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In this paper we analyze the estimation of the angle and the range of a narrow-band source located in the 
near-field of an arbitrary centro-symmetric linear array (CSLA). This analysis deals with the Cramer Rao 
bound (CRB) on both angle and range, obtained thanks to an exact expression of the source-to-sensor 
delay and a realistic (range-dependent) model of source-to-sensor attenuation, ultimately achieving 
two objectives. On the first hand, closed-form approximate expressions of the CRB are developed and 
compared to those obtained assuming (unrealistically) that sensors perceive the same power despite 
being at different distances from the source. While the impact on angle estimation is negligible, range 
CRB significantly decreases if one incorporates the more appropriate range-dependent power model 
(except for sources at broadsides). An important consequence is that localization algorithms taking 
this range-dependent modelization of the apparent source power into account in their signal modeling 
should have much better range performance. On the second hand, the obtained CRBs are used to 
design nonuniform CSLA taking into account the ambiguities, with improved angle and range estimation, 
comparatively to uniform linear arrays (ULA). Finally, we show that our optimized CSLA for a single 
source also brings some benefits for two closely-spaced sources.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

CRBs are usually used to benchmark parameter estimation algo-
rithms. Furthermore, if interpretable expressions are obtained, they 
can be used to optimize the system design, for instance, to mini-
mize the variance of the estimated parameters (see e.g., [1,2]). In 
the particular context of source localization, much effort has been 
made to the far-field case for decades (see e.g., [3–5] and refer-
ences therein) where the distance of the source to the array is 
large compared with the array aperture, and hence the propagat-
ing waves are considered to be plane waves at the sensor array 
and only the source direction of arrival (DOA) can be estimated.

It is possible to estimate the range (distance from the source 
to the array) if this distance is not too large compared to the 
array aperture. This near-field situation occurs in many practical 
applications such as sonar [6], speaker localization [7], electronic 
surveillance [8], object detection [9], collision avoidance radar [10], 
robot navigation [11], seismic exploration [12], biomedical imag-
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ing [13], [14], seismic exploration [15], etc. In this near-field case, 
wavefronts are spherical and received power varies from sensor 
to sensor. However, to reduce the complexity of the localization 
algorithms, an approximate propagation model relevant to the so-
called Fresnel zone has been used. This latter makes use of the 
second-order Taylor expansion of the time delay parameter, with 
constant amplitude gain however. Numerous methods have used 
these approximations, such as a polynomial rooting approach [16], 
an high-order ESPRIT algorithm [17], a weighted linear prediction 
method [18], an ESPRIT/MUSIC procedure exploiting subarrays [19], 
a two-stage MUSIC algorithm [20], a least-square procedure [21], a 
prediction and oblique projection operator method [22] and many 
other approaches. Furthermore, these approximations facilitate the 
CRB derivations (see e.g., [23]).

Only lately the exact time delay and range-dependent mod-
elization of the apparent source power (called also power pro-
file) have been used [24], but only to derive a complicated non-
interpretable approximate expression of the near-field CRB for the 
ULA case. We consider here arbitrary CSLA made of pairs of sensors 
symmetrically located along the two sides of the linear antenna 
array. Such class of nonuniform linear arrays are chosen for their 
attractive features proved in [25] for constant amplitude gains. This 
includes lower DOA and range CRBs and faster convergence to the 
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lower far-field DOA CRB. Furthermore, thanks to the decoupling be-
tween the DOA and range parameters to the second-order w.r.t. the 
inverse of the range in the Fisher information matrix, the deriva-
tion of closed-form approximate expressions of the CRB is greatly 
simplified. Note that we use a definition of the near-field that is 
familiar in the signal processing literature, designating the region 
where range estimation makes sense (to be distinguished from the 
reactive and radiative region, as understood in electromagnetism 
[26, ch.2].

In this paper, we first develop interpretable and accurate 
closed-form approximate expressions of the CRB for both source 
angle and range. They are compared to those unaware of de-
pendence of received power on source range. These expressions 
are proved to depend only on three geometric parameters only: 
the second, fourth and sixth-order moments of the positions of 
the sensors forming the arbitrary but centro-symmetric linear ar-
ray (CSLA). The obtained expressions tend to prove that the CRB 
on the angle is generally barely impacted by the power profile. 
In contrast, the CRB on the range is strongly reduced, except at 
broadside directions, i.e. almost everywhere. Second, thanks to 
these closed-form expressions we design nonuniform CSLA with 
improved range estimation (by as much as 60%) with identical CRB 
on the angle with respect to ULAs. This design also incorporates 
geometric constraints to account for the array ambiguity problem. 
Specifically, these constraints lead to a constrained max-min prob-
lem. We use its equivalent to a global polynomial maximization 
under, both polynomial equalities and inequalities which can be 
efficiently solved using the Matlab GloptiPoly utility [36]. Finally, 
we show that our optimized CSLA for a single source also brings 
some benefits for both DOA and range estimation in the context of 
two closely-spaced sources.

The paper is organized as follows. Section 2 introduces the data 
model. After giving the general expression of the deterministic and 
stochastic CRB concentrated on the localization parameters, we de-
velop an interpretable closed-form approximate expressions of the 
CRB on both angle and range in Section 3. Section 4 is dedicated 
to analytical comparisons of these CRBs to the CRBs not taking 
the power profile into account. These closed-form expressions are 
used in Section 5 to design nonuniform CSLA with improved range 
estimation and immunity against array ambiguities. Finally, a con-
clusion is given in Section 6.

2. Data model

We consider a linear (possibly nonuniform) antenna array made 
of P sensors C1, · · · , C P depicted in Fig. 1, located along a straight 
line at coordinates x1, · · · , xP , respectively. Without loss of gener-
ality, we assume the array centroid to be at the origin O of this 
axis. This choice allows for more compact expressions of the CRB 
compared to [23,24].

A source is located at point S , at a range r from the plane ori-
gin O , and forming an angle θ w.r.t. the axis perpendicular to the 
array. This single source is emitting a narrow band signal of wave-
length λ with no multipath so that the complex baseband snapshot 
collected by the sensor p at time index t reads

yp(t) = gpeiτp s(t) + np(t), (1)

where s(t) and np(t) represent, respectively, the source signal col-
lected at the origin and the ambient additive noise collected by 
sensor p. The exact expression of the phase τp is defined as 
τp = 2π(S O  − SC p)/λ. Using the law of cosine, it is rewritten as

τp = 2π
r

λ

(
1 − √

βp

)
(2)

with
Fig. 1. Source in the near-field impinging on an arbitrary linear array.

βp
def= 1 − 2

xp

r
sin θ + x2

p

r2
. (3)

Note that, because we fix the phase and amplitude references at 
the centroid of the array, our definition of the tuple (θ, r) is dif-
ferent from the one in [24], which fixes the phase reference at the 
first sensor. Regarding the gain gp at sensor p, we assume a spher-
ical wavefront and a specific range-dependent power profile, where 
the signal magnitude is inversely proportional to the distance from 
the source [26, Chap.2]:

gp = S O

SC p
= 1√

βp
. (4)

Thus the sensed power is variable from sensor to sensor. Again, 
because we use the origin as reference, our definition of gp is dif-
ferent from the one used [24], for which the gain is not defined 
with respect to a reference: gp = 1

SC p
= 1

r
√

βp
.

We collect N snapshots {yp(t)}p=1,..,P ;t=t1,...,tN , to estimate 
both angle θ and range r. Estimation accuracy is evaluated in terms 
of the CRB, developed under the following commonly used as-
sumptions about signal and noise [27]:
(i) np(t) and s(t) are independent,
(ii) {np(t)}p=1,..,P ;t=t1,..,tN are independent, zero-mean circular 
Gaussian distributed with variance σ 2

n ,
(iii) {s(t)}t=t1,..,tN are assumed to be either deterministic unknown 
parameters (the so-called conditional or deterministic model) with 
σ 2

s = 1
N

∑N
n=1 |s(tn)|2, or independent zero-mean circular Gaus-

sian distributed with variance σ 2
s (the so-called unconditional or 

stochastic model).

3. Expressions of the CRB

3.1. Theoretical general background on CRB for near-field sources

We focus on a single near-field source whose location is char-
acterized by the parameter of interest

α = [θ, r]T . (5)

When the sensed power is constant across all sensors, stochastic 
and deterministic matrix-valued CRBs (concentrated on the param-
eter of interest) are equal, up to a multiplicative term depending 
only on the SNR σ 2

s /σ 2
n of the source and the number P of sen-

sors [25]. This contrasts with the case where the power profile is 
taken into account for which the multiplicative term depends on 
α:

CRBsto(α) =
(

1 + σ 2
n

‖a(α)‖2σ 2
s

)
CRBdet(α), (6)

where a(α) is the steering vector of components gpeiτp , p =
1, .., P . Obviously, the expression of the stochastic CRB can no 
longer be decoupled in power and geometric terms. Instead, these 
CRBs are given by the following expressions:

CRBsto(α) = csto
σ (α)F−1(α) and CRBdet(α) = cdet

σ (α)F−1(α), (7)

where both CRBs appear to be inversely proportional to the matrix
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F(α) = Re
[
‖a(α)‖2DH (α)D(α) − DH (α)a(α)aH (α)D(α)

]
, (8)

through the constants

csto
σ (α)

def= σ 2
n (σ 2

n + ‖a(α)‖2σ 2
s )

2Nσ 4
s

and cdet
σ (α)

def= ‖a(α)‖2σ 2
n

2Nσ 2
s

where D(α) is defined as 
[

∂a(α)
∂θ

,
∂a(α)

∂r

]
. We note that whenever 

Pσ 2
s � σ 2

n , we have

csto
σ (α) ≈ cdet

σ (α). (9)

The above condition means that the source is more powerful than 
ambient noise, which is more relevant to near-field sources. We 
maintain this assumption and realize that the stochastic CRB re-
duces to the deterministic CRB, on which we focus our attention 
from now on. In this case, the elements of the 2 × 2 matrix F(α)

given in (8) reads

[F]i, j =
⎛⎝ P∑

p=1

g2
p

⎞⎠⎛⎝ P∑
p=1

g′
p,i g′

p, j + τ ′
p,iτ

′
p, j g2

p

⎞⎠
−

⎛⎝ P∑
p=1

g′
p,i gp

⎞⎠⎛⎝ P∑
p=1

g′
p, j gp

⎞⎠
−

⎛⎝ P∑
p=1

τ ′
p,i g2

p

⎞⎠⎛⎝ P∑
p=1

τ ′
p, j g2

p

⎞⎠ , i = 1,2, (10)

where g′
p,1

def= ∂ gp
∂θ

, g′
p,2

def= ∂ gp
∂r , τ ′

p,1
def= ∂τp

∂θ
and τ ′

p,2
def= ∂τp

∂r .

3.2. Taylor expansion of the matrix F(α)

To highlight the impact of the power profile on the localization 
performance, we use, similarly to [25], a Taylor expansion of the 
matrix F(α). To this end, we consider arbitrary CSLA, where for 
each sensor placed at coordinate xp , there exists a symmetric sen-
sor placed at coordinate −xp . As a consequence, sums of the form ∑P

p=1 x2k+1
p , k = 0, 1, ... are zero, while constants S2k

def= ∑P
p=1 x2k

p , 
characterizing the array geometry, will appear in the following 
Taylor expansion of the matrix F(α). After tedious algebraic ma-
nipulations (main steps are shown in Appendix A.1), we obtain:

λ2
π

r2 cos2 θ
[F(α)]1,1 = P

S2

r2

+ Pλ2
π S2 + 2P S4(6 sin2 θ − 1) − S2

2(1 + 5 sin2 θ)

r4
+ o(r−4),

(11)

2λ2
π

r sin θ cos θ
[F(α)]1,2 = −2Pλ2

π S2 + (5P S4 − 3S2
2) cos2 θ

r4

+ o(r−4), (12)

λ2
π [F(α)]2,2 = 4Pλ2

π S2 sin2 θ + (P S4 − S2
2) cos4 θ

4r4

+ λ2
π [P S4(1 − 15 sin2 θ + 24 sin4 θ) − S2

2(1 − 7 sin2 θ + 12 sin4 θ)]
r6

+ P S6(−5 + 57 sin2 θ − 99 sin4 θ + 47 sin6 θ)

8r6

+ S2 S4(5 − 49 sin2 θ + 83 sin4 θ − 39 sin6 θ)

6
+ o(r−6), (13)

wh
Th
(7-
1, 
(11
clu

gp

fro
to 

3.3
pa

the

κ
d

pla
the
rep

‖a

we
sio

CR

CR

wh

c
d=

an

g(

an
the
a g
Fig
ve
of 

4. 

4.1

ea
8r
ere limε→0 o(ε)/ε = 0 with x1, ...xP and λ fixed and λπ
def= λ

2π . 
ese expressions are to be compared to the expressions [25, rels. 
9)] which can be retrieved from (10) by setting g′

p,i = 0, i =
2 to account for constant gain. Compared to [25, rels. (7-9)], 
), (12) and (13) are much more intricate because they in-
de the power profile. Note that for more general profiles (i.e., 
=

(
S O
SC p

)α
with α �= 1), the derivation of (11), (12) and (13)

m (10) would give even more complicated expressions difficult 
exploit.

. Taylor expansion of CRB(θ) and CRB(r) and key geometric 
rameters

In the process of deriving the new CRB expressions, we identify 
 following three key geometric parameters (S2, κ, η) where

ef= P S4

S2
2

and η
def= P 2 S6

S3
2

(14)

y an important role in the array processing performance as well 
 antenna design. Using results (11)-(13) and (7) in which we 
lace

(α)‖2 = P

(
1 − S2

Pr2
(1 − 4 sin2 θ) + o(r−2)

)
, (15)

 prove in the Appendix A.2, the following second-order expan-
ns:

B(θ) = cλ2
π

P S2 cos2 θ

×
[

1 + ( 2κ S2
P − λ2

π ) + sin2 θ
P g(sin2 θ, S2, λ

2
π ,κ)

r2
+ o(r−2)

]
,

(16)

B(r)

r4
= 4cλ2

π

S2
2

(
4P λ2

π
S2

sin2 θ + (κ − 1) cos4 θ
)

×
[

1 + h(sin2 θ, S2, λ
2
π ,κ,η)

r2
+ o(r−2)

]
, (17)

ere

ef P

2N

σ 2
n

σ 2
s

(18)

d

sin2 θ, S2, λ
2
π ,κ) = 4P 2λ4

π + S2
2κ(13κ − 9) cos4 θ

+ 4P S2λ
2
π [(6 − 7κ) sin2 θ − (5κ − 3)]

(19)

d where h(sin2 θ, S2, λ2
π , κ, η) is an intricate function given in 

 Appendix A.2. We note that its expression is not useful to give 
ood numerical approximation of CRB(r) as it will be shown in 
. 3, where the approximate value deduced from (17) and (23) is 

ry close to the approximate value deduced from only the ratio 
the dominant terms of (17) and (23) given by (27).

Analysis of the CRB

. Far-field vs near-field performance

We recall the deterministic far-field DOA CRB for arbitrary lin-
r arrays [28, rel. (7)]
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CRBFF(θ) = 1

N

λ2

8π2 S2 cos2 θ

σ 2
n

σ 2
s

, (20)

allowing one to rewrite (16) as follows

CRB(θ) = CRBFF(θ)

[
1 + ( 2κ S2

P − λ2
π ) + sin2 θ

P g(sin2 θ, S2, λ
2
π ,κ)

r2

+ o(r−2)

]
, (21)

which is consistent with (20) for r tending to infinity where the 
effect of the power profile disappears.

4.2. Constant gain vs range and angle-dependent gain

On the one side we have the near-field angle (16) and range 
(17) CRBs. On the other side we have the near-field angle CRBCG(θ)

and range CRBCG(r) assuming constant gain (not taking in account 
the power profile, i.e., gp = 1). The former are given by [25, rels. 
(15-16)]:

CRBCG(θ) = cλ2
π

P S2 cos2 θ

[
1 + κ S2

Pr2

{
1 +

(
1 + 4κ

κ − 1

)
sin2 θ

}
+ o(r−2)

]
, (22)

CRBCG(r)

r4
= 4cλ2

π

S2
2(κ − 1) cos4 θ

[
1 + k(sin2 θ,κ,η)

S2

Pr2
+ o(r−2)

]
,

(23)

where

k(sin2 θ,κ,η)
def= (2 + 18κ2 + 3κ − 23η) sin2 θ + 3(η − κ)

κ − 1
.

(24)

Obviously, the dominant terms cλ2
π

P S2 cos2 θ
of (16) and (22) are 

equal, implying that the near-field DOA CRB is barely affected by 
the power profile for ranges that are not too small. To go further, 
we look into the second-order term (in 1/r2) in (16) and (22). For 
example for θ = 0, we get:

CRB(θ)|θ=0

CRBCG(θ)|θ=0
= 1 + 1

r2

(
κ S2

P
− λ2

π

)
+ o(r−2), (25)

where κ S2
P − λ2

π is in practice positive. Indeed κ ≥ 1 [25] implies 
that κ S2

P − λ2
π ≥ 1

P

∑P
p=1 x2

p − λ2

4π2 and the condition 1
P

∑P
p=1 x2

p >

λ2

4π2 is in practice satisfied given the non-ambiguity and aperture 
constraints.

For example, for a ULA with half-wavelength spacing and P =
2Q ,

1

P

P∑
p=1

x2
p = λ2(4Q 2 − 1)

48
>

λ2

4π2
from Q = 1. (26)

Consequently CRB(θ) is slightly larger than CRBCG(θ) for broadside 
directions (i.e., θ ≈ 0).

A similar comparison of the near-field range CRB is expressed 
by the following ratio of the dominant terms of (17) and (23) for 
arbitrary angle θ

CRB(r)

CRBCG(r)
=

(
1 + 4Pλ2

π

S2

sin2 θ

(κ − 1) cos4 θ

)−1

(1 + o(r−1)). (27)
Fig. 2. Exact and approximate CRB(θ)/CRBCG(θ) as a function of θ .

Fig. 3. Exact and approximate CRB(r)/CRBCG(r) as a function of θ .

From the above, the dominant term of CRB(r) is always smaller 
than the dominant term of CRBCG(r), except for θ = 0, for which 
they are equal. In particular for array end-fire directions (i.e., 
|θ | ≈ π/2), CRB(r) is much lower than CRBCG(r). Consequently, 
taking into account this power profile allows one to achieve bet-
ter range estimation without deteriorating angle estimation. This 
is explained by a larger sensitivity of the gain to the range with 
respect to the angle, for the end-fire directions. Furthermore, for 
these directions the time delay profile is less sensitive than the 
power profile for the range.

These results are confirmed in Figs. 2 and 3 which show respec-
tively the ratios CRB(θ)/CRBCG(θ) and CRB(r)/CRBCG(r), as a func-
tion of the angle θ ∈ [0, π/2). There, we assume a ULA of 6 sensors 
with half-wavelength inter-sensors spacing for a source at range 
r = 10λ. We see, in particular, that CRB(θ)/CRBCG(θ) ∈ [0.83, 1.03], 
whereas CRB(r)/CRBCG(r) strongly decreases in [0, π/2), taking 
values 1, 0.3 and 0.005 for θ = 0, 60◦ and 80◦ , respectively. These 
figures also show a good agreement between the approximate ex-
pressions of the CRBs deduced from (16), (17) and (22), (23) and 
the exact ones (deduced from the exact expression of the matrix F
(7), (8) and (10). Furthermore, we see in Fig. 3 that the dominant 
terms of (17) and (23) given in the ratio (27) show also a good 
approximation of CRB(r)/CRBCG(r).
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Fig. 4. CRB(r)/r2 and CRBCG(r)/r2 with N = 1000 and σ 2
s /σ 2

n = 20 dB.

On the other hand, Fig. 4 shows the relative CRBs on the range 
CRB(r)/r2 and CRBCG(r)/r2, assuming the same ULA used above 
with which we collect N = 1000 snapshots and σ 2

s /σ 2
n = 20 dB. 

We see clearly in this figure that taking into consideration the 
power profile allows to enlarge the domain of possible range es-
timation but not for broadside directions.

As a result, the localization algorithms will benefit from incor-
porating the power profile into the parameterization of the steer-
ing vector. This can be achieved in two ways which are outside 
the scope of this paper. In the first one, the localization algorithms 
would use the exact parameterization (2)–(4) of the steering vec-
tor. In the second one, they can use the traditional constant gain 
quadratic wavefront approximation model to take advantage of the 
low computational algorithms, but with some correction methods 
taking the exact parameterization model [29].

5. Near-field array optimization

When the source is in the array far-field, DOA estimation per-
formance, as expressed in (20), depends fully on the geometric 
parameter S2. But when the source is in the array near-field, addi-
tional parameters appear in (16) and (17), including the geometric 
parameters κ (for DOA estimation) and both κ and η (for range es-
timation). By focusing on the dominant terms in (16) and (17), we 
realize that arrays with the same S2 have the same DOA estimation 
performance but their range estimation performance becomes bet-
ter if κ increases. This will motivate the development of an original 
methodology to optimize the array geometry, one that improves its 
range estimation capability in the near-field and, at the same time, 
maintains the same DOA estimation performance, an approach fol-
lowed in [30] for planar arrays with constant sensed power across 
its sensors.

This methodology proceeds as follows: The number P of 
sensors is fixed. The reference antenna is the ULA with half-
wavelength spacing, for which we calculate values of S2 and κ
(renamed as κULA). We are interested in identifying non-uniform 
centro-symmetric linear arrays associated with the same value of 
S2, but with larger values of κ , i.e. κ > κULA. Such arrays satisfy:

CRB(θ) ≈ CRB(θ)|ULA (28)

RP (κ)
def= lim

r→∞
CRB(r)

CRB(r)
|ULA
= 4P λ2
π

S2
sin2 θ + (κULA − 1) cos4 θ

4P λ2
π

S2
sin2 θ + (κ − 1) cos4 θ

< 1. (29)

We note that 4Pλ2
π/S2 
 1 for P > 4. Thus for values of |θ | not in 

the vicinity of π/2, we have the following approximation

RP (κ) ≈ κULA − 1

κ − 1
< 1, (30)

indicating better performance of arrays with κ > κULA.
As shown in [25], it is common that the parameter κ lies in 

[1, P/2]. However, it is clear that values close to P/2 are to be 
discarded because, they correspond to a configuration where two 
sensors are placed at ±√

S2/2, and the remaining sensors being 
(almost) co-located at the centroid O . This is an illustration of the 
difficult array ambiguity problem that we tackle shortly under the 
following constraints: P , S2 and κ ∈ [1, P/2) are pre-fixed based 
on desired near-field and far-field (DOA and range) performance. 
To determine positions {xp}p=1,...,P of the constituent sensors of 
the arbitrary CSLA, we are left with the following degrees of free-
dom: P/2 − 2 if P is even, and (P − 1)/2 − 2 if P is odd.

Ambiguities occur when two steering vectors happen to be 
(very) close, despite referring to well separated look directions 
[31]. One way to minimize ambiguities is to minimize the so-
called relative peak sidelobe level (PSL) ratio [32] derived from the 
conventional array beampattern [33], which is also essentially the 
spatial correlation coefficient (SCC), proposed in [34]. If

[aFF(θ)]p
def= lim

r→∞[a(α)]p = e
i2πxp sin θ

λ , (31)

then

rPSL
def= max

ω outside the mainlobe region
|aH

FF(ω)aFF(θ)|2/P 2. (32)

The main difficulty is that minx1,...xP rPSL, achieved under the con-
straints 

∑P
p=1 x2

p = S2, 
∑P

p=1 x4
p = S4 (with S4 = κ S2

2/P ) and sym-

metric xp , is a non-convex minimization problem.1 In [30] we 
proposed an ad hoc criterion that ought to avoid concentrations 
of sensors in the neighborhood of the origin for large values of κ . 
Similarly to [30], our design technique will implement

max
x1,...xP

(
min

1≤p �=p′≤P
|xp − xp′ |

)
s.t.

P∑
p=1

x2
p = S2,

P∑
p=1

x4
p = κ S2

2/P and xp symmetric.

(33)

First, we note that this max-min constrained optimization (33) can 
be transformed into a global polynomial minimization under, both 
polynomial equalities and inequalities, by introducing a new deci-
sion variable z as follows:

min−z s.t. z ≤ 2x1, z ≤ xp+1 − xp, p = 1, .., P/2,

P/2∑
p=1

x2
p = S2

2
and

P/2∑
p=1

x4
p = κ S2

2

2P
for P even (34)

min−z s.t. z ≤ x1, z ≤ xp+1 − xp, p = 1, .., �P/2�,
�P/2�∑
p=1

x2
p = S2

2
and

�P/2�∑
p=1

x4
p = κ S2

2

2P
for P odd. (35)

1 including for P = 6 and 7, for which there is a single degree of freedom, but 
with several local minima.
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Table 1
Values of κ , RP (κ), sensors positions, rPSL .

κ RP (κ) Sensors positions rPSL

1.762 1 (ULA) ±0.0772,±0.2315,±0.3858,±0.5401 0.0525
2.000 0.762 ±0.0699,±0.2098,±0.3497,±0.5734 0.0114
2.222 0.624 ±0.0641,±0.1922,±0.3203,±0.5969 0.0091
2.500 0.508 ±0.0572,±0.1715,±0.2858,±0.6210 0.0420
2.857 0.410 ±0.0484,±0.1452,±0.2421,±0.6465 0.1398
3,333 0.327 ±0.0358,±0.1074,±0.1790,±0.6747 0.3828

Fig. 5. Exact and approximate CRB(θ)/CRB(θ)|ULA and CRB(r)/CRB(r)|ULA as a func-
tion of r/λ.

As such, (34) and (35) are non-convex polynomial minimizations 
with polynomial equalities and inequalities constraints. Following 
[35], these constrained minimizations can be transformed into an 
(often finite) sequence of convex linear matrix inequality optimiza-
tion problems. These problems are solved by means of the matlab 
GloptiPoly utility [36] that builds and solves these convex linear 
matrix inequalities. By judiciously choosing the relaxation orders, 
we have solved our optimization problem with small relaxation or-
der for P = 6, 7, 8 and 9 sensors. As an example, Table 1 reports, 
for different values of κ and the associated RP (κ), the optimal 
sensors positions that are normalized by S2 = 1, given by the cri-
teria (33) and the relative PSL, rPSL, for P = 8 and θ = 0◦ . We note 
that our analysis is valid for a larger number P of sensors, as for 
the polynomial approximation problem thanks to the Matlab Glop-
tiPoly utility [36]2) As seen in Table 1, our objective of reducing 
the near-field range CRB is achieved (by up to 67%), while ensuring 
arrays without ambiguity, but a tradeoff should be sought between 
performance improvement and the robustness to ambiguity.

As suggested in our analysis, for the optimized array and a 
source located in its near-field, reduction of the range CRB is 
not obtained at the expense of the DOA CRB. A confirmation 
can be seen in Fig. 5 that exhibits the ratios CRB(θ)/CRB(θ)|ULA
and CRB(r)/CRB(r)|ULA for a CSLA of P = 8 sensors placed at 
±0.0484, ±0.1452, ±0.2421, ±0.6465 with S2 = 1 associated with 
κ = 2.857 for θ = 10◦ . We see in this figure that the CRB on the 
range is significantly improved without damaging the CRB on the 
DOA. We also observe that the values of CRB(θ)/CRB(θ)|ULA and 
CRB(r)/CRB(r)|ULA as functions of r/λ are little modified for differ-
ent values of θ ∈ [−10◦, +10◦].

2 The current version of Matlab GloptiPoly is able to handle our problem up to 
P = 39.
Fig. 6. Comparison of NFLR of optimized CSLA with variable gain and constant gain 
ULA.

Performance in terms of errors in DOA and range have been 
summarized by the notion of near-field localization region (NFLR) 
introduced in [24]. This region is based on a target estima-
tion performance relative to the application at hand. It has 
been defined as the region for which the standard deviation √

E(‖ÔS − OS‖2) (where OS = r and ÔS is the estimated range) is 
upper-bounded by a tolerated localization error Stdmax. Expressed 
independently of any localization algorithm, this minimum stan-
dard deviation is function of the DOA and range CRBs through the √

r2CRB(r) + CRB(θ) and the NFLR is defined as the region corre-
sponding to:√

r2CRB(r) + CRB(θ) ≤ Stdmax. (36)

This concept of NFLR can also be used to tune the system pa-
rameters to achieve a target localization quality in the context of 
CSLA. In particular, this region (where the array is located in the 
x-axis) is shown for the aforementioned optimized CLSA in Fig. 6
for σ 2

s /σ 2
n = 100 and N = 100. We see from this figure that this re-

gion is larger than its counterpart region associated with the ULA. 
We also see, that this region is much larger in the lateral direction 
than those of the ULA with constant gain.

We note that the derivation of approximate closed-form ex-
pressions of the CRBs for multiple near-field sources under the 
assumptions of Section 2 seems not to be possible. However, nu-
merical values of the deterministic CRB on the DOA and range can 
be derived from the following compact deterministic CRB expres-
sion for Q parameters per source and K sources straightforwardly 
derived from [38, th.4.1]:

CRBdet(α) = σ 2
n

2N

[
Re

(
DH (α)�⊥(α)D(α) � [1Q ,Q ⊗ Rs]T

)]−1
,

(37)

where D(α) def= [D1, ..., DQ ] with (Dq)q=1,..Q
def=

[
∂a1

∂αq,1
, .., ∂aK

∂αq,K

]
and 

α
def= [α1,1, ...α1,K , ..., αQ ,1, .., αQ ,K ]T , �⊥(α) is the so-called noise 

projection matrix IP −A(α)[AH (α)A(α)]−1AH (α), and Rs is the co-
variance matrix of the sources. 1Q ,Q is the Q × Q matrix of ones, 
� and ⊗ are the Hadamard and Kronecker products, respectively. 
Applying (37) to the case of two equipowered uncorrelated sources 
of DOA θ1 and θ2 and range r1 and r2, α = (θ1, θ2, r1, r2)

T and 
Rs = σ 2

s I2, CRBdet(α) is also proportional to c = P
2N

σ 2
n
2 . We have 
σs
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Fig. 7. Exact CRB(θ)/CRB(θ)|ULA and CRB(r)/CRB(r)|ULA for two equipowered uncor-
related sources as a function of r/λ.

noticed by many experiments, that CSLA optimized for a single 
source also brings some benefits for two-closely spaced sources. 
For example it is illustrated in Fig. 7 for the optimized CLSA of 8 
sensors of Fig. 5 which exhibits the ratios CRB(θi)/CRB(θi)|ULA and 
CRB(ri)/CRB(ri)|ULA, i = 1, 2 for r1 = r2, θ1 = 10◦ and θ2 = 20◦ with 
respect to r/λ. We see in this figure that the optimized CLSA sig-
nificantly improves both DOA and range performance for all ranges.

Otherwise we note that this improvement of performance 
depends on the DOA separation �θ = θ2 − θ1 as it is illus-
trated in Fig. 8 for r1 = r2 = 9λ and θ1 = 0◦ which shows 
CRB(θi)/CRB(θi)|ULA and CRB(ri)/CRB(ri)|ULA, i = 1, 2 as a function 
of �θ . From this figure we see that the gain in performance for 
the estimation of the DOAs is growing monotonically when the 
DOA separation decreases. It practically disappears for very well 
separated sources (θ2 > 80◦), similarly as in the single source case 
illustrated in Fig. 5. In contrast, the behavior of the gain in perfor-
mance for the estimation of the ranges is more involved. It keeps 
on being more important for very closely spaced sources. For very 
well separated sources (θ2 > 80◦) the gain in performance for the 
estimation of r1 is significant, similarly as in the single source case 
illustrated in Fig. 5 and at the opposite there is practically no gain 
in the estimation of r2 because the CSLA is optimized for the esti-
mation of the range of a single source at broadside.

Finally, note that in the far-field case, the problem of optimiza-
tion arises in a different way: As the CRB on the DOA only depends 
on the second-order moments S2 of the positions of the sensors, 
the optimization consists mainly in maximizing S2 under a con-
straint of non ambiguity by controlling the sidelobe level. This has 
been achieved by example by a selection procedure for linear and 
planar arrays in [37] and [32], respectively.

6. Conclusion

In this paper, we considered a narrow-band source located in 
the near-field of a linear array whose sensors are disposed sym-
metrically around its centroid that also serves as a reference for 
phase and amplitude of the received signal. For this scenario, we 
proposed simple and interpretable closed-form approximate ex-
pressions of the CRB on both angle and range, obtained using 
the exact expression of the time delay and a realistic model of 
power attenuation. We analyzed and compared these expressions 
to those not taking the power profile into account. In particular we 
proved that the CRB on the angle is little impacted by the profile 
of power in contrast to the CRB on the range, which is strongly 
Fig. 8. Exact CRB(θ)/CRB(θ)|ULA and CRB(r)/CRB(r)|ULA for two equipowered uncor-
related sources as a function of �θ with θ1 = 0.

reduced for not broadside directions. Consequently, the near-field 
localization algorithms will estimate range more accurately if the 
power profile is used in parameterization of the steering vector. 
Finally, these closed-form expressions are used to design nonuni-
form CSLAs with significantly lowered range’s CRB (by as much 
60%), without deteriorating the angle’s CRB, and so while taking 
into account ambiguity concerns of such array. Furthermore, we 
show by numerical experiments, that optimized CSLA for a single 
source also brings some benefits for two closely-spaced sources. 
Future research should study the improvement of performance of 
localization algorithms taking into account the power profile in the 
parameterization of the steering vectors.

Declaration of competing interest

We have no conflict of interest.

Appendix A

A.1. Taylor expansion of the matrix F(α): proof of (11), (12) and (13)

Injecting from (4) with (3) g′
p,1

def= ∂ gp/∂θ = εp cos θ/β
3/2
p with 

εp
def= xp/r into (10), we get

λ2
π

r2 cos2 θ
[F(α)]1,1 =

⎛⎝ P∑
p=1

1

βp

⎞⎠⎛⎝λ2
π

P∑
p=1

ε2
p

β3
p

+
P∑

p=1

ε2
p

β2
p

⎞⎠
− λ2

π

⎛⎝ P∑
p=1

εp

β2
p

⎞⎠2

−
⎛⎝ P∑

p=1

εp

β
3/2
p

⎞⎠2

. (38)

Then using second-order expansion of 1/βp , 1/β
3/2
p , 1/β2

p and 
1/β3

p w.r.t. ε2
p , (11) is derived after cumbersome computations.

Similarly injecting from (4) and (2) with (3)

g′
p,2

def= ∂ gp/∂r = 1

r

(
−εp sin θ + ε2

p

) 1

β
3/2
p

,

τ ′
p,1

def= ∂τp/∂θ =
(

2πr

λ

)(
εp cos θ

β
1/2
p

)

τ ′
p,2

def= ∂τp/∂r = 2π

λ

(
1 + −1 + εp sin θ

β
1/2

)

p
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into (10), the expressions (12) and (13) are derived with the same 
approach.

A.2. Taylor expansion of the CRB: proof of (16) and (17)

First, note that the matrix F(α) can be written in the following 
form:

F(α) =
⎡⎣ b1,1

0 + b1,1
2
r2 + o(r−2)

b1,2
3
r3 + o(r−3)

b1,2
3
r3 + o(r−3)

b2,2
4
r4 + b2,2

6
r6 + o(r−2)

r4

⎤⎦ , (39)

where

b1,1
0 = cos2 θ

λ2
π

P S2,

b1,1
2

r2
=

(
cos2 θ

λ2
π

)
× S2[Pλ2

π + 2κ S2(6 sin2 θ − 1) − S2(1 + 5 sin2 θ)]
r2

,

b1,2
3

r3
=

(
sin θ cos θ

2λ2
π

)
S2[−2Pλ2

π + (5κ S2 − 3S2) cos2 θ]
r3

,

b2,2
4

r4
= 1

λ′ 2

S2[4Pλ2
π sin2 θ + (κ S2 − S2) cos4 θ]

4r4
,

b2,2
6

r6
= 1

λ2
π

×
(

λ2
π S2

2[κ(1 − 15 sin2 θ + 24 sin4 θ) − (1 − 7 sin2 θ + 12 sin4 θ)]
r6 +

S3
2[η(−5 + 7 sin2 θ − 99 sin4 θ + 47 sin6 θ) + κ(5 − 49 sin2 θ + 83 sin4 θ − 39 sin6 θ)]

8Pr6

)
.

Applying (7), where F(α) is given by (39) allows one to ob-
tain, after straightforward algebraic manipulations the expression 
of F−1(α):

CRB(θ) = cσ (α)[F−1(α)]1,1

= cσ (α)

b1,1
0

[
1 − 1

r2

(
b1,1

2

b1,1
0

− (b1,2
3 )2

b1,1
0 b2,2

4

)
+ o(r−2)

]
(40)

CRB(r) = cσ (α)[F−1(α)]2,2

= r4cσ (α)

b2,2
4

[
1 − 1

r2

(
b2,2

6

b2,2
4

− (b1,2
3 )2

b1,1
0 b2,2

4

)
+ o(r−2)

]
. (41)

Replacing the different terms bi, j
k by their values in (40) and (41)

and cσ (α) by c(1 − S2
Pr2 (1 − 4 sin2 θ) + o(r−2) thanks to (18) and 

(15), the expressions of (16) and (17) are proved after tedious ma-
nipulations, where

− S2

Pr2
(1 − 4 sin2 θ) −

(
b1,1

2

r2b1,1
0

− (b1,2
3 )2

r2b1,1
0 b2,2

4

)

=
(

2κ S2

P
− λ2

π

)
+ g(sin2 θ, S2, λ

2
π ,κ),

with

g(sin2 θ, S2, λ
2
π ,κ) = 4P 2λ′ 4 + S2

2κ(13κ − 9) cos4 θ

+ 4P S2λ
2
π [(6 − 7κ) sin2 θ − (5κ − 3)]

and
− S2

Pr2
(1 − 4 sin2 θ) −

(
b2,2

6

r2b2,2
4

− (b1,3
3 )2

r2b1,1
0 b2,2

4

)
= h(sin2 θ, S2, λ

2
π ,κ,η). �
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