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a b s t r a c t 

Linear beamformers are optimal, in a mean square (MS) sense, when the signal of interest (SOI) and ob- 

servations are jointly Gaussian and circular. Otherwise, optimal beamformers become non-linear with a 

structure depending on the unknown joint probability distribution of the SOI and observations. In this 

context, third-order Volterra minimum variance distortionless response (MVDR) beamformers have been 

proposed recently to improve the performance of linear beamformers in the presence of non-Gaussian 

and potentially non-circular interference, omnipresent in practical situations. High performance gains 

have been obtained for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) in- 

terference having a square pulse shaping filter in particular. However in practice, for spectral efficiency 

reasons, most of signals use non-square pulse shaping filters, such as square root raised cosine filter. It is 

then important to analyze the sensitivity of third-order MVDR beamformers to interference pulse shaping 

filter, which is the purpose of this paper. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Beamforming plays an important role in many applications

uch as radar, sonar, satellite communications, radiocommunica-

ions, acoustic or spectrum monitoring [1] . It allows to optimize,

y a linear filtering of the observations, the reception of a SOI

otentially corrupted by interference. The most popular receive

eamformer has been introduced by Capon et al. [2] at the end of

he sixties and corresponds to the MVDR beamformer. Its imple-

entation only requires the a priori knowledge or estimation of

he steering vector of the SOI, hence its great interest for spectrum

onitoring or passive listening in particular. It corresponds to a

articular case of linearly constrained minimum variance (LCMV)

eamformer [3] whose equivalent unconstrained form is the

eneralized sidelobe canceller (GSC) introduced in [4] . 

Nevertheless it is now well-known [5] that the optimal

eamformer, in a MS sense, whose output corresponds to the con-

itional expectation of the SOI with respect to the observations, is
∗ Corresponding author. 
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inear only when the SOI and the observations are jointly Gaussian

nd circular [6] . When the SOI and observations are zero-mean,

ointly Gaussian but non-circular, the optimal beamformer be-

omes WL [5] . For this reason, several WL MVDR [7–9] and WL

MSE [9,10] beamformers have been introduced recently to im-

rove the performance of Capon beamformer for SO non-circular

nterference. In the more general case of non-Gaussian obser-

ations, omnipresent in practice, optimal beamformers become

on-linear with a structure depending on the unknown joint

robability distribution of the SOI and observations. In this con-

ext, third-order Volterra MVDR beamformers have been proposed

ecently [11] for small-scale systems, to improve the performance

f Capon beamformer in the presence of non-Gaussian and poten-

ially non-circular interference, omnipresent in practical situations.

igh performance gains have been reported for Bernoulli-based

mpulsive interference and for BPSK and QPSK interference having

 square pulse shaping filter in particular. However in practice,

or spectral efficiency reasons, most of signals use non-square

ulse shaping filters, such as square root raised cosine filter. It

hen becomes important to analyze the sensitivity of third-order

VDR beamformers to interference pulse shaping filter, which is

he purpose of the paper. 
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Section 2 introduces the observation model, recalls the struc-

ture and implementation of the third-order Volterra MVDR

beamformers introduced in [11] and formulates the problem

addressed in this paper. Section 3 presents, for a discrete time im-

plementation of the previous beamformers, the asymptotic second

order (SO), fourth order (FO) and sixth order (SIO) time-averaged

statistics of an interference having an arbitrary pulse shaping fil-

ter. Sections 4 and 5 analyze the impact of the interference pulse

shaping filter on the steady state and finite samples performance

of the third-order Volterra MVDR beamformers respectively.

Finally, Section 6 concludes this paper. 

The following notations are used throughout the paper. Matri-

ces and vectors are represented by bold upper case and bold lower

case characters, respectively. Vectors are by default in column

orientation, while T, H and 

∗ stand for transpose, conjugate trans-

pose and conjugate, respectively. E(.) is the expectation operator.

Diag ( A 1 , . . . , A q ) represents a block diagonal matrix of diagonal

elements A 1 , . . . , A q . � denotes the Kronecker product and A 

�q 

means A � A . . . � A with q − 1 Kronecker products. 

2. Observation model, third order Volterra MVDR beamformers 

and problem formulation 

2.1. Observation model 

We consider an array of N narrowband sensors and we denote

by x ( t ) the vector of the complex amplitudes of the signals at

the output of these sensors. Each sensor is assumed to receive

the contribution of an SOI corrupted by a digitally and linearly

modulated interference, omnipresent in the context of spectrum

monitoring of radiocommunications networks in particular, and a

background noise. Under these assumptions, the N × 1 observation

vector x ( t ) can be written as follows 

x (t) = s (t) s + μe iφ
∑ 

k 

a k v (t − kT − τ ) j + e (t ) 
def = s (t ) s + j(t) j 

+ e (t) 
def = s (t) s + n (t) ∈ C 

N . (1)

Here, s ( t ) and s correspond to the complex envelope, assumed

zero-mean, and the steering vector, assumed perfectly known, of

the SOI respectively. The a k ’s are i.i.d. zero-mean random variables

corresponding to the symbols of the interference, T is the symbol

duration, τ ∈ [0, T ) is the initial sampling time, v ( t ) is a receive

real-valued pulse shaping filter, μ and φ are constants controlling

the amplitude and phase of the interference of unknown steering

vector j , respectively. The vector e ( t ) is the background noise

vector assumed to be zero-mean, stationary, Gaussian circular and

spatially white, whereas the vector n ( t ) is the total noise vector,

containing the background noise and the interference. The SOI,

the interference and the background noise are assumed to be

statistically independent to each other. 

2.2. Third-order Volterra MVDR beamformers 

2.2.1. Presentation 

We briefly recall the principle and structure of the third order

Volterra MVDR beamformers introduced in [11] . These beamform-

ers consist in estimating s ( t ) from x ( t ) without any knowledge on

the distribution of s ( t ) and n ( t ). The optimal estimate of s ( t ) in a

mean square (MS) sense from x ( t ) is the conditional expectation of

s ( t ) with respect to x ( t ), defined by ̂  s MMSE (t) = E[ s (t ) / x (t )] . which

requires the knowledge of the probability distribution of ( s ( t ),

x ( t )) or ( s ( t ), n ( t )). As the latter is generally unknown in practice,

sub-optimal approaches must be considered. One such approach,

exploiting the probability distribution of n ( t ) only, consists in

considering the beamformer generating the minimum variance
MV) estimate of s ( t ) with no distorsion, called MVDR beam-

ormer. This beamformer is generally a non-linear function of x ( t )

epending on the probability distribution of the total noise only.

s this distribution is unknown in practice, we have proposed

n [11] to approximate this MVDR beamformer by third-order

olterra MVDR beamformers. The output of a third-order Volterra

eamformer is defined by 

 (t) = w 

H 
1 , 0 x (t) + w 

H 
1 , 1 x 

∗(t) + w 

H 
3 , 0 [ x (t) �x (t) � x (t)] 

+ w 

H 
3 , 1 [ x (t) �x (t) � x 

∗(t)] 

+ w 

H 
3 , 2 [ x (t) �x 

∗(t) � x 

∗(t)] 

+ w 

H 
3 , 3 [ x 

∗(t) �x 

∗(t) � x 

∗(t)] 
def = 

˜ w 

H ˜ x (t) . (2)

ere, w 1,0 and w 1,1 are N × 1 spatial filters and w 3, q (0 ≤ q ≤ 3)

re N 

3 × 1 spatial filters, and ̃

 x (t) and 

˜ w are (2 N + 4 N 

3 ) × 1 vec-

ors defined by ˜ x (t) 
def = [ x T (t) , x H (t) , (x (t) �x (t) � x (t)) T , (x (t)�

 (t) � x ∗(t )) T , (x (t ) �x ∗(t) � x ∗(t)) T , (x ∗(t) �x ∗(t) � x ∗(t)) T ] T 

nd 

˜ w 

def = [ w 

T 
1 , 0 

, w 

T 
1 , 1 

, w 

T 
3 , 0 

, w 

T 
3 , 1 

, w 

T 
3 , 2 

, w 

T 
3 , 3 

] T , respectively. Ex-

ression (2) defines in fact the output of several beamformers

epending on the potential zero or non-zero values of some

patial filters. In the presence of r cubic terms (1 ≤ r ≤ 4)

aving the index q j (1 ≤ j ≤ r ), (0 ≤ q j ≤ 3), the beamformer

2) is called L-C (q 1 , q 2 , . . . , q r ) if the first order part is linear or

L-C (q 1 , q 2 , . . . , q r ) if the first order part is WL. 

To impose no distorsion on s ( t ) at the output y ( t ), a set of lin-

ar constraints on 

˜ w , on the form C 

H ˜ w = f , has been imposed in

11] , where C is a (2 N + 4 N 

3 ) × (2 + 4[ N 

3 − (N − 1) 3 ] matrix and

 = (1 , 0 T 
1+4[ N 3 −(N−1) 3 ] 

) T . Note that for arbitrary L-C (q 1 , q 2 , . . . , q r )

r WL-C (q 1 , q 2 , . . . , q r ) beamformers, the dimensions of C , ˜ w and

 are adjusted accordingly. The best SO estimate (2) of the SOI s ( t )

xploiting the noise statistics only, thus corresponds to the output

f the third-order Volterra beamformer ˜ w MVDR which minimizes

he time-averaged output power, ˜ w 

H R ˜ x ̃  w under the previous

onstraint, 

˜ 

 MVDR = arg 

{ 

min 

C H ˜ w = f ̃
 w 

H R ˜ x ̃  w 

} 

. (3)

here R ˜ x 
def = <E[ ̃  x (t) ̃  x H (t)]> c and where < . > c corresponds to

he continuous time-averaged operation over an infinite time du-

ation. To solve this problem, the redundancies of ̃  x (t) , appearing

or N > 1, must be removed and the constraints must be read-

usted accordingly. It is proved in [11] that this constrained opti-

ization problem can be transformed to an unconstrained one, by

sing the following equivalent third-order Volterra GSC structure,

or which the redundancies of the observations can be easily with-

rawn. Here, w f is a N × 1 spatial filter such that w 

H 
f 

s = 1 , B 1 , 0 
def= 

 u 1 , . . . , u N−1 ] where (s , u 1 , . . . , u N−1 ) is an orthogonal basis of C 

N ,

 

 (t) 
def = B 

H ˜ x (t) with B 

def = Diag (B 1 , 0 , B 

∗
1 , 0 

, B 3 , 0 , B 3 , 1 , B 3 , 2 , B 3 , 3 ) where

 3 ,q 
def = B 

�(3 −q ) 
1 , 0 

� B 

∗�q 
1 , 0 

, (0 ≤ q ≤ 3), K is the N z × [2(N − 1) + 4(N −
) 3 ] selection matrix selecting the non-redundant components

f ˜ z (t) , where N z = 2(N − 1)(2 N 

2 − N + 3) / 3 , ˜ z ′ (t ) 
def = K ̃

 z (t ) and

˜ 

 

′ 
a, opt 

def = arg { min ˜ w 

′ 
a 

< E | w 

H 
f 

x (t) − ˜ w 

′ H 
a 

˜ z 
′ 
(t) | 2 > c } is defined by 

˜ 

 

′ 
a, opt 

def = 

[
KB 

H R ˜ x BK 

H 
]−1 

KB 

H R ˜ x ̃  w f = 

[
KB 

H R ˜ n BK 

H 
]−1 

KB 

H R ˜ n ̃  w f , 

(4)

 ˜ n 
def = <E[ ̃  n (t) ̃  n 

H (t)]> c and 

˜ n (t) is defined as ˜ x (t) with n ( t ) in-

tead of x ( t ). Again, note that for arbitrary L-C (q 1 , q 2 , . . . , q r ) or

L-C (q 1 , q 2 , . . . , q r ) beamformers, the dimensions of ˜ x (t) , B, K

nd 

˜ w 

′ 
a, opt must be adjusted accordingly. 
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Fig. 1. Equivalent third-order Volterra GSC structure. 
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.2.2. Adaptive implementation 

One adaptive implementation of ˜ w 

′ 
a, opt may consist in using

n extension of the sample matrix inversion (SMI) algorithm [12] ,

.e., to replace in (4) R ˜ x by an empirical estimate, ̂ R ˜ x , obtained

rom the K observation snapshots, ̃  x (kT e ) , where T e is the sample

eriod, and given by 

 

 ˜ x = 

1 

K 

K ∑ 

k =1 

˜ x (kT e ) ̃  x 

H (kT e ) 
def = < ̃

 x (kT e ) ̃  x 

H (kT e )> d,K . (5)

here < . > d,K corresponds to the discrete time-averaged oper-

tion over K samples and where < . > d, + ∞ 

is denoted by < . > d . 

.3. Problem formulation 

We consider the observation model (1) for which the inter-

erence is digitally and linearly modulated with a symbol period

 , arbitrary receive pulse shaping filter v ( t ) and initial sample

ime τ . Moreover, we assume that the third-order Volterra MVDR

eamformers recalled in Section 2.2 are implemented through

he third-order Volterra GSC structure depicted at Fig. 1 , where

he ̂ R ˜ x matrix (or a part of it for arbitrary L-C (q 1 , q 2 , . . . , q r ) or

L-C (q 1 , q 2 , . . . , q r ) beamformers) is estimated by ̂ R ˜ x defined

y (5) . We assume that the interference is potentially oversam-

led, i.e., that T e = T /p where p is an integer such that p ≥ 1.

nder these assumptions, the problem which is addressed in

his paper consists to analyze the impact on both the steady

tate ( K infinite) and practical ( K finite) performance of these

eamformers of the parameters v ( t ), τ and p . For this purpose,

hree filters v ( t ), corresponding to a square, a root raised cosine

1/2 Nyquist) and a raised cosine (Nyquist) [13] filters with a

oll-off ω are considered, where the square filter is such that

 (t) = 1 for −T / 2 ≤ t ≤ T / 2 and v (t) = 0 otherwise. Note that

he choice in (1) of a square or a 1/2 Nyquist filter v ( t ) may

orrespond to a spectrum monitoring context for which the SOI

as the pulse shaping filter v ( t ) and is received through an ideal

eception filter around the SOI. Besides, the choice in (1) of a

yquist filter v ( t ) may correspond to a radiocommunication con-

ext for which the SOI has a 1/2 Nyquist pulse shaping filter and

s received through a matched filter to this pulse shaping filter.

ote finally that for cycloergodic observations (1) and p → ∞ ,

 ̃

 x (kT e ) ̃  x H (kT e ) > d → < ̃

 x (t) ̃  x H (t) > c = < E[ ̃  x (t) ̃  x H (t)]> c 
def = R ˜ x . 

. Asymptotic SO, FO and SIO time-averaged statistics of the 

nterference 

Matrix R ˜ n appearing in (4) contains the continuous time-

veraged SO, FO and SIO statistics of the total noise ˜ n (t) . Its

stimate, ̂  R ˜ n , defined by (5) with ̃

 n (t) instead of ̃  x (t) , contains the

iscrete time-averaged SO, FO and SIO statistics of ˜ n (t) . For this

eason, in order to compute, in Section 4 , the steady-state perfor-

ance of third-order Volterra MVDR beamformers implemented

hrough (5) , we compute in this section the normalized asymptotic

 K infinite) discrete time-averaged SO, FO and SIO statistics of ̃  n (t) .
hese normalized asymptotic statistics correspond to the FO and

IO circular and SO, FO and SIO non-circular coefficients of j ( t ). 

The real-valued FO and SIO circular coefficient of j ( t ) are simply

enoted by κ j,c and χ j,c , respectively, defined by 

j,c 
def = 

<E | j 4 (kT e ) | > d (
< E | j 2 (kT e ) | > d 

)2 
and χ j,c 

def = 

< E | j 6 (kT e ) | > d (
< E | j 2 (kT e ) | > d 

)3 
. (6) 

he generally complex-valued SO, FO and SIO non-circular co-

fficients of j ( t ) are simply denoted by γ j , κ j,nc,i and χ j,nc,i ,

espectively, defined by 

j 
def = 

< E[ j 2 (kT e )] > d 

< E | j 2 (kT e ) | > d 

, (7) 

κ j,nc,i 
def = 

<E[ j 5 −i (kT e ) j ∗(i −1) (kT e )]> d (
< E | j 2 (kT e ) | > d 

)2 
, i = 1 , 2 , and 

j,nc,i 
def = 

< E[ j 7 −i (kT e ) j 
∗(i −1) (kT e )]> d (

< E | j 2 (kT e ) | > d 

)3 
, i = 1 , 2 , 3 . (8) 

sing the definition of j ( t ) in (1) into (6)–(8) , we obtain: 

j = e i 2 φγa , (9) 

j,c = κa,c r v , 1 + 

(
2 + | γ 2 

a | 
)
r v , 2 , (10)

j,nc, 1 = e i 4 φ
(
κa,nc, 1 r v , 1 + 3 γ 2 

a r v , 2 
)
, 

j,nc, 2 = e i 2 φ( κa,nc, 2 r v , 1 + 3 γa r v , 2 ) , (11) 

j,c = χa,c r v , 3 + 

(
3 γa κ

∗
a,nc, 2 + 9 κa,c + 3 γ ∗

a κa,nc, 2 

)
r v , 4 

+ 

(
9 | γ 2 

a | + 6 

)
r v , 5 , (12) 

j,nc, 1 = e i 6 φ
(
χa,nc, 1 r v , 3 +15 γa κa,nc, 1 r v , 4 +15γ 3 

a r v , 5 
)
, (13) 

j,nc, 2 = e i 4 φ
[
χa,nc, 2 r v , 3 + ( 10 γa κa,nc, 2 + 5 κa,nc, 1 ) r v , 4 + 15 γ 2 

a r v , 5 
]
, 

(14) 

j,nc, 3 = e i 2 φ[ χa,nc, 3 r v , 3 + ( 6 γa κa,c + 8 κa,nc, 2 + γ ∗
a κa,nc, 1 ) r v , 4 

+ 3 γa 

(| γ 2 
a | + 4 

)
r v , 5 

]
. (15) 

ere γ a , κa,c , κa,nc ,1 , κa,nc ,2 , χa,c , χa,nc ,1 , χa,nc ,2 and χ a,nc ,3 are

he SO, FO and SIO coefficients of the symbol a n whereas the

oefficients r v, j , j = 1 , . . . , 5 are defined by: 

 v , 1 
def = 

1 
p 

∑ p−1 
i =0 

∑ 

k v 4 k,i,τ[
1 
p 

∑ p−1 
i =0 

∑ 

k v 2 k,i,τ

]2 
, r v , 2 

def = 

1 
p 

∑ p−1 
i =0 

∑ 

k 	 = � v 2 k,i,τ
v 2 

�,i,τ[
1 
p 

∑ p−1 
i =0 

∑ 

k v 2 k,i,τ

]2 
, (16) 
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1 The analytical expressions of G L-C(1,3) for a QPSK interference and G L-C(0) for a 

BPSK interference are identical for a square filter but otherwise they are different, 
r v , 3 
def = 

1 
p 

∑ p−1 
i =0 

∑ 

k v 6 k,i,τ[
1 
p 

∑ p−1 
i =0 

∑ 

k v 2 k,i,τ

]3 
, r v , 4 

def = 

1 
p 

∑ p−1 
i =0 

∑ 

k 	 = � v 4 k,i,τ
v 2 

�,i,τ[
1 
p 

∑ p−1 
i =0 

∑ 

k v 2 k,i,τ

]3 
, (17)

r v , 5 
def = 

1 
p 

∑ p−1 
i =0 

∑ 

k 	 = �,� 	 = m,m 	 = k v 2 k,i,τ
v 2 

�,i,τ v 2 
m,i,τ[

1 
p 

∑ p−1 
i =0 

∑ 

k v 2 k,i,τ

]3 
, (18)

where v k,i,τ
def = v (kT + iT /p − τ ) . Note that when the oversampling

factor p tends to infinite, the discrete time-averaged operation

becomes equivalent to a continuous time-averaged operation and

(16)–(18) become: 

r v , 1 = 

v 4 (t) [
v 2 (t) 

]2 
, r v , 2 = 

2 

∑ ∞ 

k =1 v 2 (t) v 2 (t − kT ) [
v 2 (t) 

]2 
, (19)

r v , 3 = 

v 6 (t) [
v 2 (t) 

]3 
, r v , 4 = 

∑ 

k 	 =0 v 4 (t) v 2 (t − kT ) [
v 2 (t) 

]3 
, r v , 5 

= 

∑ 

k 	 = �,k 	 =0 ,� 	 =0 v 2 (t) v 2 (t − kT ) v 2 (t − �T ) [
v 2 (t) 

]3 
, (20)

where (. ) 
def = 

1 
T 

∫ + ∞ 

−∞ 

(. ) dt . Expressions (10)–(15) , which are com-

pletely new, show that, in general, the filter v ( t ) modifies the FO

and SIO coefficients of the symbol a k . However, in the particular

case of a filter v ( t ) which is rectangular over the symbol duration

T , it is easy to verify that r v , 1 = r v , 3 = 1 and r v , 2 = r v , 4 = r v , 5 = 0 ,

which means that coefficients of j ( t ) and e i φa k coincide both at FO

and SIO. Such a situation also occurs when v ( t ) is a Nyquist filter

provided that the observations are optimally sampled, i.e., that

p = 1 and τ = 0 . 

4. Impact of the pulse-shaping filter on the steady state 

performance 

4.1. Steady-state performance of the third-order Volterra MVDR 

beamformers 

From Fig. 1 , it is straightforward to compute the ratio of the

asymptotic discrete time-averaged powers of the SOI and the

total noise at the output, y ( t ), of the third-order Volterra MVDR

beamformers, referred to as the output SINR. This output SINR is

given by Chevalier et al. [11] : 

SINR MVDR = 

πs 

w 

H 
f 

[
R n −R 

H 
˜ n ,n 

BK 

H (KB 

H R ˜ n BK 

H ) −1 KB 

H R ˜ n ,n 

]
w f 

, (21)

where R ˜ n ,n 
def = <E[ ̃  n (kT e ) ̃  n 

H (kT e )] > d and πs 
def = < E | s 2 (kT e ) | > d . Ex-

pression (21) adjusted accordingly at the output of the L-C( q )

MVDR beamformers, (0 ≤ q ≤ 3), has been developed in [11] for

N = 2 and the model (1) and has been proved to be given by: 

SINR LC (q ) = εs 

(
1 + ε j β

2 
)
A q (

1 + ε j 

)
A q − α2 β6 ε4 

j 
D q 

. (22)

Here, εs 
def = ‖ s ‖ 2 πs /η2 , ε j 

def = ‖ j ‖ 2 π j /η2 with π j 
def = < E | j 2 (kT e ) | > d ,

η2 is the background noise power per sensor, α
def = | s H j | / ‖ s ‖‖ j ‖

and β
def = 

√ 

1 − α2 and where the quantities A q and D q , q = 0 , . . . , 3

are defined by 

A 0 = A 2 
def = β8 ε4 

j 

(
χ j,c −| κ2 

j,nc, 2 | 
)
+β6 ε3 

j 

(
χ j,c +9 κ j,c −6 Re 

(
γ j κ

∗
j,nc, 2 

))
+9 β4 ε2 

j 

(
κ j,c + 2 −| γ 2 

j | 
)
+24 β2 ε j +6 , (23)
b

 1 
def = β8 ε4 

j 

(
χ j,c − κ2 

j,c 

)
+ β6 ε3 

j 

(
χ j,c + κ j,c 

)
+ β4 ε2 

j 

(
5 κ j,c + 2 

)
+ 8 β2 ε j + 2 , (24)

 3 
def = β8 ε4 

j 

(
χ j,c − | κ2 

j,nc, 1 | 
)

+ β6 ε3 
j 

(
χ j,c + 9 κ j,c 

)
+ 9 β4 ε2 

j 

(
κ j,c + 2 

)
+ 24 β2 ε j + 6 , (25)

 0 
def = | κ j,nc, 2 −3 γ j | 2 ; D 1 

def = (κ j,c − 2) 2 ; (26)

 2 
def = | (κ j,nc, 2 −γ j ) + 2 γ j / 

(
β2 ε j 

)| 2 ; D 3 
def = | κ2 

j,nc, 1 | . (27)

efining the SINR gain with respect to the Capon beamformer,

 B 
def = SINR B /SINR L , obtained in using the beamformer B instead

f Capon beamformer, where SINR L = εs [1 − α2 ε j / (1 + ε j )] , we

btain [11] : 

 L −C (q ) = 1 + 

α2 β6 ε4 
j 
D q 

(1 + ε j ) A q −α2 β6 ε4 
j 
D q 

, (28)

xpressions (22) and (28) , with (23) to (27) , allow us to specify

ow the L-C( q ) MVDR beamformers outperform the Capon beam-

ormer for circular and non-circular non-Gaussian interference,

epending on both ε j and the normalized SO, FO and SIO interfer-

nce statistics. For q = 0 , 1 , 2 , 3 , it has been shown in particular in

11] that a necessary condition to obtain substantial performance

ain at the output of the L-C( q ) MVDR beamformer is to cancel

he dominant terms in ε j of A q . This occurs for interference

uch that χ j,c − | κ2 
j,nc, 2 

| = 0 , ( q = 0 , 2 ), χ j,c − κ2 
j,c 

= 0 , ( q = 1 ) and

j,c − | κ2 
j,nc, 1 

| = 0 , ( q = 3 ), which corresponds for example to BPSK

 q = 0 , 2 ), PSK ( q = 1 ) and QPSK ( q = 3 ) interference with a square

ulse shaping filter respectively. However, when the pulse shaping

lter of the interference is no longer square, the dominant terms

n ε j of A q is no longer zero and one may then wonder what may

e the impact on performance of v ( t ), p and τ . The latter may be

nalyzed for L-C( q ) MVDR beamformers in particular using (9) to

18) into (22) and (28) . 

.2. Impact of v ( t ), p and τ on the output SINR of the third-order 

olterra MVDR beamformer 

In order to analyze the impact on the output SINR of parame-

ers v ( t ), p and τ , we consider a two-element array with unit gain

ensors and we assume that the SOI has a signal to noise ratio

SNR), π s / η2 , equal to 10 dB. This SOI is assumed to be corrupted

y an interference (model (1) ) whose INR, π j / η2 , is equal to 30 dB.

nder these assumptions, Fig. 2 displays, for a BPSK interference,

or τ = 0 , for three pulse shaping filters v ( t ) corresponding to a

quare, a 1/2 Nyquist and a Nyquist filter with a roll-off ω = 0 . 3 ,

nd for p = 1 (sampling at one sample per symbol) and p = + ∞
continuous-time observation), the variations of G L-C(0) at the

utput of the L-C(0) MVDR beamformer as a function of α. In

 similar way, 1 Fig. 3 displays, under the same assumptions as

ig. 2 , the variations of G L-C(1,3) at the output of the L-C(1,3) MVDR

eamformer as a function of α but for a QPSK interference. Note

or high values of α not equal to one, high values of G L-C(0) and

 L-C(1,3) for the square (whatever the value of p ) and the Nyquist

for p = 1 ) filters, due to the absence of interference intersymbol

nterference (ISI) at reception but low values of G L-C(0) and G L-C(1,3) 

or both the Nyquist filter (for p = + ∞ ) and the 1/2 Nyquist filter
ut numerically very close. 
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Fig. 2. G L-C(0) as a function of α for N = 2 , SNR = 10 dB, INR = 30 dB, BPSK interference and (ω, τ ) = (0 . 3 , 0) . 

Fig. 3. G L-C(1,3) as a function of α for N = 2 , SNR = 10 dB, INR = 30 dB, QPSK interference and (ω, τ ) = (0 . 3 , 0) . 
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whatever the value of p ) due to the presence of interference ISI

t reception. Note, in this latter case, the decreasing performance

ain as p increases from 1 to infinite. Note that the previous

esults for 1/2 Nyquist and Nyquist filters are maintained what-

ver the value of the roll-off factor ω, provided that τ = 0 . These

esults show the very high sensitivity of the third-order Volterra

VDR beamformers [11] to both the interference pulse shaping

lter and oversampling factor p (for a non square pulse shaping

lter). Indeed, these parameters highly modify the FO and SIO

nterference statistics, which prevent conditions χ j,c − κ2 
j,c 

= 0 and

j,c − | κ2 
j,nc, 1 

| = 0 to remain valid. 

To complete these results, Fig. 4 analyzes the effect on the

erformance of the initial sampling time τ by showing, in the

ame context as Fig. 3 , the variations of G L-C(1,3) as a function of

/ T for p = 1 and p = 2 and for α = 0 . 95 . We note high values of
 L-C(1,3) for the square filter, whatever the value of τ , and for the

yquist filter for (p, τ ) = (1 , 0) , due to the absence of interference

SI at reception. However, we note low values of G L-C(1,3) for the

/2 Nyquist filter, whatever the value of τ , and for the Nyquist

lter for ( p, τ ) 	 = (1, 0), due to the presence of interference ISI at

eception. Similar results would be obtained for other values of

 p, τ ) 	 = (1, 0) and other third-order Volterra MVDR beamformers.

hese results show the weak robustness of the third-order Volterra

VDR beamformers with respect to the initial sampling time for

 non-square pulse shaping filter. As a summary, for digitally and

inearly modulated interference, the results of this section show

he weak robustness of the third-order Volterra MVDR beamform-

rs to the presence interference ISI at reception, and thus, for

on-square pulse shaping filter of the interference, the very high

ensitivity of these beamformers to both the initial sample time,
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Fig. 4. G L-C(1,3) as a function of τ / T for N = 2 , SNR = 10 dB, INR = 30 dB, QPSK interference and (ω, α) = (0 . 3 , 0 . 95) . 
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the oversampling and the kind of filter, which modify the FO and

SIO statistics of the interference. 

5. Impact of the pulse-shape filter on the finite sample 

performance 

5.1. Finite sample performance of the third-order Volterra MVDR 

beamformers 

When R ˜ x is estimated from K samples by (5) , the SINR at the

output of the third-order Volterra beamformers becomes [11] : 

SINR (K)= 

πs (˜ w f −B ̂

 ˜ w 

′ 
a, opt 

)H 

R ˜ x 

(˜ w f −B ̂

 ˜ w 

′ 
a, opt 

)
−πs 

, (29)
N  

Fig. 5. ̂ E (G L-C(1,3) ( K )) as a function of K for N = 2 , SNR = 10 dB, INR =
here ˜ w f 
def = [ w 

T 
f 
, 0 T 

N +4 N 3 
] T and 

̂ ˜ w 

′ 
a, opt is defined by (4) with 

̂ R x̃ 

nstead of R ˜ x . 

.2. Impact of v ( t ), p and τ on SINR( K ) at the output of the 

hird-order Volterra beamformers 

In order to analyze the impact on the output SINR( K ) of pa-

ameters v ( t ), p and τ , we consider the same scenario as Fig. 4 .

nder these assumptions, Fig. 5 displays, for the three pulse

haping filters v ( t ) corresponding to a square, a 1/2 Nyquist and

 Nyquist filter with a roll-off ω = 0 . 3 , and for (p, τ ) = (1 , 0) ,

he variations of the estimated mean value of G L −C(1 , 3) (K) 
def= 

INR L-C(1,3) ( K )/SINR L , 
̂ E (G L-C(1,3) ( K )), computed over 10 0 0 runs, at

he output of the L-C(1, 3) MVDR beamformers as a function of K .

ote again, for sufficient values of K, a high value of ̂  E (G L-C(1,3) ( K ))
 30 dB, α = 0 . 95 , 10 0 0 runs, QPSK interference, (p, τ ) = (1 , 0) . 
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or the square and Nyquist filters, due to the absence of interfer-

nce ISI at reception, but low values of ̂ E (G L-C(1,3) ( K )) for the 1/2

yquist filter due to the presence of interference ISI at reception

n this case. This confirms the results of section IV. 

. Conclusion 

A sensitivity analysis of recently proposed third-order Volterra

VDR beamformers to both pulse shaping filter, oversampling

nd initial sample time of interference has been presented in this

aper. It has been shown that the high performance gain values

ith respect to Capon obtained for some linearly and digitally

odulated interference having a receive square pulse shaping

lter [11] are lost for non-square pulse shaping filter generating

SI at reception. This occurs for non-Nyquist filter, for an oversam-

ling reception or when the initial sampling time is not optimal.

echnics to robustify the third-order Volterra MVDR beamformers

11] to the previous interference parameters are then required 

nd remain to be developed. The exploitation of spatio-temporal

tructures of beamforming may be a direction of investigation. 
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