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a b s t r a c t 

This paper addresses the theoretical analysis of the robustness of subspace-based algorithms with re- 

spect to non-Gaussian noise distributions using perturbation expansions. Its purpose is twofold. It aims, 

first, to derive the asymptotic distribution of the estimated projector matrix obtained from the sample 

covariance matrix (SCM) for arbitrary distributions of the useful signal and the noise. It proves that this 

distribution depends only of the second-order statistics of the useful signal, but also on the second and 

fourth-order statistics of the noise. Second, it derives the asymptotic distribution of the estimated pro- 

jector matrix obtained from any M -estimate of the covariance matrix for both real (RES) and complex el- 

liptical symmetric (CES) distributed observations. Applied to the MUSIC algorithm for direction-of-arrival 

(DOA) estimation, these theoretical results allow us to theoretically evaluate the performance loss of this 

algorithm for heavy-tailed noise distributions when it is based on the SCM, which is significant for weak 

signal-to-noise ratio (SNR) or closely spaced sources. These results also make it possible to prove that 

this performance loss can be alleviated by replacing the SCM by an M -estimate of the covariance for CES 

distributed observations, which has been observed until now only by numerical experiments. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Subspace-based algorithms are obtained by exploiting the

rthogonality between a sample subspace and a parameter-

ependent subspace. They have been proved very useful in many

pplications, including array processing and linear system identifi-

ation (see e.g., [1,2] ). The purpose of this paper is to complement

heoretical results already available on subspace-based estimators.

mong them, the asymptotic distribution of the projection matrix

as directly derived without any eigendecomposition in [3] . Con-

itions on robustness to the distribution of the useful signal have

een given in [4,5] for Gaussian distributed noise. Equivalence be-

ween subspace fitting and subspace matching algorithms has been

tudied in [6] . It has been proved that the asymptotic minimum

ariance on parameters estimated by subspace-based algorithms

ttains the Cramér–Rao bound for Gaussian observations in [7,8] .

ut all these properties have been derived from the SCM and un-

er the assumption of Gaussian distributed noise, only. 

But, for heavy-tailed distributions of the noise, it has been

hown (see e.g., [9–12] ) by numerical experiments that the per-
∗ Corresponding author. 

E-mail addresses: abeida3@yahoo.fr (H. Abeida), jean-pierre.delmas@it- 

udparis.eu (J.P. Delmas). 
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ormance of MUSIC algorithm for DOA estimation derived from the

CM degrades dramatically. To explain this behavior, the first pur-

ose of this paper is to derive the asymptotic distribution of the

stimated projector matrix obtained from the SCM for arbitrary

istributions of the useful signal and the noise, to prove that it

epends only of the second-order statistics of the useful signal,

ut also on the second and fourth-order of the noise. The second

urpose is to derive the asymptotic distribution of the estimated

rojector matrix obtained from any M -estimate of the covariance

atrix, for both RES and CES distributions of the observations. 

We take the MUSIC DOA estimation algorithm, which is al-

ays the object of active research (see e.g., [13] ), as an example of

ubspace-based algorithms. We first theoretically specify the loss

n performance of this algorithm built from the SCM for arbitrary

eavy-tailed distributions of strong noise with a particular empha-

is to CES distributions. The second step of our analysis, then, is

o theoretically assess the robustness of this algorithm built from

n M -estimate of the covariance for CES distributed observations.

hese theoretical results are confirmed by some simulations per-

ormed with either a complex circular Student t distribution or a

omplex generalized Gaussian distribution of the observations or

he noise model. 

The paper is organized as follows. Section 2 specifies the gen-

ral signal model and the problem formulation. The asymptotic

https://doi.org/10.1016/j.sigpro.2019.06.017
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performance of subspace-based algorithms associated with the

SCM and the M -estimate of the covariance matrix are given in

Section 3 and 4 , respectively, with a particular attention to the

asymptotic performance of the MUSIC-based DOA estimation al-

gorithm. Section 5 illustrates the theoretical performance of the

MUSIC-based DOA estimation algorithm given in the previous two

sections. Finally, the paper is concluded in Section 6 . 

The notations used throughout the paper are conventional. Ma-

trices and vectors are represented by bold upper case and bold

lower case letters, respectively. I N is the identity matrix of order

N and vectors are by default in column orientation, while T, H and
∗ stand for transpose, conjugate transpose and conjugate, respec-

tively. E(.), Re(.), |.| and # are the expectation, real part operator,

determinant and Moore–Penrose inverse, respectively. vec( · ) is the

vectorization operator that turns a matrix into a vector by stack-

ing the columns of the matrix one below another which is used in

conjunction with the Kronecker product A �B as the block matrix

whose ( i, j ) block element is a i,j B and with the vec-permutation

matrix K which transforms vec( C ) to vec( C 

T ) for any square matrix

C . 

2. Signal model and problem formulation 

2.1. Signal model 

Consider the following model 1 

y t = A ( θ) x t + n t ∈ C 

N or R 

N , t = 1 , . . . T , (1)

where (y t ) t=1 , ... ,T are independent identically distributed. n t is an

additive noise, which is assumed zero-mean circular (in the com-

plex case) with finite fourth-order moments, spatially uncorre-

lated with E(n t n 

+ 
t ) = R n = σ 2 

n I N where the symbol + stands for
T in the real case and for H in the complex one. The noise n t 

is independent from the signals x t,k where x t 
def = (x t, 1 , . . . , x t,K ) 

T .

( x t,k ) k =1 , ... ,K, 1 , ... ,T are either deterministic unknown parameters (in

the so-called conditional or deterministic model), or zero-mean

circular (in the complex case) random with finite fourth-order mo-

ments where E(x t x 
+ 
t ) = R x is nonsingular (in the so-called un-

conditional or stochastic model). A ( θ) is a full column rank N × P

(with P < N ) matrix parameterized by the real-valued parameter of

interest θ, which is characterized by the subspace generated by

its columns. With these assumptions, the covariance matrix of y t 
given in the stochastic model is 

R y = A ( θ) R x A 

+ ( θ) + R n . (2)

2.2. Problem formulation 

Under the Gaussian distribution of y t , the maximum likelihood

estimate of R y is the SCM: 

R y,T 
def = 

1 

T 

T ∑ 

t=1 

y t y 
+ 
t (3)

and any subspace-based algorithm can be considered as the fol-

lowing mapping: 

R y,T �→ �y,T 
alg �→ θT (4)

where �y,T denotes the orthogonal projection matrix associated

with the so called noise subspace of R y,T (built from the SVD of

R y,T ). The functional dependence θT = alg( �y,T ) constitutes an ex-

tension of the mapping �y = I N − A ( θ)[ A 

+ ( θ) A ( θ)] −1 A 

+ ( θ) 
a lg � −→ θ
1 This model is an extension of the conditional and unconditional models de- 

scribed in [14] for DOA estimation. m
n the neighborhood of �y . Each extension alg specifies a particu-

ar subspace algorithm, whose MUSIC algorithm is an example. 

It has been proved in [5] , that under the above assumptions on

tochastic model (1) , the asymptotic distribution of any subspace-

ased estimate θT derived form the SCM depends only of the

econd-order statistics of x t when the noise n t is Gaussian dis-

ributed. The problem we are dealing with here is to clarify how

he performance is affected when the noise is not Gaussian dis-

ributed and how the possible loss of performance can be miti-

ated by using an M -estimate of R y , instead of the SCM. 

. Asymptotic performance of subspace-based algorithms 

ssociated with the SCM 

.1. Asymptotic distribution of the SCM 

Using the central limit theorem applied to the sequence of in-

ependent random variables vec (y t y 
+ 
t ) = y ∗t � y t in the complex

ase [resp., y t �y t in the real case], which are identically [resp.,

on-identically] distributed in the stochastic [resp. deterministic]

odel, we get the following convergence in distribution: 
√ 

T 
(
vec (R y,T ) − vec (R y ) 

) L → N 

(
0 , R r y , C r y 

)
(complex case) , 

N 

(
0 , R r y 

)
(real case) , (5)

here R y is given by (2) in the stochastic model and by

 ( θ) R x, ∞ 

A 

+ ( θ) + R n with R x, ∞ 

def = lim t→∞ 

1 
T 

∑ T 
t=1 x t x 

+ 
t (if it exists)

n the deterministic model. In the stochastic model, R r y and C r y de-

otes the covariance and the complementary covariance or pseudo

ovariance of y ∗t � y t , respectively. They are given by 2 : 

 r y = (A 

∗
� A ) R r x (A 

T 
� A 

+ ) + (A 

∗R 

∗
x A 

T ) � R n 

+ R 

∗
n � (AR x A 

+ ) + R r n (6)

 r y = R r y K , (7)

here A 

def = A ( θ) for short, R r x and R r n are the covariance matri-

es of vec (x t x 
+ 
t ) and vec (n t n 

+ 
t ) , respectively. Whereas in the de-

erministic model, R r y and C r y are given by: 

 r y = (A 

∗R 

∗
x, ∞ 

A 

T ) � R n + R 

∗
n � (AR x, ∞ 

A 

+ ) + R r n and C r y = R r y K . 

(8)

Considering the statistics of the noise: R n = σ 2 
n I N and 

 r n = (R n � R n ) K 

′ + Q n = σ 4 
n K 

′ + Q n , (9)

here 

 

′ def = I N 2 [resp., K 

′ def = I N 2 + K ] in the complex [resp., real] case

(10)

nd Q n is the quadrivariance of the noise defined by

 Q n ] i +( j−1) N,k +(l−1) N = Cum (n ∗
t, j 

, n t,i , n t,� , n 
∗
t,k 

) with n t = (n t, 1 , . . . ,

 t,N ) 
T . To go further, we must specify these cumulants. Here we

onsider the following usual assumptions: (i) the components

(n t,i ) i =1 , ... ,N are identically distributed and (ii) the only non-zero

xpectations E(n ∗
t, j 

n t,i n t,� n 
∗
t,k 

) are obtained for i = j = k = � and

or two indices equal two by two. For example, in the complex

ase: 

E(n 

∗
t, j n t,i n t,� n 

∗
t,k ) = { 

E | n t,i | 4 = κσ 4 
n for i = j = k = � 

(E | n t,i | 2 ) 2 = σ 4 
n for i = j 	 = k = � and i = k 	 = j = � 

0 elsewhere , 
(11)
2 Note that all asymptotic covariance R and complementary covariance C of Her- 

itian structured estimators are related by C = RK . 
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here κ is the kurtosis of the noise. In this case, it is straightfor-

ard to prove that: 

 n = σ 4 
n (κ − ρ) �N , (12) 

here ρ = 3 [resp., ρ = 2 ] in the real [resp., complex] case with

N 
def = 

∑ N 
i =1 (e i e 

T 
i 
) � (e i e 

T 
i 
) , where e i is the N th vector with one in

he position i and zeros elsewhere. Note that κ − ρ = 0 for real or

ircular complex Gaussian distributions and κ − ρ is strictly pos-

tive or negative for respectively, super-Gaussian or sub-Gaussian

istribution of the noise. 

The assumptions (i) and (ii) are also satisfied when n t is RES

r CES distributed. Note that the real (RCG) or complex compound

aussian (CCG) distribution (also referred to as spherically invari-

nt random vectors (SIRV) in the engineering literature that has

een widely used for modeling radar clutter), is a subclass of the

ES or CES distributions. Using the stochastic representation theo-

em of these distributions (see e.g., [15 , th.3 and def.3] in the com-

lex case), n t is distributed as √ 

Q t �
1 / 2 u t for RES/CES distributions , 
√ 

τt �
1 / 2 w t for RCG/CCG distributions , (13) 

here Q t and τ t are non-negative real random variables, u t and

 t are respectively uniformly distributed on the unit real (or com-

lex) N -sphere and Gaussian distributed N (0 , I N ) (or N (0 , I N , 0 ) ),

 t [resp., τ t ] and u t [resp., w t ] are independent and � is the scat-

er matrix of the distribution of n t . Because here the second-order

oments of n t are finite, the density generator of the distribution

f n t can always be definite such that the scatter matrix is equal

o the covariance matrix, i.e., 

= R n = σ 2 
n I N . (14)

n this case, it is straightforward to prove that for RES/CES and

CG/CCG distributions: 

 n = σ 4 
n (η − 1) 

(
K 

′ + vec (I N ) vec T (I N ) 
)
, (15) 

here 

= 

E(Q 

2 
t ) 

N(N + 1) 
[ resp., η = E(τ 2 

t )] 

for RES/CES [resp., RCG/CCG] distributions . (16) 

.2. Asymptotic distribution of the associated projector 

Then using the standard perturbation result for orthogonal pro-

ectors [16] (see also [3] ) applied to �y associated with the noise

ubspace of R y : 

(�y ) = −�y δ(R y ) S 
# − S # δ(R y ) �y + o ( δ(R y ) ) , (17)

here S 
def = AR x A 

+ [resp., AR x, ∞ 

A 

+ ] in the stochastic [resp. deter-

inistic] model, the asymptotic behaviors of �y,T and R y,T are di-

ectly related. The standard theorem of continuity (see e.g., [17 ,

. 122]) on regular functions of asymptotically Gaussian statistics

pplies: 

√ 

T 
(
vec (�y,T ) − vec (�y ) 

) L → N 

(
0 , R πy 

, C πy 

)
(complex case) , N 

(
0 , R πy 

)
(real case) , (18) 

ith 

 πy 
= [( S T 

# 
� �y ) + (�T 

y � S # )] R r y [( S 
T # 

� �y ) + (�T 
y � S # )] . 

(19) 

hen using (6) and (9) with (12) and (15) , we get the following

esult: 
esult 1. In the stochastic and deterministic models, the sequence
 

T 
(
vec (�y,T ) − vec (�y ) 

)
where �y,T denotes the noise projector 

ssociated with the SCM (3) converges in distribution to the zero-

ean Gaussian distribution of covariance given for nonparameter-

zed distributed noise by: 

 πy 
= [(U 

T 
� �y ) + (�T 

y � U )] K 

′ 

+ σ 4 
n (κ − ρ)[( S T 

# 
� �y ) 

+(�T 
y � S # )] �N [( S 

T # 
� �y ) + (�T 

y � S # )] (20) 

ith U 

def = σ 2 
n S 

# R y S 
# and for RES/CES/RCG/CCG distributed noise

y: 

 πy 
= [(U 

T 
� �y ) + (�T 

y � U )] K 

′ 

+ (η − 1) [(U 

′ T 
� �y ) + (�T 

y � U 

′ )] , (21) 

ith U 

′ def = σ 4 
n (S # ) 2 , which is inversely proportional to the square

f the SNR. 

We note that when n t is Gaussian distributed, κ = 3 [resp., κ =
 ] in the real [resp. complex] case, Q t is Gamma(1, N ) distributed

nd τt = 1 which implies η = 1 for RES/CES [resp., RCG/CCG] dis-

ributions and we check that R πy reduces to the first term [(U 

T 
�

y ) + (�T 
y � U )] K 

′ derived for the Gaussian distribution of the

oise. 

.3. Asymptotic performance of DOA estimated by the MUSIC 

lgorithm 

In the DOA application, A is the steering matrix [ a 1 , . . . , a P ] ,

here each vector (a k ) k =1 , ... ,P is parameterized by θ k which is the

OA of the k th source. We prove in Appendix A the following re-

ult: 

esult 2. In the stochastic and deterministic models, the sequence
 

T 
(
θT − θ

)
, where θT is the DOA estimate given by MUSIC algo-

ithm, converges in distribution to the zero-mean Gaussian dis-

ribution of covariance matrix given for the nonparametric noise

odel by: 

 R 

SCM 

NG ( θ)] k,� = [ R 

SCM 

G ( θ)] k,� + 

σ 4 
n (κ − 2) 

αk,k α�,� 

g 

H 
k �N g � , (22)

here g k 
def = a T 

k 
S # T � a 

′ 
k 
�y + a 

′ T 
k 

�T 
y � a H 

k 
S # , and αk,� 

def = 2 a 
′ H 
k 

�y a 
′ 
� 

here a ′ 
k 

def = d a k /d θk and for CES/CCG parametric noise model, by:

 R 

SCM 

CES / CCG ( θ)] k,� = [ R 

SCM 

G ( θ)] k,� + 

(η − 1) 

αk,k α�,� 

Re (α∗
k,� 

a H k U 

′ a � ) , (23)

here 

 R 

SCM 

G ( θ)] k,� = 

1 

αk,k α�,� 

Re (α∗
k,� 

a H k Ua � ) , (24)

s the asymptotic covariance matrix of DOA estimate derived for

he first time in [18 , th.3.1] for circular Gaussian distributed noise. 

For a single source, (22) and (23) become respectively: 

 

SCM 

NG (θ1 ) = 

1 

α1 , 1 

[
σ 2 

n 

σ 2 
1 

+ 

1 

‖ a 1 ‖ 

2 

σ 4 
n 

σ 4 
1 

]
+ 

β1 

α2 
1 , 1 

[
(κ − 2) 

σ 4 
n 

σ 4 
1 

]
, (25) 

 

SCM 

CES / CCG (θ1 ) = 

1 

α1 , 1 

[
σ 2 

n 

σ 2 
1 

+ 

1 

‖ a 1 ‖ 

2 

σ 4 
n 

σ 4 
1 

]
+ 

(η − 1) 

α1 , 1 

1 

‖ a 1 ‖ 

2 

σ 4 
n 

σ 4 
1 

, (26) 

here β1 is a positive purely geometric factor and σ 2 
1 

def = E | x 2 t |
resp., lim T →∞ 

1 
T 

∑ T 
t=1 x 

2 
t ] in the stochastic [resp. deterministic]

odel. Note that the additive term in (22), (23), (25) and (26) is
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inversely proportional to the square of the SNR. Therefore, non-

Gaussian noise effects can occur mainly at low SNR values. Fur-

thermore, note that for sub-Gaussian ( κ < 2) noise distributions,

this asymptotic variance is slightly reduced as κ ≥ 1. On the other

hand, it can be largely increased for super-Gaussian ( κ > 2) noise

distributions because κ is not upper-bounded, and can also be very

large for heavy-tailed noise distributions and for low SNRs. 

4. Asymptotic performance of subspace-based algorithms 

associated with the M -estimate of covariance 

To mitigate the loss of performance of subspace-based algo-

rithms for strong non-Gaussian distributed noise, the SCM can

be replaced by the ML estimate of R y . However, this estimate

cannot be obtained for specific non-Gaussian RES/CES distribu-

tions of x t and n t in (1) because the family of RES/CES distribu-

tions are not closed under summation of independent RES/CES dis-

tributed random variables. To overcome this difficulty, we assume

in this section that the observations y t in (1) are independent

zero-mean RES/CES identically distributed, with stochastic repre-

sentation (13) and finite fourth-order moments and whose covari-

ance R y is always given by (2) . Note that this model is approx-

imately satisfied in the strong noise scenario where the RES/CES

distributed noise fixes the distribution of y t . With this new model,

we first recast the derivations of the previous section to compare

the asymptotic performance of subspace-based algorithms based

on the SCM and M -estimate. 

4.1. Asymptotic distribution of the projector associated with the SCM 

By following the approach of Section 3.1 , the sequence√ 

T 
(
vec (R y,T ) − vec (R y ) 

)
converges in distribution to the zero-

mean Gaussian distribution N (0 , R r y , C r y ) in the complex case and

N 

(
0 , R r y 

)
in the real case, of covariance matrix: 

R r y = η(R 

T 
y � R y ) K 

′ + (η − 1) vec (R y ) vec + (R y ) , (27)

where η is given by (16) . This gives, following the steps of

Section 3.2 , the sequence 
√ 

T 
(
vec (�y,T ) − vec (�y ) 

)
converges

also in distribution to the zero-mean Gaussian distribution

N (0 , R πy , C πy ) of covariance matrix: 

R πy 
= η[(U 

T 
� �y ) + (�T 

y � U )] K 

′ . (28)

4.2. Asymptotic distribution of the projector associated with the 

M -estimate 

We start to consider the ML estimate of the scatter matrix �y 

of the zero-mean RES/CES distribution of y t , which is equal here

to its covariance R y . This ML estimate is solution of the implicit

equation: 

�y,T = 

1 

T 

T ∑ 

t=1 

u 

(
y + t �

−1 
y,T y t 

)
y t y 

+ 
t , (29)

where u (t) 
def = − 1 

g(t) 
dg(t) 

dt 
is a real-valued non-negative weight func-

tion fixed by the density generator g (.) of the underlying RES/CES

distribution [15 , (38)], whose probability density function can be

written as: 

p(y t ) ∝ | �y | −1 g 
(
y H t �

−1 
y y t 

)
(complex case) , 

p(y t ) ∝ | �y | −1 / 2 g 
(
y T t �

−1 
y y t 

)
(real case) . (30)

Note that under specific conditions on the density generator given

in [19] for RES and extended to CES in [15] , the solution of the

implicit Eq. (29) is unique and can be obtained by an iterative fix

point algorithm, given any initial positive definite Hermitian matrix

� . 
0 
Furthermore, this estimate belongs to the class of M -estimators

f scatter matrices introduced by Maronna [19] , where u (.) does

ot need to be related to the density generator of any particular

ES/CES distribution. Existence and uniqueness of the solution �u 
y,T 

f (29) have been proved in the real case, provided u (.) satisfies

 set of general conditions (called Maronna conditions) stated by

aronna in [19] . These conditions have been extended to the com-

lex case in [11] and [15] . Under these conditions, it has been also

roved in the real case that the solution of (29) can be derived by

n iterative fix point algorithm. The sequence �u 
y,T 

of solutions of

29) converges in probability to �u 
y proportional to �y ( �u 

y = σu �y ,

here σ u depends on u (.) and the RES distribution of y t ). The ex-

ension of these results to the complex case has been done in [15] .

These M -estimates of scatter matrices have been proposed

or robust estimate of �y against outliers and heavy-tailed non-

aussian distributions. Under these Maronna conditions, it has

een proved in the real case [20] and the complex case [10,15] ,

hat the sequence 
√ 

T ( vec (�u 
y,T 

) − vec (�u 
y )) converges in distribu-

ion to the zero mean Gaussian distribution N (0 , R 
u 
y 
, C 
u 

y 
) in the

omplex case and N (0 , R 
u 
y 
) in the real case, with covariance: 

 
u 
y 

= ϑ 1 (�
T 
y � �y ) K 

′ + ϑ 2 vec (�y ) vec + (�y ) , (31)

here the parameters ϑ1 and ϑ2 [15 , rels. (48), (49)] and [10 ,

els. (7), (12)] depend on u (.) and the involved RES/CES distribu-

ion. They are given with our notations by: 

 1 = 

E[ u 

2 (Q t /σu ) Q 

2 
t ] 

N(N + 1)(1 + [ N(N + 1)] −1 c u ) 2 
and 

ϑ 2 = 

E[(u (Q t /σu ) Q t − Nσu ) 2 ] 

(N + c u ) 2 
− ϑ 1 

N 

, (32)

ith c u 
def = E[ u ′ (Q t /σu ) Q 

2 
t /σ

2 
u ] [15 , (47)] where u ′ (x ) 

def = du (x ) /dx

nd σ u solution of E[ u (Q t /σu ) Q t /σu ] = N[15 , (46)]. Note that σu =
 for finite second-order moments of y t and ML estimate of �y 

i.e., for u (t) = − 1 
g(t) 

dg(t) 
dt 

). 

Finally note that the covariance matrix R r y (27) of the asymp-

otic distribution of the SCM can be derived form (31) for

he weight function u (t) = 1 for which c u = 0 , which gives:

 1 = E(Q 

2 
t ) / (N(N + 1)) = η and ϑ 2 = E(Q 

2 
t ) / (N(N + 1)) − 1 = η −

 from (16) . 

Now, denote by �y,T , the noise projector built from the SVD of
u 
y,T 

. Noting that �u 
y , �y = R y are proportional and following the

pproach of Section 3.1 , we get the following result: 

esult 3. The sequence 
√ 

T 
(
vec (�y,T ) − vec (�y ) 

)
converges in

istribution to the zero-mean Gaussian distribution N (0 , R πy , C πy )

n the complex case and N 

(
0 , R πy 

)
in the real case of covariance

atrix: 

 πy 
= ϑ 1 [(U 

T 
� �y ) + (�T 

y � U )] K 

′ . (33)

Following the steps Section 3.3, Result 2 also applies here. Thus

he following result is obtained. 

esult 4. The asymptotic covariance of the DOA estimated by the

USIC algorithm associated with the SCM and the covariance M -

stimate (29) are respectively given for CES distributed observa-

ions by: 

 R 

SCM 

CES / CCG ( θ)] k,� = η[ R 

SCM 

G ( θ)] k,� and 

[ R 

M . Est 
CES / CCG ( θ)] k,� = ϑ 1 [ R 

SCM 

G ( θ)] k,� . (34)

Therefore, the gain from using an M -estimate of the covariance

ather than the SCM is uniquely characterized by the factor ϑ1 / η,

hich depends on the specified non-Gaussian noise distributions. 
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Fig. 2. Theoretical ratio r 
def = R SCM 

G (θ1 ) /R SCM 
CES / CCG (θ1 ) as a function of �θ for SNR = 

10dB. 
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. Numerical illustrations 

This section illustrates the theoretical performance of the

USIC-based DOA estimation algorithm given by Results 2 and

 . We consider throughout this section two uncorrelated sources

f equal power ( σ 2 
1 

= σ 2 
2 

) are impinging on an ULA with N = 6

ensors for which a k = (1 , e jθk , . . . , e j(N−1) θk ) T where θk = sin (παk )

ith αk are the DOAs relative to the normal of array broadside.

he SNR is defined as SNR = σ 2 
1 
/σ 2 

n . The following table proved in

he Appendix, gives the values of the parameter η and ϑ1 that are

nvolved in the different asymptotic covariance matrices. 

In the first experiment the sources are QPSK distributed and

he noise n t is either circular complex Student t -distributed (i.e.,

 t ∼ C t N,ν (0 , σ 2 
n I ) ) with parameter ν > 4 to have finite fourth-

rder moment or complex circular Gaussian distributed (i.e., n t ∼
 (0 , σ 2 

n I , 0 ) obtained also for ν → ∞ ). Fig. 1 compares the asymp-

otic variances of DOA estimates obtained with the MUSIC algo-

ithm based on the SCM, given by (23) for the two previously de-

cribed noise models. These asymptotic variances are also com-

ared to the corresponding MSEs (where T = 500 estimated by

0 0 0 Monte Carlo runs). It can be seen from this figure that the

ES distributed noise model cause deeper loss of performance

f the MUSIC algorithm based on SCM for weak SNR. Note that

he CRB cannot be plotted in this figure because y t is distributed

ere as a mixture of four circular complex Student t -distributions,

hose CRB is not available. 

Fig. 2 shows the theoretical ratio r 
def = R SCM 

G 
(θ1 ) /R SCM 

CES / CCG 
(θ1 ) of

he asymptotic variances for Gaussian distributed and Student t -

istributed noise with respect to the DOA separation �θ = | θ2 −
1 | for different values of the parameter ν at SNR = 10 dB . We see

hat the performance deteriorates strongly for small DOA separa-

ion and for small parameter ν ( ν → 4), i.e., for heavy-tailed noise

istributions. Obviously, this ratio tends to 1 for ν → ∞ (Gaussian

ase). 

In the second experiment, the observations y t are CES dis-

ributed of covariance R y = �y = 

∑ 2 
k =1 σ

2 
k 

a k a 
H 
k 

+ σ 2 
n I . Figs. 3 and

 exhibit the ratio r 
def = R M . Est 

CES / CCG 
(θ1 ) /R SCM 

CES / CCG 
(θ1 ) = ϑ 1 /η deduced

rom (34) , versus N for different values of the parameters ν and β
or the circular complex Student t -distribution C t N,ν (0 , �y ) and the

ircular complex generalized Gaussian distribution C GG N,β (0 , �y ) ,

espectively. 
ig. 1. Asymptotic variances Var( θ1, T ) given by (23) and (24) and its associated 

SEs versus SNR with �θ = 0 . 25(rd) . 

F

C

In Fig. 3 , we can see performance improvements escalating

hen the ML estimate of R y ( M -estimate) is used instead of the

CM with decreasing spikiness parameter ν . For ν → ∞ , the noise

ends to be Gaussian distributed (where the SCM is the ML esti-

ate of the covariance matrix) and the performance tends to be

quivalent. In Fig. 4 , we see that this improvement of performance

ncreases both when β > 1 (super-Gaussian case) and β < 1 (sub-

aussian case), and obviously disappears if the noise is Gaussian

istributed (i.e., β = 1 ). Moreover, we see that the number N of

ensors has little impact on improving the performance for circu-

ar complex Student t -distributed observations compared to those

istributed with a circular complex generalized Gaussian distribu-

ion. 

Fig. 5 compares the CRB derived in [21] and [22] , the asymp-

otic variances of DOA estimates obtained with the MUSIC algo-

ithm based on SCM and M -estimate of the covariance given by

34) for C GGN , β(0 , 
) observations, and the corresponding MSEs

where T = 500 estimated by 20 0 0 Monte Carlo runs). It can be
ig. 3. r = R M . Est 
CES / CCG (θ1 ) /R SCM 

CES / CCG (θ1 ) versus N for different values of ν for the 

 t N,ν (0 , �y ) distribution. 
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Fig. 4. r = R M . Est 
CES / CCG (θ1 ) /R SCM 

CES / CCG (θ1 ) versus N for different values of β ( β > 1 for 

super-Gaussian case and β < 1 for sub-Gaussian case) for the C GG N,β (0 , �y ) dis- 

tribution. 

Fig. 5. Asymptotic variances given by (34) , CRB and associated MSE versus SNR 

with �θ = 0 . 25(rd) for the C GGN , β(0 , 
y ) distribution. 
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Table 1 

Parameters η and ϑ1 used in the illustrations. 

CES Distributions η ϑ1 

N (0 , �, 0 ) 1 1 

C t N,ν (0 , �) ν−2 
ν−4 

N+1+ ν/ 2 
N+ ν/ 2 

C GG N,β (0 , �) N 
N+1 

�(N/β)�((N+2) /β) 
�((N+1) /β) 2 

N+1 
N+ β
seen from this figure the validity of the derived theoretical asymp-

totic variances in (34) which are in good agreement with the corre-

sponding MSEs. We also observe, in comparison with the CRB, that

the MUSIC based on M -estimate of the scatter matrix is asymptot-

ically efficient at high SNR values. 

6. Conclusion 

This paper has provided theoretical tools for analyzing the per-

formance loss of SCM-based subspace algorithms with respect to

non-Gaussian heavy-tailed noise distributions, which has been an-

alyzed until now only by numerical experiments. We have proved

that this loss of performance can be mitigated by replacing the

SCM with an M -estimate of the covariance for RES/CES distribu-

tions. Simulation results of the MUSIC DOA estimation algorithm

have been presented to illustrate the theoretical analysis when

the observations are distributed according to either circular com-

plex Student t -distribution or circular complex generalized Gaus-

sian distribution. But these results can be applied to many other

subspace-based algorithms. Finally, note that our analysis assumes
hat both conditions (i) distributions have finite fourth-order mo-

ents and (ii) the M -estimate of the covariance matrix belongs

o the RES/CES family of distributions are satisfied, but otherwise,

hey will certainly open up new avenues for performance analysis.

eclaration of Competing Interest 

None. 

ppendix A 

roof of Result 2. Using again the standard theorem of continu-

ty, the DOAs estimated by the MUSIC algorithm based on �y,T 

re asymptotically Gaussian distributed with covariance R (θ ) =
 

g (θ ) R πy [ D 

g (θ )] H where the Jacobian matrix D 

g ( θ) of the mapping

 which is the MUSIC algorithm that associates θT to �y,T is given

see e.g., [25] ): by 

 

g (θ ) = 

⎛ 

⎝ 

d 

T 
1 
. . . 

d 

T 
P 

⎞ 

⎠ with d 

T 
k = 

−1 

αk,k 

(
a 

′ 
k 

T 
� a H k + a T k � a 

′ 
k 

H 
)
. (35)

lugging (35) and (20) - (21) in R (θ ) = D 

g (θ ) R πy [ D 

g (θ )] H , (22) and

23) follow. �

roof of Table 1. 

a) Circular complex generalized Gaussian distributions: 

The density generator of this distribution is g(t) = e −t β/b 

which gives the ML weight function u (t) = (β/b) t β−1 . Thus,

σ u that is solution of E[ u (Q t /σu ) Q t /σu ] = N[15 , (46)] is

given by σu = (β/ (bN))E(Q 

β
t ) = 1 from E(Q 

β
t ) = Nb/β [23 ,

a16], c u 
def = E[ u ′ (Q t ) Q 

2 
t ] = (β(β − 1) /b)E(Q 

β
t ) = N(β − 1) , and

E[ u 2 (Q t ) Q 

2 
t ] = (β2 /b 2 ) e (Q 

2 β
t ) = N (β + N ) from E(Q 

2 β
t ) =

(Nb 2 /β)(1 + N/β) [23 , a16]. As a result ϑ 1 = (N + 1) / (N + β)

from (32) . 

Because E(u t u 

H 
t ) = I N /N [15 , lemma.1], (13) implies that

E(Q t ) = N. Otherwise, E(Q t ) = b 1 /β �[(N+1) /β] 
�[ N/β] 

and E(Q 

2 
t ) =

b 2 /β �[(N+2) /β] 
�[ N/β] 

from [24 , (16)], where �(.) is the gamma func-

tion. Consequently η = 

NE(Q 2 t ) 

(N+1)[E(Q t )] 2 
= 

N 
N+1 

�(N/β)�((N+2) /β) 

�((N+1) /β) 2 
. 

b) Circular complex Student t -distribution: 

The density generator of this distribution is g(t) =(
1 + 

2 t 
ν

)−(2 N+ ν) / 2 
which gives the ML weight function u (t) =

2 N+ ν
ν+2 t . σ u solution of E[ u (Q t /σu ) Q t /σu ] = N[15 , (46)] is equal to

unity because E[ u (Q t ) Q t ] = N [21 , (11)]. Using E[ Q t ψ 

′ 
(Q t )] =

ν
2 

N 
N+1+ ν/ 2 and E[ ψ 

2 (Q t )] = 

N (N +1)(N + ν/ 2) 
N+1+ ν/ 2 with ψ(x ) 

def = xu (x )

from [26] , we get c u 
def = E[ u ′ (Q t ) Q 

2 
t ] = 

ν
2 

N 
N+1+ ν/ 2 − N (using also

E[ u (Q t ) Q t ] = N) and E[ u 2 (Q t ) Q 

2 
t ] = 

N (N +1)(N + ν/ 2) 
N+1+ ν/ 2 , which give

ϑ 1 = 

N+1+ ν/ 2 
N+ ν/ 2 from (32) . 

From [15 , (8) and Sec. IV.], E | y 4 
i,t 

| / [E | y 2 
i,t 

| ] 2 − 2 = 

4 
ν−4 with y i,t 

def= 

e T 
i 

y t . Then E | y 2 
i,t 

| = E(τt )(e T 
i 
�y e i ) and E | y 4 

i,t 
| = 2E(τ 2 

t )(e T 
i 
�y e i ) 

2

from (13) . Consequently 4 
ν−4 + 2 = 2 

E(τ2 
t ) 

[E(τt )] 2 
= 2E(τ 2 

t ) . This im-

plies η = 

ν−2 
ν−4 . �
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