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a b s t r a c t

In many detection applications, the main performance criterion is the signal to

interference plus noise ratio (SINR). After linear filtering, the optimal SINR corresponds

to the maximum value of a Rayleigh quotient, which can be interpreted as the largest

generalized eigenvalue of two covariance matrices. Using an extension of Szegö’s

theorem for the generalized eigenvalues of Hermitian block Toeplitz matrices, an

expression of the theoretical asymptotic optimal SINR w.r.t. the number of taps is

derived for arbitrary arrays with a limited but arbitrary number of sensors and arbitrary

spectra. This bound is interpreted as an optimal zero-bandwidth spatial SINR in some

sense. Finally, the speed of convergence of the optimal wideband SINR for a limited

number of taps is analyzed for several interference scenarios.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Beamforming is used in many applications. It consists
of spatially filtering signals, thanks to an array of sensors,
and allows one to form ‘‘nulls’’ in the direction of
interfering sources while maintaining a given gain in a
desired direction. Usually, signals are narrowband [1] and
spatial processing alone is sufficient (e.g., see [2]).
However, in many applications, such as sonar, radar or
communications, broadband signals are required to
achieve desired performance, for instance in terms of
range resolution or channel capacity. The counterpart is
that it also leads to a loss in interference rejection
performance (e.g., see [1,3]) and some sort of frequency
compensation is required to keep good nulling perfor-
mance. Therefore, space–time processing algorithms,
which can be based on time or frequency-domain
ll rights reserved.
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(M. Oudin),
implementations, are used. Most of these algorithms are
designed with the constraint that the signal is preserved
through optimization criteria such as linearly constrained
minimum variance (LCMV). However, since those algo-
rithms are optimized under constraints, they are not
optimal from the signal to interference plus noise ratio
(SINR) point of view, which is the main performance
criterion used for detection problems. Indeed, after linear
filtering and under the current assumption that observa-
tion data are composed of signal of interest and additive
Gaussian interference and noise, maximizing the SINR is
equivalent to the Neyman–Pearson criterion. In this paper,
we consider this context of detection problems. Thus, the
objective of this paper is to study the performance of the
optimal processing in the sense of SINR maximization.

When a linear filter is applied to observation data, the
SINR corresponds to a Rayleigh quotient, associated with
the covariance matrices of the signal of interest and
interference plus noise components. Therefore, the opti-
mal SINR corresponds to the maximum value of a Rayleigh
quotient and can then be interpreted as the largest
generalized eigenvalue of the two matrices. Thus, the
problem of the optimal SINR computation is closely
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1 Note that this model includes arbitrary second-order stationary

field of interference using specular approximations of diffuse inter-

ference, e.g., see [4, Section 5.5].
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related to the generalized eigenvalue problem. However,
since the interpretation of the generalized eigenvalues of
space–time covariance matrices with a finite number of
taps is difficult, the analysis of the optimal SINR broad-
band beamforming does not easily lead to explicit
expressions of the optimal SINR. This difficulty to analyze
the performance of broadband beamformers with a finite
number of taps has also been noted for optimal processing
in the sense of other criteria such as minimum mean
squared error (MMSE) or minimum variance distortionless
response (MVDR). Many authors have studied the perfor-
mance of time domain (e.g., see [5,6]) or frequency-
domain implementations (e.g., see [12,7]) but, to the best
of our knowledge, most analyses have been done through
numerical simulations (e.g., see [5,6,8,9]) or for particular
cases of arrays with temporally white signals (e.g., see
[10]). However, we note that in some applications, the
number of taps may be much larger than the number of
sensors. For instance, in microphone array processing,
where acoustic echoes of loudspeakers corrupt the desired
signal, acoustic echo cancellers are often used, requiring a
great number of taps (about 1000 taps or more), whereas
the number of microphones is most of the time moderate
(often less than 10 microphones, e.g., see [11]). Further-
more, if technology constraints impose the number of
sensors, time filtering may be realized by different means,
e.g., by recursive or subband filtering with different
complexity/performance tradeoffs. In these conditions,
an asymptotic approach in the number of taps seems
justified. Moreover, contrary to the previous studies, this
approach allows us to consider arrays of arbitrary
geometry with a limited but arbitrary number of sensors
and arbitrary interference and signal of interest spectra.
Thus, we can compute a theoretical upper bound
associated with an infinite number of taps, useful for
comparisons with the SINR obtained after different
space–time processing algorithms based for instance on
FIR (e.g., see [4]), subband decomposition (e.g., see
[12,13]), or IIR filters (e.g., see [14]).

In beamforming problems, if the observation data are
modelled by second-order temporally stationary pro-
cesses, space–time covariance matrices are block-Toeplitz
structured. In this paper, we make use of that property to
derive a closed-form expression of the asymptotic optimal
SINR space–time beamformers. To proceed, we use an
extension of the celebrated Szegö’s theorem given by
Grenander and Szegö [15] and revisited by Gray [16]
which asserts that the eigenvalues of a sequence of
Hermitian Toeplitz matrices asymptotically behave like
the samples of the Fourier transform of its entries, to the
generalized eigenvalues of a pair of Hermitian matrices
that has been derived in [17,18]. This extended theorem
allows one to characterize the generalized eigenvalue
distribution of Toeplitz matrices and consequently many
properties can be derived from it, such as for instance the
asymptotic behavior of the minimum and maximum
generalized eigenvalues. Using this theorem, we derive
in this paper the expression of the asymptotic optimal
space–time SINR w.r.t. the number of taps for a fixed
number of sensors and give interpretations of the result in
particular scenarios. Then, we complement theoretical
results by numerical simulations that illustrate the
convergence speed of the optimal SINR for a limited
number of taps to its asymptotic optimal value in those
scenarios.

This paper is organized as follows. In Section 2, the
data model is presented and the expression and structure
of the signal and interference plus noise covariance
matrices is derived. Then, in Section 3, Szegö’s theorem
extended to the asymptotic behavior of the generalized
eigenvalues of block Toeplitz matrices is recalled and
applied to the performance analysis of optimal SINR
space–time beamforming. Finally, in Section 4, illustra-
tions by numerical examples are given to illustrate the
convergence of the optimal SINR with a finite number of
taps to the asymptotic one.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold upper case
and bold lower case characters, respectively. Vectors are
by default in column orientation, H stands for conjugate
transpose. Trð�Þ and l1ð�ÞX � � �XlLð�Þ denote the trace of a
matrix and the decreasing ordered eigenvalues of an L� L

matrix whose eigenvalues are real valued, respectively.
2. Data model

2.1. Data model

Let us consider an array composed of L sensors. We
denote by B the bandwidth of the signals around the
center frequency f 0. Then, we consider an environment
composed of a signal of interest, a field of interference and
thermal noise. These three signals are uncorrelated with
each other. The interference and the thermal noise are
modelled by non-zero-bandwidth second-order station-
ary processes and furthermore the thermal noise is
spatially and temporally white, with power s2

n. The
baseband, possibly correlated J interferers1 have power
spectral density (PSD) ðSjðf ÞÞj¼1...J and cross power
spectral density ðSj;j0 ðf ÞÞjaj0¼1...J. The interference
plus noise L� L spatial covariance matrix associated with
the baseband received signal is equal to (e.g., see [4,
Chapter 6])

Z B=2

�B=2

XJ

j¼1

Sjðf Þ/ðyj; f Þ/ðyj; f Þ
H

0
@

þ
X

1pjaj0pJ

Sj;j0 ðf Þ/ðyj; f Þ/ðyj0 ; f Þ
H

1
Adf þ s2

nI

with /ðyj; f Þ ¼ ½e
jprT

1
iðyjÞ; ejprT

2
iðyjÞ; . . . ; ejprT

L
iðyjÞ�T where ðr‘Þ‘¼1...L

denotes a vector pointing from the origin to the ‘th sensor,
iðyjÞ a unit length arrival vector for an interference j in the
direction yj and p ¼ 2pðf 0 þ f Þ=c with c denoting the
propagation speed of the wave. The signal of interest is
also modelled by a non-zero-bandwidth second-order
stationary process with PSD Ssðf Þ. It is assumed to have a
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known direction of arrival (DOA) ys. Its L� L spatial
covariance matrix may be written as

Z B=2

�B=2
Ssðf Þ/ðys; f Þ/ðys; f Þ

H df (1)
2 We note that the highly sophisticated mathematical tools

employed in [17] are sometimes beyond the grasp of the engineering

community. Consequently the results obtained in this paper have not

received appreciation they deserve in the signal processing literature.

Whereas, based on the hypothesis of absolutely summable elements,

which relies on an extension of the notion of asymptotic equivalence

between matrix sequences established by Gray [16], the proof given in

[18] is within the reach of most of the readers.
2.2. Expression of the space–time covariance matrices

Let K denote the number of taps used for temporal
processing at each sensor at Shannon sampling rate
T ¼ 1=B. The interference plus noise and signal of interest
space–time covariance matrices, respectively, R̄iþn;K and
R̄s;K are of dimension KL� KL. They are, respectively,
Hermitian positive definite (due to the presence of
thermal noise) and Hermitian positive semidefinite. Then,
due to the second-order stationarity of the processes,
these two space–time covariance matrices are block-
Toeplitz structured and may be written as

R0 RH
1 � � � RH

K�1

R1
. .
. . .

.
RH

K�2

..

. . .
. ..

.

RK�1 RK�2 ::: R0

2
6666664

3
7777775

(2)

where matrices ðRkÞk¼0;...;K�1 are given for R̄iþn;K and R̄s;K ,
respectively, by

Z B=2

�B=2

XJ

j¼1

Sjðf Þ/ðyj; f Þ/ðyj; f Þ
H

0
@

þ
X

1pjaj0pJ

Sj;j0 ðf Þ/ðyj; f Þ/ðyj0 ; f Þ
H
þ
s2

n

B
I

1
Ae�i2pkfT df

and

Z B=2

�B=2
Ssðf Þ/ðys; f Þ/ðys; f Þ

He�i2pkfT df

Let us note that the blocks Rk are not necessarily Toeplitz,
depending on the structure of the array.

To apply the extended Szegö’s theorem in the next
section, we remark that the sequences Rk associated with
the interference plus noise and the signal of interest
are generated by the Fourier coefficients of the L� L

Hermitian matrix valued functions

Riþnðf Þ ¼
XJ

j¼1

Sjðf Þ/ðyj; f Þ/ðyj; f Þ
H

þ
X

1pjaj0pJ

Sj;j0 ðf Þ/ðyj; f Þ/ðyj0 ; f Þ
H
þ
s2

n

B
I (3)

and

Rsðf Þ ¼Ssðf Þ/ðys; f Þ/ðys; f Þ
H (4)

respectively.
3. Expression of the asymptotic optimal space–time SINR

3.1. Expression of the space–time optimal SINR

Space–time beamforming consists in linearly filtering
the LK-dimensional space–time data by a tap-stacked
vector wK when K taps are used. The optimal space–time
processing (in the sense of SINR maximization) maximizes
the generalized Rayleigh quotient:

SINRðKÞ ¼
def

max
wK

wH
K R̄s;K wK

wH
K R̄iþn;K wK

(5)

where R̄s;K and R̄iþn;K are the space–time covariance
matrices for the signal of interest and interference+noise
signals, respectively, and given by (2). As noted in the
previous section, R̄s;K and R̄iþn;K are, respectively, Hermi-
tian positive semidefinite and Hermitian positive definite
matrices. Therefore, the solution wK of this optimization
problem is given by the generalized eigenvector asso-
ciated with the largest generalized eigenvalue of the
couple ðR̄s;K ; R̄iþn;K Þ. Then, the optimal space–time SINR is
given by the largest generalized eigenvalue of ðR̄s;K ; R̄iþn;K Þ

also corresponding to the largest eigenvalue l1 of
R̄
�1
iþn;K R̄s;K

SINRðKÞ ¼ l1ðR̄
�1
iþn;K R̄s;K Þ

The value of this optimal SINR is difficult to interpret.
Furthermore, closed-form expressions are not attainable,
except in the trivial case of narrowband signals. Conse-
quently, it will be insightful to consider the asymptotic
(w.r.t. the number of taps) optimal SINR that will be used
as an approximation for the upper bound of the SINR in
the case of a finite number K of taps.
3.2. Expression of the asymptotic optimal SINR for arbitrary

interference

To consider in the following the limit of the SINR w.r.t.
K for arbitrary given interference and signal of interest
DOAs, we use the following extension of Szegö’s theorem
(e.g., see [17, Theorem 3.9]; [18, Theorem 1]) that we recall
for the convenience of the reader.2

Theorem 1. Let AK;L and BK;L be two L block Toeplitz KL� KL

Hermitian matrices with L fixed, such that BK;L is positive

definite, generated by absolutely summable sequences

fau;v
n gn¼...;�1;0;1;... and fbu;v

n gn¼...;�1;0;1;... with u;v ¼ 1; . . . ; L of

Fourier transform au;vðoÞ ¼
P

n au;v
n e�ino and bu;v

ðoÞ ¼P
n bu;v

n e�ino, respectively. Let AðoÞ be the L� L matrix
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defined by

AðoÞ ¼

a1;1ðoÞ a1;2ðoÞ � � � a1;LðoÞ
a2;1ðoÞ a2;2ðoÞ ::: a2;LðoÞ

..

. ..
. ..

.

aL;1ðoÞ aL;2ðoÞ � � � aL;LðoÞ

2
666664

3
777775

BðoÞ is defined in the same way from bu;v
ðoÞ, with

mino lLfBðoÞg ¼ mb40. Then, for all continuous functions

F on Io ¼ ½m;M� with m ¼
def

mino lLðB
�1
ðoÞAðoÞÞ and

M ¼
def

maxo l1ðB
�1
ðoÞAðoÞÞ

lim
K!1

1

K

XKL

u¼1

FðluðB
�1
K;LAK;LÞÞ

¼
1

2p

Z p

�p

XL

u¼1

FðluðB
�1
ðoÞAðoÞÞdo

From this theorem, we prove the following corollary in
Appendix A:

Corollary 1. The largest generalized eigenvalue of ðAK;L;BK;LÞ

is convergent in K and

lim
K!1

l1ðB
�1
K;LAK;LÞ ¼ max

o
l1ðB

�1
ðoÞAðoÞÞ

The assumptions of Theorem 1 and Corollary 1 apply for
the sequence of the space–time covariance matrices
ðR̄s;K ; R̄iþn;K Þ w.r.t. the number K of taps:

lim
K!1

SINRðKÞ ¼ max
f2½�B=2;B=2�

fl1ðR
�1
iþnðf ÞRsðf ÞÞg

Then, since R�1
iþnðf ÞRsðf Þ has rank one, it has the following

single non-zero eigenvalue

Ss fð Þ/ ys; fð Þ
HR�1

iþnðf Þ/ ys; fð Þ

associated with the eigenvector R�1
iþnðf Þ/ ys; fð Þ and we

obtain the following result:

Result 1. For optimal space–time beamforming sampled
at the Shannon rate, the SINR tends to the following
expression when the number K of taps increases to
infinity

lim
K!1

SINRðKÞ ¼ max
f2If

fSsðf Þ/ðys; f Þ
HR�1

iþnðf Þ/ðys; f Þg (6)

where Riþnðf Þ is defined by (3) and where If ¼ ½�B=2;B=2�.

At first glance, this SINR tends to the maximum zero-
bandwidth optimal spatial SINR associated with a fre-
quency f m in the band If . And consequently, this optimal
asymptotic space–time beamformer has the same beha-
vior as an infinitely narrow bandpass filter at f m followed
by an optimal zero-bandwidth spatial beamformer.

But, we have to elaborate a little bit. Thus, let us
compare this optimal asymptotic space–time SINR (6)
obtained for f ¼ f m 2 If with the zero-bandwidth optimal
spatial SINR corresponding to the demodulation fre-
quency f 0 þ f m associated with the same signal of interest,
interference and noise powers s2

s , s2
j and s2

n. We see from
(3) that this optimal asymptotic space–time SINR (6) is
associated with a zero-bandwidth optimal spatial SINR
corresponding to signal, interference and noise powers
BSsðf mÞ, BSjðf mÞ and s2

n , respectively. Furthermore, the
associated steering vectors /ðys; f mÞ and /ðyj; f mÞ depend
on the inter-element spacing of the array which generally
is related to f 0 þ B=2 (Shannon sampling condition) or
sometimes to f 0 for the space–time SINR, whereas this
inter-element spacing would have probably been chosen
as a function of f 0 þ f m in the context of narrowband
beamforming around frequency f 0 þ f m. However, for
temporally white signals of interest, some properties can
be proved.

In the case of oversampling with respect to Shannon
rate (To1=B), the spectral matrices Rsðf Þ and Riþnðf Þ are
both bandlimited to ½�B=2;B=2� � ½�1=2T;1=2T�, and
consequently minf lLðRiþnðf ÞÞ ¼ 0 and the technical con-
dition on which Theorem 1 is derived is no longer valid.
Furthermore, in this case, Theorem 1 has no meaning
because the generalized eigenvalues of ðRsðf Þ;Riþnðf ÞÞ are
not defined for B=2ojf jp1=2T. In these conditions,
proving Result 1 is an open problem which is challenging.
However, extensive numerical experiments show that
Result 1 extends to that case (see Section 4.3).
3.3. Expression of the asymptotic SINR for temporally white

signals of interest

Suppose now that the signal of interest and the
multichannel interferer are temporally white. With Sjðf Þ ¼

s2
j =B and Sj;j0 ðf Þ ¼ sj;j0=B, the generating function Riþnðf Þ

defined in (3) can be written at frequency f ¼ 0 as

Riþnð0Þ ¼
1

B

XJ

j¼1

s2
j /ðyj;0Þ/ðyj;0Þ

H

0
@

þ
X

1pjaj0pJ

sj;j0/ðyj;0Þ/ðyj0 ;0Þ
H
þ s2

nI

1
A

which is (up to the multiplicative term 1=B) the
interference plus noise spatial covariance matrix Riþn

associated with zero-bandwidth signals around frequency
f 0 with the same powers and correlations. Consequently
from (6), we obtain

lim
K!1

SINRðKÞXs2
s /ðysÞ

HR�1
iþn/ðysÞ

with /ðysÞ ¼
def

/ðys;0Þ, which is the optimal SINR given for
zero-bandwidth spatial beamformers around f 0 (e.g., see
[4, rel.6.66]). Thus, we have proved the following result:

Result 2. For temporally white signal of interest and
multichannel interferer, the asymptotic SINR at the output
of the optimal space–time beamformer is larger than the
SINR at the output of the optimal spatial beamformer
associated with zero-bandwidth signals around frequency
f 0 with same spatial correlations and powers.

Therefore, for a finite number K of taps, the optimal
space–time beamformer can outperform the zero-band-
width optimal spatial SINR. This point that has never been
reported in the literature, will be illustrated in Section 4.1.
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We now analyze the particular situation of interference
whose spectra cancel at least at a common frequency. In
this particular case, the following result is proved in
Appendix B:

Result 3. In the presence of several interferers whose
spectra share at least a common frequency null n0 and a
temporally white signal of interest of power s2

s , we have

lim
K!1

SINRðKÞ ¼
s2

s

s2
n

L

This result means that in the presence of interference with
at least one common zero in their spectra, space–time
processing allows one to reach asymptotically the SINR
corresponding to an interference-free context. Let us note
that though the asymptotic notion is purely theoretical,
we will see in Section 4.2 that in most practical cases, a
small value of the number of taps is sufficient to reach
near optimal performance.

4. Illustrative examples

This section illustrates Result 2 through numerical
experiments and complements the last two results by
exhibiting the speed of convergence of the optimal SINR
for a limited number of taps to its asymptotic value for
both white and bandlimited interference. Moreover, in the
latter case, the influence of the fractional bandwidth is
examined. Finally, we examine the influence of the time
sampling rate on the optimal space–time SINR. We
consider throughout this section a uniform linear array
with only one interference source where

/ðy; f Þ ¼ ½1; ejpððf 0þf Þ=f 0Þu; . . . ; ejðL�1Þpððf 0þf Þ=f 0Þu�T

with u ¼ sinðyÞ (us ¼ sinðysÞ and uj ¼ sinðyjÞ for the signal
of interest and the interference, respectively). The signal
of interest is white in the band ½�B=2;B=2�. In all the
simulations, uj ¼ 0:3, s2

n ¼ 0 dB and s2
s ¼ 0 dB.

4.1. White interference case

In this section, we suppose that the interference is
white in the band ½�B=2;B=2�. Thus

lim
K!1

SINRðKÞ ¼max
f2If

s2
s

s2
n

L 1�
s2

j j/ðy1; f Þ
H/ðys; f Þj

2

Lðs2
n þ Ls2

j Þ

 !( )

(7)

Fig. 1exhibits the asymptotic optimal space–time SINR for
different values of the fractional bandwidth B=f 0 and the
optimal spatial zero-bandwidth SINR in the conditions of
Result 2, with L ¼ 4 and s2

j ¼ 10. We check that the
increase of the fractional bandwidth leads to a reduction
of the SINR loss width around the interferer. More
precisely, it is straightforward from (7) to prove that the
asymptotic optimal space–time SINR presents a notch
behavior around the signal of interest’s DOA, whose width
4=Lð1þ B=2f 0Þ shrinks when the fractional bandwidth
increases. Furthermore from (7), the sidelobe’s effects
disappear for 1þ B=2f 042ð1� B=2f 0Þ, i.e., for B=f 042=3.
Moreover, we see from Fig. 1 that the asymptotic optimal
space–time SINR outperforms the optimal spatial zero-
bandwidth SINR for all fractional bandwidths and signal of
interest’s DOA, except at the DOA of the interferer.
Naturally the impact of these properties reduces for
scenarios for which LðLþ s2

n=s2
j Þb1 (7), where the two

SINR are very close, as it will be illustrated in Fig. 3. Fig. 2
compares the optimal space–time SINR to the optimal
spatial SINR for B=f 0 ¼ 0:5 at different numbers K of taps.
It shows that the optimal space–time SINR begins out-
performing the optimal spatial SINR from only four taps.

From now on, L ¼ 16 and s2
j ¼ 30 dB. In Fig. 3, we plot

the optimal space–time SINR for different values of the
number K of taps, with B=f 0 ¼ 0:3. First we check that the
SINR converges to the asymptotic SINR given by Result 1,
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taps, as a function of the signal of interest’s DOA for b ¼ 3B=4.

Fig. 5. Optimal space–time SINR for different values of the number of

taps, as a function of the signal of interest’s DOA for b ¼ B=2.
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which is close to the associated optimal spatial SINR.
Then, we notice that the convergence is rapid, since the
asymptotic bound is nearly reached with K ¼ 4.
4.2. Bandlimited white interference case

Let us suppose that the interference has constant PSD
in the band ½�b=2; b=2� with boB. We illustrate the speed
of convergence of the optimal space–time SINR for a given
number of taps to the asymptotic upper-bound given by
Result 2. Thus, we plot in Figs. 4 and 5 the optimal
space–time SINRs for b ¼ 3

4 B and b ¼ B=2, respectively
(dashed plots), at given number of taps and compare them
to the asymptotic optimal space–time SINR (solid plot).
Let us note that the case K ¼ 1 corresponds to spatial
processing and that the SINR degrades when b increases.
In both figures, we check that the optimal SINR (asymp-
totically w.r.t. the number of taps) is equal to s2

s =s2
nL and

that the optimal space–time SINRs converge with the
number of taps to the asymptotic optimal space–time
SINR. Then, we note that the convergence speed increases
when the interference bandwidth decreases. For instance,
we observe in Fig. 5 (where b ¼ B=2) that the optimal
space–time SINR with K ¼ 4 taps outperforms the optimal
space–time SINR with K ¼ 8 taps of Fig. 4 (where
b ¼ 3B=4).
4.3. Influence of the time sampling frequency

Now, we examine the influence of the time sampling
rate on the optimal space–time SINR. In Fig. 6, we plot the
optimal space–time SINR for two values of the temporal
sampling period, i.e., T ¼ 1=B and T ¼ 1=2B and different
values of the number of taps for a white interference in
the band ½�B=2;B=2�.

First, we observe that in both cases, the SINR seems to
converge to the asymptotic SINR given by Result 1,
although this result has been proved only for T ¼ 1=B.
However, we note that the convergence is much faster for
T ¼ 1=2B than for T ¼ 1=B. Consequently, oversampling
w.r.t. the Shannon sampling rate allows one to improve
the performance for a given number of taps. We note that
extensive experiment confirms these observations. Let us
note that the influence of the time sampling rate has been
analyzed in [10] for a bandpass tapped delay line
implementation of the MMSE algorithm in the case of a
two-sensor array. In this paper, the author has also noticed
the improvement of performance in terms of SINR due to
the use of oversampling, for an array in which each
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element has only two weights. The physical interpretation
is that oversampling increases the correlation between
interference components which makes their nulling
easier.
3 The period B is introduced to be consistent with [19, Theorem 3],

where the period in o is 2p.
Appendix A. Proof of Corollary 1

We mimic here the approach of [16, Corollary 4.2] that
we recall for the convenience of the reader. First, note that
for all K , the KL eigenvalues of B�1

K;LAK;L lie in Io and the L

eigenvalues of B�1
ðoÞAðoÞ are continuous in ½�p;p�.

Define the complementary distribution eigenvalue
function DK ðxÞ ¼

def
ðnumber of luðB

�1
K ;LAK;LÞXxÞ=K which is

given by ð1=KÞ
PKL

u¼1 1½x;M�ðluðB
�1
K ;LAK;LÞ, where

1½x;M�ðaÞ ¼
def 1 for a 2 ½x;M�

0 elsewhere

�
with xoM

Using two continuous functions on Io that provide upper
and lower bounds to the indicator function 1½x;M�ðaÞ and
converge to it in the limit, and applying Theorem 1 to
these two continuous functions, we straightforwardly
obtain

lim
K!1

DK ðxÞ ¼
1

2p
XL

u¼1

Z
o2½�p;p�;xpluðB

�1
ðoÞAðoÞÞpM

do

Consequently, limK!1 DK ðM � �Þ ¼ ð1=2pÞ
PL

u¼1R
o2½�p;p�; M��pluðB

�1
ðoÞAðoÞÞpM do40 where the strict in-

equality follows from the continuity of the L eigenvalues
of B�1

ðoÞAðoÞ in ½�p;p�. Since limK!1 ðnumber of
luðB

�1
K ;LAK;LÞ 2 ½M � �;M�Þ=K40, there must be eigenvalues

of B�1
K;LAK;L in the interval ½M � �;M� for arbitrary small �.

Noting that the space–time setting with K taps is a special
case of a processor with K þ 1 taps where the K þ 1th tap
weight is set to zero in each channel, we obtain by the
inclusion principle in (5) that the larger generalized

eigenvalues of ðAK;L;BK ;LÞ, l1ðB
�1
K ;LAK;LÞ increases with K (L

fixed). Consequently, this proves Corollary 1.
Appendix B. Proof of Result 2

First, note that if Sjðn0Þ ¼ 0 for j ¼ 1; . . . ; J with
n0 2 ½�B=2;B=2�, using jSj;j0 ðf Þj

2pSj;ðf ÞSj0 ðf Þ, the differ-
ent cross power spectral densities ðSj;j0 ðf ÞÞjaj0¼1...J cancel at
n0 as well. Consequently Riþnðn0Þ ¼ ðs2

n=BÞI from (3). Then
from (6), we obtain

lim
K!1

SINRðKÞX
s2

s

B
/ðys; n0Þ

HR�1
iþnðn0Þ/ðys; n0Þ

¼
s2

s

s2
n

k/ðys; n0Þk
2 ¼

s2
s

s2
n

L

Now, we prove that the limit of SINRðKÞ is upper bounded
by ðs2

s =s2
nÞL. Using R̄iþn;KXs2

nI, we have

SINRðKÞp
wH

K R̄s;K wK

s2
nkwKk

2
p

l1ðR̄s;K Þ

s2
n

(8)

where R̄s;K is block-Toeplitz structured. Applying [19,
Theorem 3], dedicated to the limit of the largest
eigenvalue of block-Toeplitz matrices with non-Toeplitz
blocks where the number K of block tends to infinity, we
have3

lim
K!1

l1ðR̄s;K Þ ¼ Bl1ðRsðf ÞÞ

where the largest eigenvalue of the rank one matrix Rsðf Þ

(4) is ðs2
s =BÞL. Consequently

lim
K!1

SINRðKÞp
s2

s

s2
n

L

which proves Result 3.
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