distribution of the sources, as the performance depends only
on their second-order statistics, whereas the distribution of the
noise can impact the performance because the non-Gaussian ad-
ditive term in (23) is positive for all C-CCG noise distributions
from (5). This includes in particular the circular complex Student ¢t
and generalized Gaussian distributions [20] for which  — 1 is very
large for heavy-tailed distributions. Furthermore this additive term,
which is inversely proportional to the square of the SNR, affects
mainly the performance given in the Gaussian scenario at low SNR
values, as it is illustrated in Section 5.

~ll def ~
;;Q;) < 2a’¢,(l'[ a¢l>0 and Yk =

3.3H
1 13 7 vV
o7 Al and U and U

straightforwardly follow and (23) reduces to the interpretable ex-

pression:
1 (1 1 1 1 1 1

Rng@Or)=— | —+ 555 |t - 1) —— 5, (24

Ne(61) wm[ﬁ z||a1||2r§} A TER AR

For a single rectilinear source, S*=

Re (61)
where Rg(61) is the asymptotic variance of a single rectilinear
2
source derived in [8] for C-CG distributed noise, where r; = Z—lz
n
(with 012 is the power of the source) is the SNR and o4 is the

purely geometric factor ZalH Iya) with aj def d“‘ and II, is the

noise subspace associated with y;.

It is important to quantify the performance gain provided by
extended subspace-based algorithms that exploit noncircularity
compared to conventional algorithms. This is why we consider in
the following the conventional MUSIC algorithm based on y; only
for which from (2):

def def

E(yey!) = Ag(AgRAMDAY + 021 ARAY + 021's + 021 (25)

Please put eq (25) on a single line to ease the readabilitylt is worth
noting that this conventional MUSIC algorithm, does not use the
particular structure of the positive definite Hermitian matrix Ry,
so its asymptotic performance are those of the MUSIC algorithm
applied to circular complex correlated sources, for which the fol-
lowing result has been proved in [26]:

Result 2. In the stochastic and deterministic models presented in
Subsection 2.1, the sequence /T(0; —6), where ; are the DOA
estimates given by the conventional MUSIC algorithm applied to
correlated rectilinear or circular complex sources converges in dis-
tribution to the zero-mean Gaussian distribution with the same co-
variance matrix:

Rc(6) = Re[H o (AUAy)]+(n — 1)Re[Ho (AfU'Ay)],  (26)
—— —

Rq(0)
with Rg(€) is the asymptotic covariance matrix of DOA esti-

S (kk) kD gD _ k10 g*kD 5 ED _ 5k gk g 0D o &k kD 50D
(s == (“w“ee 00 ~ %o Yo.0 Yoo ~ %0.p Yoo Yoo T % ¢¢°‘0¢> (22)
~ kl def def da, x def da
with & ( ) 23/1 (Myds ), 0, j=06,¢ where & | = Z¢, &, = 75 mate for C-CG distributed noise, where U % 628% +54(s#2, U’ &
and 7, def ~(l< g ;sk;;) (a(k kY2 It follows from (21) that the diag- 04(5#)2 and H is a purely geometric matrix such that [H],; =

onals of RNC(Q) give the asymptotlc variances:
~ (k.k) ~ (k.k)

[Rng ()i = —22at0a, +(-1)—223"0a, k=1,....K

R (0) ]k
(23)

—~L_ with o , efa i ajand a, = def da" . It follows further from
o kD‘Il k, (S
(26) the asymptotic variances:

Hu'a,, k=1,....K

1
[Rng (0) ]k = —ajUay +(1
O k

——
Rc (0) ]k
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Furthermore, for a single source, (27) reduces to

1 1 1
ary a2’

RNG<91)=021[1+ ! 1]+<n—1) (28)

rn a2

Re(61)

3.2. Asymptotic distribution of DOA estimates for NC-CES distributed
observations

This subsection investigates the asymptotic performance
of NC MUSIC-like DOA estimation algorithms presented in
Subsection 2.3 for NC-CES distributed observations model pre-
sented in Subsection 2.2. Following a similar approach to those
presented in [8] and [26], the following result is proved in
Appendix:

Result 3. For NC-CES distributed observations, the sequences
VT(0r —0), where 0; are the DOA estimates given by the three
NC MUSIC-like algorithms (17), (18) and (19) built from the M-
estimate I';r, converge in distribution to the same zero-mean
Gaussian distribution with covariance matrix:

D1 o~ o~
Ruc_ces(0) = U—;[H © (AHUA)], (29)
u
where o is solution of (15) and 94 is given by
_ E[u?(Qr/0u) Q] :
M= NNTDA L NN T D)z Vi
cu L E[W (Qr/0u) Q2 /0] (30)

for the M-estimates satisfying Maronna conditions [31], which re-
duces, respectively, for ML M-estimates and extended SCM esti-
mate to

N(N+1)

4 = 31
1.ML E[WZ(Qt)Q?] (31)
and
.sem =1, (32)
and to [33]
N+1
ﬁl.Tyler = Tv (33)

for Tyler’s M-estimate associated with u(t) = ¥

Furthermore, specializing the M-estimates in Result 3 and its
dependent parameters 94, the following result is proved in Ap-
pendix:

260
[Rng () ik = [Re(O) ek + (7 — 1) —22 [(

& (k.K)

20
[Re(0)]iy = —22
yk

Result 4. The NC-CES ML M-estimator dependent asymptotic co-
variance parameter 9q )y (31) is upper bounded by the ones asso-
ciated with Tyler’'s M-estimator (33) and with the extended SCM
estimator (32) as

oM < 1 sems (34)

M < ﬁl.Tylers (35)

and because oy, = 1 for these three M-estimators, (29) gives
RYE ces(0) < RRMees (@) and  RYE 5(0) < R?Qircgs ). (36)

For example, for the NC complex Student t-distribution of
v degree of freedom (0<v <oo) which has finite second and
fourth-order moments, respectively, for v>2 and v >4 (see e.g,
[20, sec. IVA]), ﬁl.ML: N+v/241 and 01.SCM =n= 37:421 [26], and

N+v/2
thus 9 mu/P1seom = 1 — a2
v/2

(N+v/2)(v-2)
(N+v/2)(N+1)

<1 and O m/D1yter=1-
<1. We see that 91,ML/91,SCMQ] for v— oo (i.e.,
the observations tend to be NC Gaussian distributed) but
91ML/%1scm <1 when v approaches 4. This confirms that ex-
tended SCM has poor performance for heavy-tailed distribu-
tions. In contrast, for Tyler’'s M-estimator of the extended covari-
ance matrix, 91mp/%1yler ~1 for N>>1 and arbitrary v. Thus the
NC subspace-based algorithms derived from Tyler’'s M-estimator
are robust to heavy-tailed distributions. For example, for N =5,
l’l,ML/ﬁl.SCM = 0.058 and l?l,ML/ﬂl,Tyler =0.952 for the NC com-
plex Student t-distribution with v = 4.1, whereas ¥4 y1/%1 scm = 1
and B mL/P yler = 0.833 for the NC Gaussian distribution.

Note that the asymptotic performance of the NC subspace-
based DOA estimation algorithms (17), (18) and (19) built from
the ML M-estimator and the extended SCM estimator are NC-CES
dependent through the parameters 3; and 7, respectively. This is
in contrast to Tyler’s distribution-free M-estimator and to an arbi-
trary M-estimator satisfying Maronna’'s conditions [31] for which
the performances depend both on the weighting function u(t) and
the parameter-dependent NC-CES distribution /02

4. Asymptotic variance of DOA estimates for two equi-powered
correlated sources

To derive interpretable expressions from (23), (27) and (29) for
several sources, we consider in this section the particular case of
two equi-power correlated sources, for which interpretable closed-
form expressions for the asymptotic covariance matrices of DOA
estimates are given for both C-CES distributed noise model and
NC-CES distributed observations model.

4.1. C-CES Distributed noise model

For the C-CES distributed noise model of Subsection 2.1, the fol-
lowing result is proved in Appendix:

Result 5. For two equi-power correlated rectilinear sources of cor-
relation p € (—1,1) of power o2 for which Rs = o2 (; #) and SNR

2
r= % (23) reduces to the following interpretable expression:

n

1+p2+25,o> 1 1

(1-B2)(1-p?)? 2||ak||2rz]”<=1y27 (37)

Vi

where

1+p%+2Bp

1 1 1 1
[<1 )it ((1 -Ba —p2>2> 2l ﬂ]”‘ =tz Gy

is the asymptotic covariance matrix of DOA estimate of two equi-
power correlated rectilinear sources for C-CG distributed noise,

5 def ala,
where B = =5+
p fla; a1

€ (—1,1) is a geometric and phase factor.

To the best of our knowledge, it is interesting to note that
for correlated circular complex sources, despite many experimental
studies (see e.g., [34-36]) showing the degradation of performance
of the conventional MUSIC algorithm with the correlation of the
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Fig. 1. Asymptotic variances var(6,r) given by (37)-(38) and (39)-(40) and its associated MSEs versus SNR (and versus DOA separation A6 = |6, — 6;|) for C-CG and circular
complex Student t-distributed noise models with v = 4.1, fixed DOAs and phases with A¢ def |2 — 1] =0.1rd and p = |p’| = 0.5.

sources, no interpretable closed-form expressions of the asymp-
totic variances has been given up to now. This is due to the dif-

ficulty to obtain a simple interpretable closed-form expression of

the Moore Penrose inverse of S % AngAg in (27). But similarly to

Result 5 deduced from Result 1, the following result concerning
the conventional MUSIC algorithm is proved in Appendix:

Result 6. For two equi-power correlated sources of power o2

and SNR r, rectilinear of correlation p € (—1,1) for which Ry =
s def

o2 (pl,* ’{) with p’ € peil®1-42) in (25), or circular of correlation

p’ e C (with |p’| <1) for which also Ry = 032(;,* ﬁ’), (27) reduces

to the following interpretable expression:

1 1+0'|> + 2Re(B*p") 1 1
[Rnc ()] = [Ra (O) i + (17 — U@[( - Bd- |p,|2)2) Tl 72]’
(39)

k=1,2,
where

(R (0) ]k k

_i( 1 )1+ 14 |p'|? 4+ 2Re(B*0") 11
o [ \1=1p)2)r A= (BP)A—=1p'12)? ) llal>r? |

k=1,2, (40)

is the asymptotic covariance matrix of DOA estimates of two equi-
power correlated rectilinear or circular complex sources for C-CG
def alla,

distributed noise, where 8 = Tar T

factor*

e C is a purely geometric

4.2. NC-CES Distributed observations model

For NC-CES distributed observations model, we have
Rnc_ces(0) = %RG(H) from (21) and (29), and therefore, the

following result is deduced from (38).

4 Note that for centro-symmetric arrays (e.g., uniform linear arrays, uniform cir-
cular arrays, cross-based centro-symmetric arrays, square-based centro-symmetric
array [38]), for which the array centroid is chosen as the reference of the phases, 8
is real-valued and thus Re(S8*p’) in (39) and (40) reduces to BRe(p’).

Result 7. For NC-CES observations with two equi-power correlated
rectilinear sources of correlation p of SNR r, (29) reduces to the
following interpretable expression:

oy 24y 1 \1 1+ p%+2Bp 11
sl = 3 55| (1=52) 7+ (=P -p2? ) 2ladP 7 |
k=1,2. (41)

4.3. General comments

This section presents some properties of the asymptotic vari-
ances on DOA estimation in (37)-(41). It explains how asymptotic
variances change as a function of different arrays, signal sources
and noise parameters.

Property 1. Naturally, all the performance degrades dramatically for
strongly correlated sources (i.e., |p|~ 1), because in this case, the sig-
nal subspace is close to being one-dimensional for coherent sources.
Also, from (39)-(40), it follows that the performance of the conven-
tional MUSIC algorithm strongly degrades for close steering vectors a;
and a, (ie, |B|~1 for closely-spaced sources). In contrast, for the NC
subspace-based algorithms (17), (18) and (19), the performance does
not necessarily collapse because

B = |B|cos(¢2 — p1 + £B) (42)
in (37),(38) and (41) which is equal to 1 if both |B| =1 and ¢, —
¢1 + 4B = 2km, k € Z. Phase differences can then compensate for the
closeness of the source’s DOAs because increasing the degree of free-
dom generally improves the source resolution.

Property 2. For orthogonal steering vectors or phases in quadrature,
we have ,3 =0in (37),(38) using (42), and similarly, orthogonal steer-
ing vectors yields B =0 in (39)-(40). Thus it follows that, in both
cases, the asymptotic variances on DOA estimation associated with
NC subspace-based algorithms ((17), (18) and (19)) and conventional
MUSIC algorithm monotonously increase with |p| from p = 0 (uncor-
related sources) to |p|~1 (strongly correlated sources). But when the
extended steering vectors and steering vectors are not orthogonal, the
previous asymptotic variances not necessarily increase monotonously
with |p|. A figure illustrating this situation is given in Section 5.
Regarding the dependence of algorithms performance on array SNR

(ie., ||ay||%r), we observe that for large array SNR, the term —L— is

1-|pl?
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Fig. 2. Ratio between (37) and (38) (denoted by ryc def

dominant in all dependent asymptotic variances expressions (37)-(41)
and thus the asymptotic variances of DOA estimation monotonously
increase with |p| for arbitrary B or B. In contrast, for weak array SNR

2 1+p%+2Bp 1 _
(llagll“r <« 1), the terms ((1752)(17p2)2)2”ak”2r in (37)-(38), (41) and
( 1+]p[+2Re(B*p)

oA - |p|2)2)||a1||2r in (39)-(40) are dominant in (37)-(41) w.r.t.

the term = I =T and thus the purely geometric parameter  and sta-

tistical p are coupled in the expressions of the asymptotic variances
which do not necessarily increase with both B or 8 and |p|.

Property 3. For both orthogonal extended steering vectors [resp., or-
thogonal steering vectors] and uncorrelated sources, the asymptotic
variances of DOA estimation (37)-(38) and (41) [resp., (39)-(40)] are
equal to the asymptotic variance (24) [resp., (28)] given for a sin-
gle source, up to a multiplicative geometric and phase-dependent
factor [resp., purely geometric factor]. This factor is proved to be
strictly larger than 1 for the conventional MUSIC algorithm because

2 orthogonal sources Ol} source 2|a”a | /”alnz < Ot1 source For the

NC MUSIC-like algorlthms many numerlcal experlments for different

Il
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
p

(d) SNR= 20dB, A0 = 0.2rd, A¢ = 0.1rd,

RNC(61)/RNS (61)) as a function of p for different values of SNR, A6, A¢ and v.

arrays of sensors have shown that this factor is also strictly larger
than 1, except for some specific phases for which it is equal to 1.

Property 4. Finally, note that the phase of the correlation fac-
tor p’, which corresponds to A¢ = ¢ — ¢, for rectilinear sources,
can strongly impact the performance, through the term Re(B*p’) =

Bllp’|cos(£Lp’ — 2B) for the conventional I\Z%SIC algorithm in

(39) and (40) and through the terms B and 4”4’ for the NC MU-
SIC algorithm in (37), (38) and (41). We can clearly see that the
asymptotic variances given for the conventional MUSIC algorithm
in (39) and (40) are maximal [resp. minimal] for Zp’ = /B [resp.
/p' = +£m + /B] with the associated largest and smallest asymptotic
variances are obtained by replacing Re(8*p’) in (39) and (40) by
Re(B*p’) = |Bllp’| and Re(B*p") = —|B]||p’|. respectively. In con-
trast the impact of the correlation phase A¢ is more difficult to ana-

lyze for the NC MUSIC algorithm due to the complicated expression of
gkl

the phase and array geometry-dependent term 4’ 4’

(41).
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Fig. 3. Asymptotic variances var(fr) associated with conventional MUSIC [resp.,
NC MUSIC] algorithm given by (40) [resp., by (38)] for C-CG noise model, and by
(39) [resp., (37)] for circular complex Student t-distributed noise model with v =
4.1 and SNR= 20dB.
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Fig. 4. Asymptotic variance var(fr) associated with the conventional MUSIC algo-
rithm given by (40) for C-CG distributed observations, compared to the stochastic
CRB, for different values of A6 with |p’| = 0.95, SNR= 20dB and T = 2000.

Note that this sensitivity on the phase of the correlation seems
to have been overlooked by the numerous performance analysis of
subspace-based DOA estimation techniques such as conventional MU-
SIC algorithm for which this phase has always been assumed zero
or 180° (e.g., in [36]). Whereas, it is known [37] that the correla-
tion phase has a strong effect on the associated Stochastic Cramér-Rao
bound under certain conditions (small aperture arrays, large correla-
tion magnitude and closely-spaced sources).

This phase assumed to be fixed during the array observation is
a highly variable and unpredictable parameter in a multipath envi-
ronment for which it is very sensitive to the difference between the
propagation delays in the direct and secondary paths. Consequently
the asymptotic variances may vary significantly from time to time
and thus the performances are rather given by the mean of these
asymptotic variances. For the conventional MUSIC algorithm (39) and
(40) give:

e 1 1+ [p'|? 1 1
[RnG () ]k = [Re (@) ]k + (0 — 1)m |:<0 1B - |p/|2)2) ENE fz]’
k=12, (43)

where

—_— 1 1 1 1+1p'? 1 1
MRe (e = m[(l = |p/|2>F * ((1 P - |p/|2>2> Tal? ?2]’

k=1,2, (44)

which now clearly monotonously increases with |p’|. For the NC MU-

SIC algorithm, no closed-form expressions is attainable because of the
5 (kK

o
complicated expression of d;f )

5. Numerical illustrations

This section illustrates the dependence of the provided asymp-
totic performance results in Subsection 4 on geometric, phase
and magnitude of sources correlation parameters and on the non-
Gaussian distribution of the noise or of the observation by con-
sidering two illustration parts. Let us assume that K = 2 narrow-
band equal-power rectilinear correlated signal sources with power
o2 impinge on a uniform linear array of N = 6 sensors® separated
by a half-wavelength for which the steering vectors are a(6) =
(1,¢e%, ... elN-DI)T where 6, = 7 sin(wy), k=1,2, with w; is
the DOAs relative to the normal of array broadside. The phases
¢, k=1,2 associated with different propagation delays are as-
sumed fixed, but unknown during the array observation and the

performance depends only on A¢ d§f|¢2 — ¢1|. The SNR is de-
fined as 10log;y(0Z/02) dB. 1000 independent Monte Carlo runs
have been performed where the number of snapshots is fixed at
T =500 to obtain estimations of the mean squared error (MSE)
E(f; — 6;)2.

In the first experiment, the noise n; is either circular complex
Student t-distributed with parameter v >4 to have finite fourth-
order moment for which n = E—j or C-CG distributed (obtained
also for v — oo). We suppose the sources in model (1) consist of
two multipaths issued from two independent BPSK modulated sig-

nals e;; and e, for which we have s;; =e;; and s;, = pe; 1 +

+/1—p2e; ;. The two sources sy; and s, are thus equal-powered
with correlation p.

Fig. 1 compares the theoretical asymptotic variances of DOA es-
timates given by (37), (38) and (39), (40) associated respectively
with SCM-based NC MUSIC algorithm (17) and SCM-based conven-
tional MUSIC algorithm [26], and the corresponding MSEs for the
two previously described noise models. It can be seen from this
figure that the C-CES distributed noise model causes a deeper loss
of performance of the SCM-based MUSIC algorithms for weak SNR
and DOA separation. It may be observed, on the other hand, that
the NC MUSIC SCM-based algorithms outperform the conventional
MUSIC SCM-based algorithm in particular for low DOA separation
as already shown in [8] for C-CG distributed noise. It can be seen
also that the asymptotic variances for the C-CES noise model co-
incide with the one for the C-CG noise model for sufficiently large
values of SNR as predicted by Property 2. On the other hand, these
figures confirm the agreement between the asymptotic variance
and its corresponding MSE associated with both MUSIC SCM-based
algorithms in a large domain of SNR and DOA separation, with a
larger domain for the NC MUSIC SCM-based algorithm.

Fig. 2 illustrates the behavior of the ratio between the asymp-
totic variances (37) and (38) respectively given for C-CG distributed
noise and circular complex Student t-distributed noise as a func-
tion of SNR, correlation factor p, phase separation, and DOA sepa-
ration and Student t-distribution noise parameter v. From Fig. 2(a)-
(b), it can be seen that the asymptotic variances are approximately
equal for sufficiently high SNR, whereas the performance losses of
SCM-based NC MUSIC algorithms become very prominent when

5 except in Fig. 4 in which N is variable.
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Fig. 5. Ratios 1o = ¥y sem/Dime. 11 = D 1yier/P1me and 12 = ¥ sem /D 1yier versus NC complex Student t-distribution parameter v (first column) and versus NC complex
generalized Gaussian distribution parameter ¢ (second column) for different values of N.

SNR and DOA separation decrease and that p increases. Fig. 2(c)
exhibits the dependence of asymptotic variances on the phase sep-
aration A¢. It can be observed that the performance is very sen-
sitive to A¢ for strongly correlated sources (i.e., p~1). Fig. 2(d)
shows that performance degradation is severe for small parameter

v (v—4), ie., for heavy-tailed noise distributions and for strongly
correlated sources (i.e., p~1). Obviously, this ratio tends to 1 for
V — oo (C-CG noise model).

Fig. 3 illustrates Property 2 which shows that for A8 = 0.002rd

and A¢ =0.02rd associated with 8 =0.9997 and 8 = 1.0000 +
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Fig. 6. Circular and NC stochastic CRBs, asymptotic variances given by (29) and
[26, Eq. (34)] and associated MSEs versus SNR for NC complex generalized Gaus-
sian distributed observations with exponent ¢ = 0.2, fixed DOAs and phases with
AB =0.25(rd) and A¢ =0.2(rd), and p = |p’| = 0.5.

0.0049i, the asymptotic variances are not necessarily increasing
functions of |p|.

Finally, Fig. 4 examines the strong dependence of the per-
formance of the conventional MUSIC algorithm on the phase of
the correlation, by plotting the corresponding asymptotic variance
given by (40) for C-CG distributed observations as a function of
¢<p' for different values of Af with |p’| =0.95. To better un-
derstand the effect of ~p’, we also plot the associated stochas-
tic Cramér-Rao bound (CRB) derived in [35] for C-CG distributed
observations. It can be clearly seen, as predicted by Property 4,
that the asymptotic variance of the conventional MUSIC algorithm
which depends on the geometric phase term /8 = (N—1)A8/2
is maximal [resp., minimal] for £p’ = 28 [resp., Zp' = /B + 7]
and consequently the curses are shifted to the right when A# in-
creases. Furthermore, we note that the corresponding largest and
smallest asymptotic variances respectively remain closer to the
CRB. Under these conditions, the conventional MUSIC algorithm is
asymptotically efficient despite a very strong correlation, whereas
this algorithm has always been considered inefficient for strongly
correlated sources and a low number of sensors (see e.g., [35]). The
corresponding asymptotic variance of MUSIC and CRB obviously
increase when A6 decreases and note that the correlation phase
strongly affects the CRB compared to the impact on the corre-
sponding asymptotic variance of MUSIC algorithm which is lower.

In this second experiment, we assume that the observations
y: follow either a NC complex Student t-distribution with param-
eter v >4, which has heavier tails than the Gaussian, or a NC
complex generalized Gaussian distribution with exponent ¢ > 0 for

N+1

. T'(N/2)T ((N+2 :
which 91 v = ¥} and 9 sem =17 = %%ﬁ&m [26] with

¢ =1, ¢ <1 and ¢ >1 referring respectively to the NC-CG distri-
bution, to NC super-Gaussian and NC sub-Gaussian distributions.
These distributions have a structured extended covariance ma-
trix Ry given by (7), for which the robustness of the non-circular
subspace-based DOA estimation algorithms using robust covariance
matrix estimators is evaluated.

To supplement our discussion below Result 4, Fig. 5 il-
lustrates the robustness of NC MUSIC DOA estimation al-
gorithms based on the ML M-estimator with respect to
the ones based on Tyler's M-estimator and SCM estima-

) i def
tor, by plotting the ratios ro = [RSM s (0)]1.1/[RME s (@)]11 =

P1.sem/P1mLs T1 ‘jéf[RL%lEFCES (0)]1.1/RNE s (D) ]1.1 = D1 1y1er/P1.mL

def .
and rp € [REM o (0)]1 .1/ [R5 ()11 = P1.scm/ P 1yer for dif-

ferent values of N, versus v and ¢, respectively. From Fig. 5(a)-

(c) and (b)-(d), we observe that NC MUSIC DOA estimation al-
gorithm based on ML M-estimator outperforms the ones based
on the SCM estimator and Tyler's M—estimator as predicted by
Result 4, but both ratios r; tend to 1 when N— oo and there-
fore, the NC MUSIC DOA estimation algorithms based on the ML
M—estimator provided similar performance as the ones based on
Tyler's M—estimator as N increases. For small values of N, both ra-
tios ry increase when the distribution moves away from the Gaus-
sian distribution, i.e., for v decreasing and ¢ moving away from 1.
As a result, the performance of the NC MUSIC DOA estimation al-
gorithms based on the SCM degrade when the distributions move
away from the Gaussian distribution. By contrast, both ratios ry in-
crease when v and ¢ increase, being very large only for large ¢
(i.e., for light-tailed distributions). From Fig. 5(e) and (f), we see
that the NC MUSIC DOA estimation algorithms based on Tyler’s
M—estimator have much better performance than the ones based
on SCM for heavy-tailed distributions (i.e., for v close to 4 and
small values of ¢), whereas the performance is poorly degraded
for the Gaussian distribution (i.e., for v = oo, { = 1). But note that
the Tyler’'s M—estimator significantly degrades the performance for
strongly light-tailed distributions (i.e., for ¢ > 1). Fig. 6 compares
the NC stochastic CRB derived in [25] and circular stochastic CRB
derived in [39] and [40], to the asymptotic variances of DOA es-
timates (41) and [26, Eq.(34)] obtained, respectively, with the NC
MUSIC algorithm (17) and conventional MUSIC algorithm based
on SCM estimator (i.e., ty = ¢ scm = 1) and ML M-estimator (i.e.,
¥ = ¥y M), and the corresponding MSEs. From this figure, we can
observe the good agreement between the theoretical asymptotic
variance associated with the NC MUSIC algorithm and its corre-
sponding MSE for a wide range of SNR values, whereas the the-
oretical asymptotic variance associated with conventional MUSIC
algorithm and its corresponding MSE are in good agreement only
at high SNR. Here again, it can be noted that the performance of
the NC MUSIC algorithms exploiting the non-circularity property
of the observations outperforms those of the conventional MUSIC
algorithm build only from a SCM of (25). It can also be observed
that the NC MUSIC algorithms based on M-estimate are asymptoti-
cally efficient compared to the CRB for a wide range of SNR values,
which is not the case for the conventional MUSIC algorithm which
is asymptotically efficient at high SNR.

6. Conclusion

This paper has shown that all the NC subspace-based algo-
rithms built from the SCM designed for uncorrelated rectilinear
sources embedded in spatially white C-CG noise can be also ap-
plied for correlated rectilinear sources in the contexts of SCM esti-
mate with C-CES noise and M-estimate with NC-CES observations.
A perturbation analysis has been performed to derive closed-form
expressions for the asymptotic covariance matrices of DOA esti-
mates for three NC MUSIC-like algorithms in two CES data models.
Interpretable closed-form expressions of the asymptotic variance of
the estimated DOA of two equi-power correlated sources has been
derived for the first time. A number of properties that highlight
how the asymptotic variances of NC MUSIC-like DOA estimation al-
gorithms depend on key parameters such as SNR, DOA, phase and
magnitude of the correlation and C-CES noise parameters were de-
rived. These results were compared with those of the conventional
MUSIC DOA estimation algorithm, and a significant gain was quan-
tified for relatively small DOA separation when using non-circular
signals. Analytical robustness results were illustrated via several
numerical examples using robust covariance matrix estimators in-
stead of the SCM, proving that the use of robust M-estimators en-
hances the robustness of the subspace-based DOA estimation algo-
rithms against heavy-tailed NC-CES observations model deviations,
with negligible loss in performance for NC-CG distributed observa-
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tions. Finally, we note that the presented methodology also applies
to the asymptotic performance analysis of the NC ESPRIT-like algo-
rithms in the contexts of SCM estimates with NC deterministic or
stochastic sources embedded in C-CES noise and M-estimates with
NC-CES observations.
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Appendix A

Proof of Result 1. Using the central limit theorem applied to the
independent identically distributed complex r.v. vec(§:§') =y ®
§:. the sequence v/T(vec(Ryr) — vec(Ry)) is asymptotically zero-
mean Gaussian distributed with covariance R; and complemen-
tary covariance Cry =RyK. Thanks to simple algebraic manipula-
tions, we obtain

R, = (A" @ AR, (A" @ A") + (A'RAT) @ R; + R; © (ARA")
+K[(ARAT) @ (JR;) + (R:) ® (A'RAM)] +R,,,  (A45)

where R;; = 0,121, Ry, is the covariance of s;®s; (which is zero in the
deterministic model) and Ry, is the covariance of fif ® fiy, which
is simplified for both C-CES or C-CCG distributed n; (3) through
simple algebraic manipulations as:

R, =oHIoD+KJe))+@n-DdeD +KJa)) + vec(l)vecT((A)]}A

46)
Please put eq (A46) on a single line to ease the readabilityUsing
the standard theorem of continuity (see e.g., [41, p.122]) on regular
functions of asymptotically Gaussian statistics applied to the map-
ping Ry +— II;r, we obtain similarly to [8, Th.3], that the se-
quence f T(vec(Iy7) — vec(Tly)) converges to a zero-mean Gaus-
sian distribution with covariance Ry, and complementary covari-
ance Cﬂy. = Rny.l( given by

Ry, = A+ K(J o)A @ I)) + (I} & U)
+( - DA+KJ N[O @ Iy) + (M} @ U').

Then applying again the standard theorem of continuity to the

(A47)

mapping (8) Iy na—lg>57, we obtain similarly to [8, Th.5], that
the sequence of the DOA estimates /T (@T — 60) asymptotically con-
verges to a zero-mean Gaussian distribution, whose covariance is
deduced and Result 1 is proved thanks to algebraic manipulations
similar to those developped in [8] and [26]. O

Proof of Result 3. The proof is based on the asymptotic distri-
bution of vec(Il; ;) associated with the M-estimate I';_T. In [29,
Res.1], it is proved that the sequence v/T(vec(Ily ) — vec(Ily)) is
asymptotically zero-mean Gaussian distributed with covariance R,
and complementary covariance G, =RyK given by

4 ~ ~
Ry, = S (+KJe)IU e M) + (M7 0 U)) (A48)
u
where 94 is given by (30) and o, is solution of (15). Applying again

o . 1
the standard theorem of continuity to the mapping (8), I ¢ 8

57, the first part of Result 3 is proved.
For the ML M-estimates E[v/ (Q;)Q;] = N from (13) and (11) and
thus o, = 1 from (15). Consequently, (30) reduces to

N(N + 1)E[¥2(Q:) 9]

(N(N+1) +E[¥' (@) @D (A49)

1=

Using the p.d.f. (9) of the r.v. O, we straightforwardly get:

E[v2(Qr) Q%] — E[y (Qt)Qt]_/ 5. Nﬂd&g(zq) 0

where

/ Sng N+1ddgq(2q)dq: |:8[;}gqN+1 di(;])] (N+1)/ 5y 1 ng(Q)
0

The second term can be simplified as follows
dg(q) o

/ Snpd" g q —===dq = [8y,9"g(@)]5 —N/O yzd"'g(q)dg = —N,
because  limg_. gN*1 d‘%—(;) =limg.q¥g(q) =0 using the
fact that the fourth-order moment of Q¢ is assumed fi-
nite and  [5° SNgqN lg(q)dg=1. Hence, E[Y?(0;)Q?] =
N(N +1) +E[¢/(Q)Q?], and using (A.49), (31) is proved.

Because the extended SCM is the M-estimate associated with

u(t) =1 for which ¢, =0 and oy, =1, and thus ¢; =n from
(4) and (30). O

Proof of Result 4. First note that using the p.d.f. (11) of the r.v. O,
we getPlease put eq above on two lines to ease the readability

dg(q)
dq

Sypa"g(@)dqg = (N+ 1)E(Q) = N(N+1),

Bl (0002 = - [ ika™ B dq = (310" s @)l

+w+n/
0
because limg_.» q¥*1g(q) = 0 using the fact that the fourth-order

moment of Q; is assumed finite and E(Q;) = N. The Cauchy-
Schwarz inequality yields

N?>(N+ 1) = (E[¥ (Qr) Q?])* < E(QP)E[¥2(Q:) Q2]
and thus

S1aaL = N(N+1) - E(Q?) _n

' E[¥2(Q1)Q?] ~ N(N+1)

The proof of (35) follows immediately from the Cauchy-Schwarz
inequality which gives E[(y (Q;)Qr)?] = (E[v/(Q:)Q:])? = N? using
E(¥(Qr)Qr) =N from (15). O

Proof of Result 5. To give the expression of U and U in (23) for
two equi-powered sources, amounts to deriving the two non-
zero eigenvalues and the associated eigenvectors of the rank

two matrix S = o2, az)(aLﬁp;;,). The non-zero eigenvalues of

S are derived from the roots of the quadratic polynomial: A2 —

Tr(S)A +det[02(aL;fr’:g,)(51,52)], which give the eigenvalues A; =

2)lalI202(1 - B)(1 - p) and A =2||ay[I>62(1 + B)(1 + p). Asso-
ciated eigenvectors are v; =a; —ap and v, _31 +a2 This al-

. ~ 2 vyvi
lows us to deduce the expressions of U = (K—’; )H‘: le +(
4 H
o\ Vavy , o4 vlv vzv ~q
Sn and U/ =2 and then of aHUa, and
2 ) T B+ gt koK

sgﬁ/sk, w.L.t. the parameters 02, o2, p and B. Plugging these ex-
pressions into (23) proves Result 5. O

Proof of Result 6. The expression of U and U’ in (27) for

two equi-powered sources are also derived from the two non-

zero eigenvalues and the associated eigenvectors of the rank

a}f,f % ). The non-zero eigenvalues of
a +a

S are also the roots of the quadratlc polynomial: A% — Tr(S)A +
det[az(a}*:ﬁ) ZZH)(al a,)] which are Ay = ||ag]|202 (@ £ /a2 —y),

k=12, with o« %11 Re(0/8*) and ¥ ¥ (1 - 1p/12)(1 - |B81?)

and the associated eigenvectors vy = [||ai[|262 (1 + p*B) — AiJa; —

two matrix S =o2(a,ay)(
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llagll2oZ (o™ + B*)ay. Plugging these eiger;values and eigen\}sec—

vivy o | of\ Vavy ) of v
+ (& + 5 and U' =%

lIvi112 (/\z Ag)ll‘lzll2 22 vl

and after cumbersome, but straightforward algebraic ma-

. 2 4
tors in U= (5% + %) +
1

of vl
72 T, 12
nipulations, expressions ai’Uak and aﬂ’U’ak w.r.t. the parameters
02, 02, p and B are deduced and Result 7 is proved. O
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