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Abstract

This paper addresses subspace-based direction of arrival (DOA) estimation and its purpose is to complement previously
available theoretical results generally obtained for specific algorithms. We focus on asymptotically (in the number of
measurements) minimum variance (AMYV) estimators based on estimates of orthogonal projectors obtained from singular
value decompositions of sample covariance matrices in the general context of noncircular complex signals. After extending
the standard AMYV bound to statistics whose first covariance matrix of its asymptotic distribution is singular and deriving
explicit expressions of this first covariance matrix associated with several projection-based statistics, we give closed-form
expressions of AMV bounds based on estimates of different orthogonal projectors. This enable us to prove that these
AMYV bounds attain the stochastic Cramer—Rao bound (CRB) in the case of circular or noncircular Gaussian signals.
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1. Introduction

Direction of arrival (DOA) subspace-based esti-
mates, i.e., estimates obtained by exploiting the
orthogonality between a sample subspace and a
parameter-dependant subspace, have proved useful
in many algorithms. There is considerable literature
about the performance of such algorithms in the
context of circular Gaussian signals. The perfor-
mance of such algorithms are often evaluated using
the stochastic and deterministic Cramer—Rao bound
(CRB) (see e.g., [1,2]). In particular Porat and
Friedlander [3] proved that the MUSIC algorithm is

*Corresponding author. Tel.: + 331607646 32;
fax: +33160764433.
E-mail addresses: habti.abeida@int-evry.fr (H. Abeida),
jean-pierre.delmas@int-evry.fr (J.-P. Delmas).

0165-1684/$ - see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.sigpro.2006.12.020

asymptotically efficient for a single source and for
uncorrelated sources when the signal-to-noise ratio
(SNR) of all the sources tend to infinity, then Stoica
and Nehorai [1] extended this result when the
number of sensors tend to infinity. Furthermore,
they proved that the MUSIC algorithm is not
efficient if the sources are correlated and that the
difference between the asymptotic covariance given
by the MUSIC algorithm and the CRB may be
quite large if the sources are nearly coherent. These
results have been recently extended to noncircular
Gaussian signals where it has been proved [4] that
different subspace-based estimates used in the
context of noncircular digital modulations are
asymptotically efficient for a single source, but for
several sources, the efficiency decreases dramatically
for uncorrelated sources with low SNR, DOA and
noncircularity phase separations.
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This paper offers generic asymptotic results about
subspace-based estimates with emphasis on effi-
ciency, based on the notion of asymptotically
minimum variance (AMYV) and asymptotically best
consistent (ABC) estimator introduced by Porat and
Friedlander [5] and Stoica et al. [6], respectively, and
then applied to Gaussian noncircular signals [7]. But
in all these papers, the first' covariance matrix of the
asymptotic distribution of the involved statistics
was nonsingular. In this paper, this notion of AMV
estimators is extended to the case of a singular first
covariance matrix. This allows us to prove the
existence of a lower bound for the covariance
of the asymptotic distribution of DOA estimates
given by an arbitrary consistent subspace-based
algorithm. This bound can be used as a bench-
mark against which potential subspace-based
algorithms are tested. But this AMV bound is
generally lower bounded by the CRB because this
later bound concerns arbitrary functions of the
data. We will prove that this AMV bound
associated with different estimated projectors which
is function of the second-order statistics of the
involved processes only attains the stochastic CRB
in the case of circular or noncircular Gaussian
signals.

The paper is organized as follows. The array
signal model and a motivating example in the
context of noncircular signals are given in Section 2.
Section 3 extends the standard AMV results to
arbitrary statistics whose first covariance matrix of
their asymptotic distribution is singular, applies
these results to different projection-based statistics,
gives closed-form expressions of AMYV bounds
based on estimates of different orthogonal projec-
tors and finally proves that these AMV bounds
attain the stochastic CRB in the case of circular or
noncircular Gaussian signals, which is the main
contribution of this paper.

The following notations are used throughout the
paper. Matrices and vectors are represented by
bold upper case and bold lower case characters,
respectively. Vectors are by default in column
orientation, while T, H, %, # and L stand for
transpose, conjugate transpose, conjugate, Moor-
e—Penrose inverse and ortho-complement of range
space, respectively. E(.), Tr(.)) and R(.) are the
expectation, trace and real part operators. I is

"For noncircular random variables x, the matrices E[(Xx —
E(x)(x — Ex)!] and E[(x — E(x))(x — E(x))T] are denoted first
and second covariance matrices, respectively.

the identity matrix. vec(-) is the ‘“‘vectorization”
operator that turns a matrix into a vector by
stacking the columns of the matrix one below
another which is used in conjunction with the
Kronecker product A® B as the block matrix
whose (i,j) block element is a;;B and with the
vec-permutation matrix K which transforms vec(C)
to vec(CT).

2. Array signal model and motivating example

Let an array of M sensors receive the signals
emitted by K narrowband sources with K <M. The
observations are modeled as

y,=Ax,+n, t=1,...,T,

where (y,),_; r are independent and identically

distributed. Adéf[al,...,ak] is the array response
matrix where a; is parameterized by the parameter
0r. In a more general setting, 6; can contain more
parameters per source, e.g., azimuth, elevation,
distance, etc. Applications of the presented results
to the multiple parameter per source case is
straightforward (see Appendix D), but for nota-
tional simplicity we assume that 0y is a real scalar,
referred to as the kth DOA. A is supposed to have
full rank for distinct DOASs 0. X; = (X;1,...,X.k)"
and n, model signals transmitted by sources and
additive measurement noise, respectively. x, and n,
are independent, zero-mean, n, is assumed to be
Gaussian complex circular, spatially uncorrelated
with E(n,ng") = aﬁIM, while X, is complex noncir-
cular, not necessarily Gaussian and possibly spa-
tially correlated with nonsingular covariance

matrices R, défE(x,x?) and R défE(x,x,T). Conse-
quently, this leads to two covariance matrices of y,

that convey information about @ déf(Hl, e, HK)T:

R, = AR A" + 621, ¥R, + 0°I);, and

R, = AR ATE R, #0.

The noncircularity of the signals x, allows us to
exploit this second covariance matrix R;, to improve
the performances of the conventional algorithms
based on R;, only. Examples of such algorithms are
given in the literature (see e.g., [8,4]). We suppose
that @ is uniquely determined by the range space of
A and consequently @ is uniquely determined by the
common orthogonal projector II, onto the noise
subspace associated with R, and R;, as well. Using
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the extended observation ¥, _(y, .Y HyT,

def 1/~ ~H ) wfA O
R; = E(¥,¥, )—ARA + 02l with AS

0 A¥
R, R,
and R; & , ,
R RY

where we suppose here that R; is nonsingular.’
Consequently © is determined by the orthogonal
projector II; onto the 2(M — K)-dimensional noise
subspace of R; also.

These covariance matrices are traditionally esti-

mated by Ryr= (/DY yyl. R, =(1/T)

S yy! and Ryr = (1/T)S 1, y§', respectively.
There are different alternatives to combine the
information conveyed by R, r and R;,’T. The first
ones are based directly on the matrices R, 7 and
R;,T using the AMV [7] or maximum likelihood
approaches [9] and the second ones are based on the
orthogonal projectors (II, 7, l'[/y,T) and II; 7 onto
the noise subspace of the sample covariance
matrices Ry 7, R;’T and Rj 7, respectively. We note
that there is not a one-to-one mapping between
(Hy,T,H;’T) and Il; 7, contrary to the-one-to one
mapping (Ry,T,R’y’T)<—>R~,,T. It is the reason why
we consider in the sequel these two statistics
separately.

The first idea to estimate © from R, 7 and R|, 7 is
to use similar subspace-based algorithms derived
from the projection matrices I, 7 and H;,’T. For
example, the asymptotic performance of the esti-
mates given by the standard MUSIC algorithm and
a MUSIC-like algorithm based on II, 7 and IT| .,
respectively, are similar. In particular for only one
source, the associated asymptotic variances are,

respectively, given by [4]
1 oﬁ + 1 (7
o oclpl Mt o

162 10
Cp =— [Zny ~On
" k*MA
with o) is a purely geometric factor and where
p1 (0<p;<1) is the noncircularity rate of x;
defined by E(x?)) = pe1E|x}|| = pe16] where
¢, is the phase of noncircularity. Examples of such
noncircular signals are given by the rectilinear

>The particular case Ry singular is beyond the scope of this
paper. This later case occurs for example for uncorrelated
rectilinear signals xj, for which the dimension of the noise
subspace becomes 2M — K.

signals (e.g., unfiltered ASK modulations) for which
X1 = |xle/? and p; = 1.

Consequently a problem crops up: how does one
combine the statistics I, 7 and I} ; to improve the
estimate of ©?

Another idea to estimate @ from R, 7 and R;,’T is
to use subspace-based algorithms derived from the
projection matrix Il;7. Efficient subspace-based
algorithms based on II; 7 have been proposed and
analyzed in [4] in the particular case of uncorrelated
sources with maximum noncircularity rates. How-
ever, in the general case of arbitrary extended
spatial covariance R; of the sources, only weighted
MUSIC-like algorithms seem to take benefit of
the second covariance matrix R’ . But the asymp-
totic performances of these estlmates are largely
outperformed by those of the AMYV estimator
based on R, 7 and R’ 7 [4]. Therefore, a question
arises as well: does there exist an algorithm based
on the projector Il;r whose performance ap-
proaches that of the AMV estimator based on
R, 7 and R

A solutlon of the two aforementioned problems is
to use the notion of AMV estimators based,
respectively, on the matrix-valued statistics
(I, 7,11, 7) and II; 7. But to apply the standard
results [10] on AMYV estimators to these projectors,
two conditions must be satisfied. First, the involved
subspace-based algorithm considered as a mapping
must be complex differentiable w.r.t. (I, 7, 1T} 1)
[resp., I;7] at the point (IL,IT)) [resp., I;].
Second, the first covariance matrix C, of the
asymptotic distribution of sz & Vec(l'Iy,T,H;’T)

[resp., srdéfvec(H;,,T)] must be nonsingular. While
the first condition is satisfied because the projection
matrices are Hermitian, it will be specified in Section
3.3, that the second is not satisfied. So we have to
elaborate a little bit by considering the case of
arbitrary sequences of statistics.

3. Asymptotic efficiency of subspace-based AMV
estimators

3.1. Asymptotically minimum variance estimator

Consider a general N-multidimensional mixture
of real- and complex-valued sequence of statistics s7
which is a consistent estimate of s(®) for which
the real-valued parameter @ € RX is identifiable
from s(®). We suppose that sy is asymptotically
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zero-mean Gaussian distributed where the first
covariance matrix Cy is possibly singular:

VT (st —s(@)) > 4(0;C,, C.).

To consider the asymptotic performance of an
algorithm based on sy, we adopt a functional
analysis approach which consists in recognizing
that the whole process of constructing an estimate
Or of O is equivalent to defining a functional
relation linking this estimate @ to the statistics sy
from which it is inferred. This functional depen-
dence is denoted s;——@ 1 = Alg(sy). Considering a
mapping Alg(.) differentiable w.r.t. (%R(s), 3(s)), the
following theorem is proved in [11].

Theorem 1. The covariance matrix Cg of the
asymptotic distribution of a consistent estimator of
O given by an arbitrary algorithm based on st is
bounded below by the real symmetric matrix
CAMV(S) _ (yHc#y)—l

(@] - s

Co= (7)™ (3.1
if the following two conditions hold:
Span(¥) C Span(C;) and s} = Psp, (3.2)

where P is a permutation matrix’and ydéfds(@)/
de.

Remark 1. The second condition (3.2) holds for
Hermitian matrix-valued statistics with P = K. For
complex symmetric matrix-valued statistics, the
complex conjugate associated terms must be added.

Remark 2. In the trivial case where there are N —r
linear relations between the components of s7 with r
components statistically uncorrelated, there exists
an N x (N — r) matrix B such that sy = Bs. with
Cov(s}) nonsingular. Consequently Span(¥) C
Span(B) and Span(Cov(sr)) = Span(B). Therefore,
the first condition (3.2) holds.

Remark 3. In their discussions about the general-
ization of the optimal weighted subspace fitting
approach, Cardoso and Moulines [12] have intro-
duced a range space condition different from
condition (3.2), and they have derived (3.1) as a
lower bound to the covariance of the asymptotic
distribution of weighted subspace fitting estimates.

Remark 4. Under the assumptions of Theorem 1, it
has been proved in [11], that the following nonlinear

3We note that in this case C, = C.P, and the second covariance
matrix C; of the asymptotic distribution of s7 is deduced from the
first covariance matrix C;.

least square estimate achieves the lower bound (3.1).

Or = arg mil%[sT - s(oc)]HCf[sT —s(o)]. (3.3)
oaeR
3.2. Asymptotic distribution of projector estimator

To apply Theorem 1 to the statistics vec(Il, 7),
vec(Hy,T,l'I’y’T) and vec(Il; 7), we need the expres-
sion of the first covariance matrice of their
asymptotic distribution. They are given by the
following lemma proved in [11].

Lemma 1. The first covariance matrices Cr, Cn and
b
Cy of the asymptotic distribution of vec(Il, 1),
vec(Ily, 7, IT, 1) and vec(Ily r) are given by
(IT; ® U) + (U* ® I,), (34
meU IjeU"

Cr

Cn = nH /
i I ® U I ®U
Uell, U”"el,
, 3.5
U//T ®H, ( )

Chp=0+KJ T U) + U ®11;), (3.6)

U/* ® Hy

. def >pn# # oypdel opistnsp# yrdel op#
with U= ¢, RTR,RT, U = o, RF"RIRT, U" = o, RY

, > def .
R;,RS# and U= c2RER;RY, and where K is the vec-

permutation matrix of appropriate dimension which
transforms vec(.) to vec(.T) for any square matrix and

0O 1
J= .
( I 0)
We note that the previous expressions of Cp, Cr
i

and Cp, do not depend on the fourth-order
moments of the sources. Furthermore, C; does
not depend on R; Consequently, we have proved

the following:

Theorem 2. The asymptotic performance given by an
arbitrary subspace-based algorithm built from R, 1,
(Ry,T,R’y,T) or Ry 1 depends on the distribution of X,
through its second-order moments only. Furthermore,
for subspace-based algorithms built from R, r,this
asymptotic performance depends only on the first
covariance matrix R,.

3.3. Asymptotically minimum variance subspace-
based estimator

We can now consider the two conditions (3.2) of
Theorem 1 to prove that this theorem applies to the
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statistics vec(Il,, 7), vec(IL, 7, l'[’ ) and vec(Il; 7). It
is proved in Appendix A that
Null space(Cpy)
= Span{u; @ uy|1</,I"<K or K<I',l"< M},
(3.7)

Null space(C )
z

s u;‘, ® uy 0
= Span
0

v ® |1</’,l”<KorK<l/,l”<M},
lll/ u;”

(3.8)

Null space(Cpy)
= Span{ii; ® iy |1</,I"<2K or 2K<I',l"<2M}.
(3.9)
This allows us to prove in Appendix B that
ovec(Il,)
00y

and

1 Null space(Cpy), k=1,...,K, (3.10)

ovec(Il,)
R

ovec(Il,)
00y

L Null space(Crn), k=1,...,K
[

(3.11)

Consequently, because the nullspaces of the Hermi-
tian matrices Cp; and Cn are the complementary

orthogonal of span(Cyy) and span(C ), respectively,

the first condition (3.2) is satisfied for the statistics
vec(Il, ) and vec(Il,, T,H 7). This condition is
proved in the same way for vec(II 7). Furthermore,
because these matrix-valued statistics are Hermi-
tian, the second condition of (3.2) is satisfied.
Consequently, Theorem 1 applies to the statistics
vec(ITy, 1), vec(I, 7, IT, 7)) and vec(IT; 7).

Remark 5. We note that the asymptotic covariance
of the nonlinear least square estimate (3.3) is
preserved if the weighting matrix is replaced by
any consistent estimate Wy of C? satisfying Wy =
C# + o(sy — s(@)) by checking that the Jacobian
DAlg (It 7y yHC? of the mapping Alg()
mvolved by (3.3) is preserved by following a
perturbation analysis similar to that of the proof
of Remark 4 given in [11]. Moreover, consistent
estimates of ¢, II,, II;, R,, R}, R; are available
from the smgular value decomposmons of R, 7,
R| ; and Rj7 and consequently, consistent esti-

mates of Cf;, C* and Cg can be derived as well
n/

from Lemma 1.

3.4. Relation to the Cramer— Rao bound in the
Gaussian case

To evaluate the efficiency of the subspace-based
AMYV estimators previously introduced, we consider
the particular case where the sources x, are
Gaussian distributed. The following main contribu-
tion of this paper is proved in Appendix C.

Theorem 3. When the sources are Gaussian distrib-
uted, the AMYV bound (3.1) associated with the
statistics  vec(Il, 7) [resp. veC(Hy,T,H;,T) and
vec(Il; 1)] are equal to the statistical CRB associated
with the circular [resp. noncircular] Gaussian dis-
tribution.

cMv = CRBCC’
= 7" (RD"I,D © (RA"R; AR},
(3.12)
CgMV(ﬂﬂ ) CRBNCG
“ﬁ H Hp sTip—1
= 5{ %|D'ILDO | [RA™ RATR;
AR, 1\ 1)
AR ’
(3.13)
CAMV(H) CRBNCG (3. 14)
def

with D' = dA(©)/d6.

Consequently the nonlinear least square DOA
estimators described at the end of Section 3.3 are
asymptotically efficient in the Gaussian context.

Remark 6. Because the statistic I, 7 is a function
of (IL, 7, II T) we have CAMV(HH)<CAMV(H) nd

consequently CRBJ“° <CRB{® for Gaussian
sources of same first spatial covariance matrices R.

4. Conclusion
This paper provides generic asymptotic results

about DOA subspace-based estimates with empha-
sis on efficiency. The standard AMV bound has
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been extended to statistics whose first covariance
matrices of their asymptotic distributions are
singular. This bound has been applied to several
projector estimators using the first covariance
matrices of their asymptotic distributions that have
been derived. This enables us to prove that these
AMYV bounds attain the stochastic CRB in the case
of circular or noncircular Gaussian signals. Conse-
quently, there always exists asymptotically efficient
subspace-based DOA algorithms in the Gaussian
context.

Appendix A. Proof of rels. (3.7), (3.8) and (3.9)

(3.7) is straightforwardly proved, thanks to the
eigenvalue decomposition 7, Zuul! of R, which

implies I, = > uul!  and U= (4/
(2 — a2")upull. Consequently Cp; becomes from
3.4
Cu= Y Jrr@u)(u @u),

1Ty

where % is the set {(I, /1< <K<!I"<M or 1<
I"'<S K<I'<S M} and the values of iy,#0 are
irrelevant.

(3.8) is more involved to prove, but using the
singular value decomposition of U’ and U”, we can
write from the following expressions proved in [11]:

=, ®@U)+(U*®II,) and
CH,H/ — (H; ® U//) + (U//* ® Hy),
Cy = Z 2y @)t @ upfh),

Il"ey

2 : A * " T nH
Cn’n/ = A‘l,,l”(ul/ X ul/r)(ul/ [ lll//

11'e%,
+ 3 e @ u) T @ ul),
l/,/”e:fz
where (W), g, (W) _x and (W), g are
orthogonal basis of Span(A), (w)_g,,. , is an

orthogonal bases of Span(A)* and where %, and
%, are the sets {(/,I"1<I'<K<!"<M} and
(I, I <I"<K<I'<M}, respectively, and the
values of Jy »#0 and Ay, #0 are irrelevant.Consi-
dering the partitioned matrix C ) constituted by Cpy,
Cp and Cpp jp, the proof of (3. 8) follows.

(3.9) is proved similarly by considering the
eigenvalue decomposition S/ Jiiiil! of R; which

implies Ty = >0 wiij'and U = 3775, (4/( -

a2)?) Wit Consequently

G0+ U My = Y 4y @ i)y @),

I'l'ey

where % is the set {(I,/")I</I'<2K<!"<
2M or 1<!"<2K<I'<2M)} and the values of
Z,,,,n;éo are irrelevant. Then from (3.6) and the
property [14, Theorem 9(b), p. 47] of K, we have

Cp= Y (W @iy +Jip @ Ju))[@) @ i)
I'l'es

and the proof is complete because @iy ® o, + Ju ®
Juj #0 for all (I',") € Z.

Appendix B. Proof of (3.10) and (3.11)

Since {uj,up,...,uy} is an orthonormal basis of

CY, we have

ovec(Il,) H .
{Ty} (u; @uy)

6u/ Ouy, H
( k L ® ukr> (u; ®up)

K
Z 60
K
ol
1

6uT
+ 20, = | (ufay)
=0 for K</l', I'SM

Oul! oul,
= (uu} (ﬁu/) (ael u )(u?ulw)

H ua
_ Ouyrury 0 forl<l/'<I'<K
o0,

Oull Oul
= (u/u )(&;w) + (alé u,)(u, w)

_ O
~ 00

—0 forl</ =1"%I<k,

which proves (3.10) using (3.7). From the range
space of Cn given in (3.8), (3.11) is proved in the
same way. !

Appendix C. Proof of Theorem 3

We separately consider the three statistics where
we will make relatively frequent use of the following
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identities (see e.g., [13, Theorems 7.16 and 7.17]):

vec(ABC) = (CT ® A) vec(B), (C.1)
Tr(ABCD) = vec'(AT)(D" ® B) vec(C). (C.2)

Projector vec(Il,, 7):
Because Null space (Rf) = Span(Il,), we have
UIl, = O. This implies the two relations

(IT; @ U)(U* @ )" = ;UT @ UII, = O,
(IT; ® U)"(U* @ I) = IT;U* ® UII, = O,
which, thanks to [13, Theorem 5.17], enables one to

write, the Moore—Penrose inverse of Cp given by
(3.4) in the form:

Cji = ;@ U)* + (U" @ I)* = (1" @ U)
+ (U @ IT)) = (I © U¥) + (U @ I1,)

1
= g((n; ® AHAY) + (A*H*AT @ 11,)),
n

where the second equality is by [14, Theorem 5
(xvii), p. 33] and the last equality is deduced from
U* = (1/62) R,R; 'R, = (1/52) AR, A"R; 'AR A"

= (1/6)AHA" with HE R,A"R'AR,, thanks to
[13, Theorems 5.6 and 5.7] because the Hermitian
matrices R, and R, have a common basis of
orthonormal eigenvectors. So, from Theorem 1

1 dvecT (! )
S HT AHAM
2 oo, L@ )

n

[(c" ", =

+ (AHA™T @ 11,)) M

oIl

ol
=—T< —2 AHA" }Hy

30, 30,
om, o,

m, >
aek ¥730,

where we have used identity (C.2) in the second
equality.
Then II,A = O implying

AHAH>

oI, oI,
%0, ya_elAHﬂ

oI, oA .
0 AThgy =0, i=kl (C.3)

we have
2 0A" oA
AMVID -1 = gl (22 . 2 g
[(C@ ) ]k,/ G%’ R |: r < aek Y a@l >:|
. dak da;

This proves (3.12), thanks to the expression of the
circular Gaussian CRB (see e.g., [2]).

Projector vec(Il,, 1, H;,’T):

As for the statistic vec(Il, r), we have UII, =
U'TI, = U"II, = O, which implies after straightfor-
ward algebraic manipulations, the two relations

1'[; QU l'[j‘, ®U”
* nH * /
Imyeu Iyeu
U* ® Hy U//* ® Hy H
x n'T 1% = 0’
U eom, U@,
mweuU IreU\"
meut ImeU
U* ® l_[y U//* ® l—[y
X T . =0. (C.5)
U eIl, U'®I,
This enables one to write, thanks to [13, Theorem
5.17], the Moore-Penrose inverse of C, given by
H/

(3.5) in the form:
U IeU\”
Cﬁ’ = nH
o \meu" meu
Uren, U%em\”
+ n'T /%
U'en, U'eIl,
K O U u K 0o\\”*
= nH ® H;
0 K ut v 0 K
Ut U™ #
+ ® I1
<<U//T U/* > y)
K O u u\”* K O
= H ®II}
O K vt U 0O K
U* U//* #
’ (U”T U ) =) 0

where we have used the identity AQ B=KB ®
A)K [14, Theorem 4, p. 47] in the second equality,
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and [13, Theorem 5.8] and [14, Theorem 5 (xvii),
p- 33] in the third equality. Noting that

<K O) ovec(Il,, I1,)

O K 00;
ovec(I,) ovec(IT¥)
K= 0 .
= Kavec(l'ly) - dvec(IT}) | i=kl,
00; 30;

we have from (C.6)

N —1
{(CQMV(H,H)) ]k’l

ovecT [(Thy ! U U’ ' I
a0, \ 1, vt v @1
» ovec(Il,, IT,)

00,

orl,

i 4 n\ #
B gy (o oy (U U
oI, AN a0, U//H v ’

00y

=2R

=2R|Tr

where identity (C.2) is used in the second equality.
Then from the definition of the matrices U, U’ and
U” given in Lemma 1, we have

U U (Rl © RY O
= , R; ,
(UHH U/ ) 0y o) RS*# ) o) RS#
Since

R O R? O
rank . 7 *H# = rank R} I # >
O R, O R,

theorem [13, Theorem 5.9] applies and using [13,
Theorem 5.14], we get

u u\* 4 R O
) =5’
uf u 0-121 Y 0 R/#

S

R, O
x<0 R§*>' (C.7)

Now, we must prove that

R 0\\" (R 0O\
B o)l =lo v |&" (C.8)

. #
With .o/ & R);('f; R?#) and 7Y '8 1?; R;l, let us prove

that 2 is the Moore—Penrose inverse of .o/, by

#

proving that it satisfies the four axioms [I3,
Definition 5.1] defining this Moore—Penrose inverse.
Since Rf and R;#satisfy these four axioms, we get
after some algebraic manipulations:

R¥R,R” o)
AXA =R; o RAR R
R* O
=R; o r* =,
R,R¥R; (0]
XAXL = R:'

RR?* O

@) = =2

O RR7

It remains to prove (Z2) =.7Z. Since
Span(R}) = Span(R,) implies

RR*R, =R

R'R"R, =R, (C.9)
this give with the decomposition Ry:(ﬁ? ];;:)—i—

21, . def 21, -
O'nle =R; + O'nle.

R*R, O R,R*R, RR/R/
R; B | T 12 # sp/#p | = R;.
o Rs R.Y R.x' Rs RS Rs‘ Rs R.&'

(C.10)

After straightforward algebraic manipulations using
R};l =0, o — o;zRgR}§1 and (C.10), we get

R’R;, O
y # R;'
O R'R, /"’
R’R; O
|\ o RPR
RR; O 1
+ Rg— 0 R/#R/ s Rf
and using

RR;, O R’R;R; R’R,R,
I # RS = IHp i/ * I# DD * = RS
O R/R R"R'R* R."R/R?
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obtained from [14, Theorem 35, rel.(vii), p. 33] and
(C.9), we get

R*R;, O R*R;, O
AX = R; R;!' = ,
"\ 0o RR) 0O RR

and therefore (/) = /2 is proved. Conse-
quently from (C.7) and (C.8), we get

u u\”? | /(R O R, O
— CRG! ,
U//H 1 04 O'% (0} Rs y (0} Rs*

AR AH o)
= — R:l
o, O ARAT )
AR AH (0]
X
0O  A'R*A"

| —

A O\ [RA" O
= — Rfl
5 \0 A O RAT|
AR, O A" o
X
O A*R/* O AH
1 /A O L 0)
== H o
7, \O A 0O A
R AT)R [(AR A*R,*\’). Consequently,

N -1
[(CgMV(H,H )) ] y

with # E®g"

o, A O
00k olt,
=—N|Tr —J) ( )
2 an) 69[ 69/
n aef) 0O A
AH
x A
(0]
H oI,
2 0 o, o,
:;sj{ Tr H o, “}’(G_O)A 601A>%
n A 0

Applying identity (C.3), we obtain

(AR

oAl 0A  0AM 0A

2 0, Va0, 0, “vaoo, | .
==R|Tr " " H
g2 oA A A"y 2A
n 00, “'Vd6, 00, v oo,

which gives after straightforward algebraic manip-
ulations

(™",

2 ). S H R ATR
_6—%92 Tr<WkHy60 [R A", RIATIR;
AR,
AR ||

which proves (3.13), thanks to the expression of the
noncircular Gaussian CRB [9].

Projector vec(Ily r):

To prove Theorem 3 for this statistic, we first

must simplify the expression of CAMV(H) Because

LYT+KJI®J) of (3.6) satisfies L2 = 2L, the

Hermitian matrix Cj; becomes Cj =iLCL with

Cdef( @ U)+ (U ® IT;) and a simpler expression

of the AMYV bound can be obtained from the
following minimization problem:
M = min DC;D" =1 min DLCLDY.
DY=Ig Zpy=Ix
Checking that LY = (I+K(J ® J)) &t — oy
Kvec(J(dIT;/dO)) = & + K vec(dIT; /d@T) =29,
thanks to identity (C.1) for the second equality and
the property JII;J = l'I}T [4] for the third equality;
the constraints D =1 and DL.% = 2I are equiv-
alent.Consequently, the previous minimization is
tantamount to

; DL\ . /DL\"
CAMVUD) _ 5 . 2\ (2E
e (DL?;)I.E/}:IK 2 2

Because C is structured similarly as Cy; (see (3.4)),
Span(¥) c Span(C). Consequently, the proof of
Theorem 1 given in [11] applies and C‘gMV(m =
2sMct )

Noting that C = (II} ® 0)+ U ® I1;) is struc-
tured similarly to Cy, all the steps of the proof given
for the statistic vec(Il,, ) extend up to equality (C.4)

by replacing A, II, and H =R, AHR;IARX, by
ALy = (g 2) (from [4) and A R:AR; AR, re-

spectively, and consequently
A 12 oA" oA
AMV(IT)\—1 ¥
=-=R|Tr| ——;——H
[(C@ ) ]k,/ R r ( a@k Y 60] >

2 g2

n
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Because all the matrices involved in H are struc-

tured in the form (éXD)Z ((DX))*), H is structured in the
H, H,

same form as well, ie., H= “ZHT) with H;| =

H p T -1
[R.AY, RIATIR; [A*R] Then
aAHH oA - % 1L 5, Ho ()
00, ~ 00, (<) AU H;
and
~ dall  da

AMV(IT)— 1

(€™ ™) s = SR a0 b g, Hiu

which proves (3.14) thanks to the expression of the
noncircular Gaussian CRB [9].

Appendix D. The case of multiple parameters per
source

It is straightforward to extend Theorem 3 to the
case of multiple parameters per source. One the one
hand, the circular and noncircular Gaussian CRB
are derived from slight modifications of the end of
the proofs given in [2] and of the proof given [9,
Appendix C], respectively. They are given by

2
CRBSC = %{in[n“nyn O (RA"R;'AR) @ ]},

2
NCG _ %, / -
CRB,™" = = { % D'ILD® | | [RA", RATIR;!
-1
AR, 1\
. ®1 ,
A*R

where 1 is a L x L matrix of 1 if there are L
parameters per source. The parameter @ and the

matrix of derivative D are organized as
01, P1s -0k, .., x)" and
D& da;(01,...,)) day(01,...,9))
= de] geensy dd)l PRI
dag(Ok, ..., Pk) dag(Uk, ..., Pg)
d0x yenes dpr .

On the other hand, the derivation of the AMV
bound follows the same lines as for a single

parameter per source except the last step when the
matrix A is decomposed in the different steering
vectors a.
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