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Abstract

This paper addresses asymptotically minimum variance (AMV) of parameter estimators within the class of algorithms

based on second-order statistics for estimating parameter of strict-sense stationary complex circular processes. As an

application, the estimation of the frequencies of cisoids for mixed spectra time series containing a sum of cisoids and an

MA process is considered.
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1. Introduction

There is considerable literature about second-
order statistics-based algorithms. To provide a
benchmark for the efficiency of such existing
algorithms, it has been proposed to consider a
general lower bound for the variance of consistent
estimators based on second-order moments which is
asymptotically tight (in the number of measure-
ments). Stoica et al. with their asymptotically best
consistent (ABC) estimators [1] and Porat and
Friedlander [2] with their asymptotically minimum
variance (AMV) estimator were the first to derive
such estimators for estimating the ARMA para-
meters of real Gaussian processes from second-
order statistics. Then, this approach was extended
e front matter r 2005 Elsevier B.V. All rights reserved
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to high-order statistics [3] for real-valued processes
and was used in many applications (see e.g., the
work by Giannakis and Halford [4] for blind real-
valued channel estimation). We propose to consider
in this paper the case of second-order statistics
derived from stationary complex circular processes.

The paper is organized as follows. Section 2
presents the AMV second-order estimator for
stationary complex circular processes with a special
attention to the statistics involved. It is proved that
this AMV estimator is not a direct extension of the
real-valued associated AMV estimator using the
conjugate transpose instead of transpose. As an
application, the estimation of the frequencies of
cisoids for mixed spectra time series containing a
sum of cisoids and an MA process is considered in
Section 3. Finally, illustrative examples with com-
parisons with the modified Pisarenko decomposi-
tion (MPD) estimator [5] which is devoted to MA
noise are given in Section 4.
.
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The following notations are used throughout the
paper. Matrices and vectors are represented by bold
upper case and bold lower case characters, respec-
tively. Vectors are by default in column orientation,
while T, H, � stand for transpose, conjugate
transpose, conjugate, respectively. Vecð�Þ is the
‘‘vectorization’’ operator that turns a matrix into a
vector by stacking the columns of the matrix one
below another. arg min [resp. arg max] refers to the
minimizing [resp. maximizing] argument of the
proceeding expression.

2. Asymptotic minimum variance second-order

estimator

We consider a strict-sense stationary complex
circular process xt whose M �M Hermitian Toe-
plitz structured covariance matrix RðYÞ ¼ Eðxtx

H
t Þ

with xt ¼
def
ðxt; . . . ; xt�Mþ1Þ

T, is parameterized by the
real parameter Y 2 RL. This parameter is supposed
identifiable from RðYÞ in the following sense:

RðYÞ ¼ RðY0Þ3 Y ¼ Y0.

The covariance matrix RðYÞ is traditionally esti-
mated by RT ¼ ð1=TÞ

PT
t¼1 xtx

H
t or by the Hermitian

Toeplitz matrix Rto
T built by averaging along the

diagonals of RT.
In the sequel, we restrict our study to the

following mixed-spectrum processes:

xt ¼ st þ nt with st ¼
def
XK

k¼1

ake
i2pf kteifk

and nt ¼
def
Xþ1

q¼�1

bqut�q,

where ðutÞt¼0;�1;�2;... is a sequence of circular complex
zero-mean i.i.d. random variables where Eju4

t jo1,
with ku ¼

def
Cumðut; u�t ; ut; u�t Þ and Eju2

t j ¼ s2u.
ðakÞk¼1;...;K and ðbqÞq¼�1;...;þ1 are fixed positive real
and complex numbers, respectively, with

Pþ1
q¼�1

jbqjo1, ðf kÞk¼1;...;K are fixed distinct real numbers in
ð�1=2;þ1=2Þ, fk are random variables uniformly
distributed on ½0; 2pÞ and ðfkÞk¼1;...;K and ut are
mutually independent.

To extend the notion of AMV estimators [2] (also
called asymptotically best consistent (ABC) estimators
in [1]) to complex circular processes, two solutions can
be considered. First, stacking the real and imaginary
parts of the data, existing real asymptotic results can
be applied. However this real-valued procedure is
often more tedious and/or lacking of engineering
insight. Consequently, the second approach that
consists in adapting the real-valued procedure to the
complex-valued data is considered. We note that
because the asymptotic distribution of the second-
order statistics is not circular, simply replacing the
transpose operator by the conjugate transpose in the
existing results has no sense.

To adapt the existing results, two conditions must
be satisfied. First, the covariance CR of the
asymptotic distribution of RT must be nonsingular.
Second, an arbitrary second-order algorithm con-
sidered as a mapping which associates to RT, the
estimate YT

RT 7�!YT ¼ algðRTÞ

must be complex differentiable w.r.t. RT at the point
RðYÞ. While, the second condition is satisfied for
any mapping algð:Þ differentiable w.r.t. the real and
imaginary part of the entries of RT because RT is
Hermitian, the first one is not for the following
reason. The covariance Cto

R of the asymptotic
distribution of Rto

T is singular because the set of
the M2 entries of Rto

T considered as random
variables are linearly dependent and consequently
CR is singular as well because CR ¼ Cto

R as it is
proved in [6].

To solve this difficulty, we could work only with
the first column rT of RT because the first column
rðYÞ of RðYÞ is one to one related to RðYÞ. But this
choice leads to an algorithm rT 7�!YT ¼ algðrTÞ that
is not differentiable w.r.t. rT at the point rðYÞ. To
make this algorithm differentiable, we consider in
the following the statistics sT equivalent to rT
constituted by rT and r�T where the first common
real term r0;T appears only once, i.e.

sT ¼
def

Jr0
�
T

r0;T

r0T

0B@
1CA with rT ¼

def
r0;T

r0T

 !
,

where J is the reversal permutation matrix of
appropriate order (1 in the antidiagonal and 0
elsewhere). So s�ðYÞ ¼ JsðYÞ where sðYÞ is deduced
from rðYÞ as sT is deduced from rT. Consequently,
all algorithm differentiable w.r.t. ðRðsÞ;IðsÞÞ or
equivalently w.r.t. ðs; s�Þ becomes differentiable
w.r.t. s alone if ds is structured as

ds ¼

Jdr0�

dr0

dr0

0B@
1CA
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and

alg½sðYÞ þ ds� ¼ alg½sðYÞ� þ ½Ds;D
�
s �

ds

ds�

" #
þ oðdsÞ

¼ YþDalg
s dsþ oðdsÞ

with Dalg
s ¼

def
Ds þD�sJ where Ds and D�s are the

Jacobian matrices w.r.t. s and s� associated with the
mapping algð:Þ at the point sðYÞ. And because
alg½sðYÞ� ¼ Y for all Y:

alg½sðYþ dYÞ� ¼ alg½sðYÞ þ SdYþ oðdYÞ�

¼ YþDalg
s SdYþ oðdYÞ

¼ Yþ dY.

Therefore Dalg
s is a left inverse of S ¼

def
dsðYÞ=dY:

Dalg
s S ¼ IL, (2.1)

and this time, the covariance matrix Cs of the
asymptotic distribution of sT is an Hermitian
positive definite matrix thanks to its algebraic
structure given by the following lemma directly
deduced from [6] and [7].

Lemma 1. The statistics sT converge in distribution

to the complex noncircular Gaussian distribution of

covariances Cs and C0s:ffiffiffiffi
T
p
ðsT � sðYÞÞ!

L
Ncð0;Cs;C

0
sÞ,

with1

Cs ¼

Z þ1=2
�1=2

S2
nðf Þeðf Þe

Hðf Þdf

þ 2
XK

k¼1

a2
kSnðf kÞeðf kÞe

Hðf kÞ

þ kucc
H and C0s ¼ CsJ, ð2:2Þ

where eðf Þ ¼
def
ðe�i2pðM�1Þf ; . . . ; e�i2pf ; 1; ei2pf ; . . . ;

ei2pðM�1Þf ÞH, eðf kÞ ¼
def
ðe�i2pðM�1Þf k ; . . . ; e�i2pf k ; 1;

ei2pf k ; . . . ; ei2pðM�1Þf k Þ
H, c ¼

def
ðgM�1; . . . ; g1; g0; g

�
1; . . . ;

g�M�1Þ
H with gk ¼

def
Eðntn

�
t�kÞ ¼ s2u

Pþ1
q¼�1 bqb�q�k and

Snðf Þ ¼
defPþ1

k¼�1 gke
�i2pkf .

S is a full column matrix from (2.1) and we prove
in Appendix A by application of Theorem 2 of [3],
extended to the complex circular case:
1We note that the noncircular complex Gaussian asymptotic

distribution of sT is characterized by Cs only.
Theorem 1. The asymptotic covariance of an esti-

mator of Y given by an arbitrary consistent second-

order algorithm is bounded below by the real

symmetric positive definite matrix ðSHC�1s SÞ�1:

CY ¼ Dalg
s CsðD

alg
s Þ

H
XðSHC�1s SÞ�1. (2.3)

Furthermore, we prove in Appendix A that this
lowest bound is asymptotically tight, i.e., there
exists an algorithm alg(.) whose covariance of the
asymptotic distribution of YT satisfies (2.3) with
equality. Therefore, Theorem 3 of [3] extends to the
complex case.

Theorem 2. The following nonlinear least square

algorithm is an AMV second order algorithm.

YT ¼ argmina½sT � sðaÞ�HC�1s ½sT � sðaÞ�. (2.4)

In practice, it is difficult to optimize the nonlinear
function (2.4) which it involves the computation of
C�1s that depends on a. Porat and Friedlander
proved in [8], in the real case that the lowest bound
(2.3) is also obtained if an arbitrary consistent
estimate Cs;T of Cs is used in (2.4). This property
extends to the complex case and to any Hermitian
positive definite weighting matrix and we prove in
Appendix A.

Theorem 3. The covariance of the asymptotic dis-

tribution of YT given by an arbitrary nonlinear least

square algorithm defined by

YT ¼ argmina½sT � sðaÞ�HWðaÞ½sT � sðaÞ� (2.5)

is preserved if the Hermitian positive definite

weighting matrix WðaÞ is replaced by an arbitrary

consistent estimate WT that satisfies WT ¼WðYÞþ
OðsT � sðYÞÞ.

So the minimization (2.4) can be preferably
replaced by the following:

YT ¼ argmina½sT � sðaÞ�HC�1s;T½sT � sðaÞ�. (2.6)

Remark. Naturally, thanks to the one to one
mapping sT2rT, the following ad-hoc nonlinear
least square algorithm:

YT ¼ argmina½rT � rðaÞ�HC�1r ðaÞ½rT � rðaÞ�, (2.7)

where CrðaÞ denotes the covariance of the asympto-
tic distribution of rT, can be considered as a second-
order algorithm that is complex differentiable w.r.t.
s alone. Consequently, its asymptotic covariance
matrix satisfies CYXðS

HC�1s SÞ�1. But we will see in
Section 4 that CY does not attain this lower bound



ARTICLE IN PRESS
J.-P. Delmas, Y. Meurisse / Signal Processing 86 (2006) 2289–22952292
ðSHC�1s SÞ�1. So this ad-hoc algorithm is no longer
an AMV algorithm.

3. Application to the estimation of frequencies for

mixed spectra time series

3.1. AMV estimator

In the following, to satisfy the identifiability
condition, we consider an MA of order Q process
as linear process. In this case, the M �M covar-
iance matrix of xt is given by

RðYÞ ¼
XK

k¼1

a2k ~eðf kÞ~e
H
ðf kÞ

þ

g0 g1 � � � gQ 0 � � � 0

g�1 g0 � � � gQ�1 gQ
. .
.

� � �

..

. . .
. . .

.
gQ�2 gQ�1

. .
.

0

g�Q g�Q�1
. .
. . .

. . .
. . .

.
gQ

0 g�Q g�Q�1
. .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

g�1 g0 g1

0 � � � 0 g�Q � � � g�1 g0

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

,

where ~eðf kÞ ¼
def
ð1; ei2pf k ; . . . ; ei2ðM�1Þpf k Þ

H. RðYÞ is
parametrized by the L ¼ 2ðQþ KÞ þ 1 real
parameters Y ¼ ðYT

1 ;Y
T
2 Þ

T with Y1 ¼
def
ðf 1; . . . ; f K Þ

T

and Y2 ¼
def
½a2

1; . . . ; a
2
K ; g0;Rðg1Þ; . . . ;RðgQÞ;Iðg1Þ; . . . ;

IðgQÞ�
T. We note that the first column rðYÞ of RðYÞ

is linear with respect to Y2 and consequently sðYÞ as
well:

sðYÞ ¼ WðY1ÞY2, (3.1)

where WðY1Þ is the following ð2M � 1Þ � ðK þ
2Qþ 1Þ matrix:

WðY1Þ

¼ eðf 1Þ; . . . ; eðf K Þ

0M�Q�1 OM�Q�1;Q OM�Q�1;Q

0Q JQ iJQ

1 0TQ 0TQ

0Q IQ �iIQ

0M�Q�1 OM�Q�1;Q OM�Q�1;Q

0BBBBBBBBB@

1CCCCCCCCCA
.

Therefore WðY1Þ has column full rank (over the
field R) if M �Q� 1XK . This condition is
equivalent to having the number of unknown real
parameters no larger than the number of estimat-
ing equations available, i.e., 2ðQþ KÞ þ 1p1þ
2ðM � 1Þ. This necessary condition is also sufficient
to ensure identifiability because in this case, the
vector r00ðYÞ ¼defðrQþ1; . . . ; rM�1Þ

T issued from rðYÞ
satisfies:

r00ðYÞ ¼ W0ðY1ÞY02,

where W0ðY1Þ ¼
def
ðēðf 1Þ; . . . ; ēðf K ÞÞ with ēðf kÞ ¼

def

ðei2pðQþ1Þf k ; . . . ; ei2pðM�1Þf k Þ
H and Y02 ¼

def
ða2

1; . . . ; a
2
K Þ

T

and this linear Vandermonde system has an unique
solution if its number of columns is less or equal
than its number of lines, i.e., M �Q� 1XK . We
suppose in this paper, that this condition is satisfied.
The minimization (2.6) with respect to Y2 is
immediate thanks to (3.1) if Y2 is not restricted to
be real. With a geometric procedure, we obtain:bY2 ¼ ½W

H
ðY1ÞWWðY1Þ�

�1WH
ðY1ÞWsT (3.2)

with W ¼
def

C�1s;T. With arguments similar to that of
COMET [9], we prove in Appendix A that bY2 is
real-valued for all consistent estimate Cs;T of Cs

structured as sTs
H
T . Thus,

bY2 given by (3.2) is the
real value that minimizes (2.6). Y1;T is obtained by
substituting bY2 in (2.5):

Y1;T ¼ argmaxa1V ða1Þ (3.3)

with

V ða1Þ ¼
def

sHTWWða1Þ½WH
ða1ÞWWða1Þ��1WH

ða1ÞWsT.

3.2. Performance analysis

By application of Theorem 1, the covariance of
the asymptotic distribution of the minimum var-
iance second-order frequency estimator (3.3) is
given by the top left K � K ‘‘frequency corner’’ of
ðSHC�1s SÞ�1 where Cs is given by (2.2). If we note
that S ¼ ½S1;W� with S1 ¼

def qs=qY1, the matrix
inversion lemma gives

CY1
¼ ðSH

1 C
�1
s S1 � SH

1 C
�1
s W½WHC�1s W��1WHC�1s S1Þ

�1

¼ ðSH
1 C
�1=2
s P?

C
�1=2
s W

C�1=2s S1Þ
�1,

ð3:4Þ

where P?
C
�1=2
s W

denotes the projector onto the ortho-
complement of the columns of C�1=2s W.

Remark. In the case of non-Gaussian additive noise,
an AMV second-order algorithm devised under the
Gaussian assumption (i.e. with a weighting matrix
associated with the Gaussian case) is no longer an
AMV second-order estimator. But in this case, the
asymptotic covariance of such an algorithm is
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insensitive to the distribution of the additive noise nt

thanks to a result proved in [6] and is given by (3.4)
where Cs is associated with the Gaussian case.

4. Illustrative examples

In this section we illustrate the loss of perfor-
mance of several suboptimal least square algorithms
compared to the AMV algorithm and to the MPD
estimator of [5] which is to the best of our
knowledge the only second-order algorithm specifi-
cally devoted to MA noise. More precisely, we
consider the following algorithms:
Fig. 1. Theoretical variance Var½y1;T� given by the AMV and

suboptimal estimators versus SNR.

�

10-6

M

bu

M

The first one is the ad-hoc algorithm (denoted
AMVr) (2.7) obtained by considering the statistics
rT only.

�

10-7

10-8

10-9

V
ar

ia
nc

e

54 6 7 8 9
M

AMVr = AMVr'

AMVsg = AMVrg

LSs = LSr

AMV = AMVs'

Fig. 2. Theoretical variance Var½y1;T� given by the AMV and

suboptimal estimators versus M.
The second ones (denoted AMVg
s and AMVg

r ) are
deduced from the AMV (2.6) and AMVr (2.7)
estimator when the weighting matrix C�1s;T and C�1r;T

are, respectively, replaced by consistent estimates
C�1s;T and C�1r;T of the inverse of the asymptotic
covariance matrices Cs and Cr associated with the
asymptotic covariance matrix Cr ¼ r0ðYÞRðYÞ
given by the erroneous signal model of indepen-
dent Gaussian complex circular observations xt

for which:

Cs;T ¼

r0;TJR
0�
TJ r0;TJr

0�
T Jr0

�
Tr
0H
T

r0;Tr
0T
TJ r20;T r0;Tr

0H
T

r0Tr
0T
TJ r0;Tr

0
T r0;TR

0
T

0BB@
1CCA,

where

RT ¼
def r0;T r0

H
T

r0T R0T

 !
.

�
 The third ones (denoted LSs and LSr) are the
unweighted least square algorithms YT ¼ arg
minaksT � sðaÞk2 and YT ¼ arg minakrT � rðaÞk2.

�
 The fourth ones (denoted AMVs0 and AMVr0 ) are
deduced from the AMV and AMVr algorithms by
eliminating the r0 term. For these algorithms, Y2

does not contain the g0 term.

�
 The last ones (denoted MDP)2 is the MPD
algorithm for which the asymptotic variance is
given by Var½y1;T� ¼ ð1=TÞDMPD

r CrðD
MPD
r Þ

H
ð1;1Þ,

where the Jacobian DMPD
r is given in Appendix B.
2We note, that contrary to the AMV approach for which

XQþ K þ 1, the MPD estimator, based on an Hankel matrix

ilt from the ‘‘zero triangles’’ of RðYÞ, requires the fixed order

¼ Qþ 2K þ 2.
We show the case Q ¼ 1 ðb0 ¼ b1 ¼ 0:707Þ, K ¼ 2
(equipowered complex cisoids with f 1 ¼ �0:1,
f 1 ¼ 0:25) and T ¼ 2000, M ¼ 7 for different SNRs
in Fig. 1 and for SNR ¼ 15 dB and different values
of M in Fig. 2. We see that these algorithms are
actually suboptimal except for M ¼ Qþ K þ 13 for
which they have the asymptotic performances of the
AMV algorithm and the ad-hoc algorithm (denoted
AMVr) (2.7) obtained by using the conjugate
transpose instead of transpose in the real-valued
associated AMV estimator is outperformed by the
AMV estimator. We see that the asymptotic
variance Var½y1;T� given by the algorithms LSs and
LSr, AMVr and AMVr0 , AMV and AMVs0 coincide,
respectively. This later result generalizes a result
proved in [10] for a white noise.
3We note that this property has been confirmed for several

values of Q and K, but we have not succeeded in proving it

analytically.
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5. Conclusion

This paper has extended the notion of AMV
second-order estimation devoted to parameters of
real stationary processes to complex circular sta-
tionary processes. It has been shown that a special
attention to the statistics involved is required. In
particular it is proved that the AMV estimator is
not a direct extension of the real-valued associated
AMV estimator using the conjugate transpose
instead of transpose. As an application, the estima-
tion of the frequencies of cisoids for mixed spectra
time series containing a sum of cisoids and an MA
process is considered.
Appendix A. Proof of theorems

Proof of Theorem 1. Using the proof of Theorem 2 of
[3] (replacing the superscript T by H), it is sufficient to
prove that the Hermitian matrix ðSHC�1s SÞ�1 is real
symmetric. Because s� ¼ Js implies S� ¼ JS and

CT
s ¼ JCsJ, we have ðSHC�1s SÞT ¼ STðC�1s Þ

TS� ¼

SHJðCT
s Þ
�1JS ¼ SHC�1s S. &
Proof of Theorem 2. By a perturbation analysis,
YT ¼ Yþ dY is associated with sT ¼ sðYÞ þ ds

(with ds structured). Because VTðaÞ ¼
def
½sT �

sðaÞ�HC�1s ðaÞ½sT � sðaÞ� is minimum for a ¼ YT, we

have: ðVTðaÞ=daÞja¼YþdY ¼ 0. Expanding this deri-

vative, we straightforwardly obtain: ðSHC�1s Sþ

STC�1s

�
S�ÞdY þ oðdYÞ ¼ SHC�1s ds þ STC�1s

�
ds�þ

oðdsÞ. Consequently, the algorithm (2.4) satisfies:

alg½sðYÞ þ ds�

¼ Yþ ðSHC�1s Sþ STC�1s

�
S�Þ�1

�ðSHC�1s ;STC�1s

�
Þ

ds

ds�

 !
þ oðdsÞ

¼ Yþ ðSHC�1s SÞ�1SHC�1s dsþ oðdsÞ, ðA:1Þ

by using S� ¼ JS and CT
s ðYÞ ¼ C�s ¼ JCsJ in the

second equality. &
Proof of Theorem 3. Following a perturbation
analysis similar to that of the proof of Theorem 2,
it is straightforward to show that the differential
Dalg
s ¼ ðS

HWSÞ�1SHW of this algorithm is pre-
served. &

Proof of the real value of bY2. If

K ¼
def 1

2

JM�1 0 IM�1

0T 2 0T

iJM�1 0 �iIM�1

0B@
1CA

denotes the linear invertible transformation that
associates to sT, the real-valued vector gT comprised
of the real and imaginary parts of sT, gT ¼ KsT andbY2 given by (3.2) assumes the form: ½ðKWÞH

ðKW�1KHÞ
�1
ðKWÞ��1ðKWÞHðKW�1KHÞ

�1KsT, where
KsT is real and so is KW. It remains to examine
KW�1KH. Because KsTs

H
TK

H ¼ gTgHT is real-valued,
the matrix KW�1KH ¼ KCs;TK

H is real-valued. &

Appendix B. MPD algorithm

MPD principles: The MPD algorithm is based on
the Hankel matrix of order K þ 1

HðYÞ ¼

rQþ1 rQþ2 � � � rQþKþ1

rQþ2 rQþ3 � � � rQþKþ2

..

. ..
.

rQþKþ1 rQþKþ2 � � � rQþ2Kþ1

0BBBBB@

1CCCCCA
built from the ‘‘zero triangles’’ (i.e., the part
excluding the terms g0; . . . ; gQ) of RðYÞ of order
M ¼ Qþ 2K þ 2 and it relies on the following
lemma proved in [5]:

Lemma 2. fei2pf 1 ; . . . ; ei2pf K g are the roots of the

polynomial
PK

l¼0 clz
l if and only if HðYÞc ¼ 0 with

c ¼
def
ðc0; . . . ; cK Þ

T.

And the MPD algorithm is an extension of the
mapping:

VecðRðYÞÞ 7�!
g1

HðYÞ 7�!
g2
ðc0; . . . ; cK Þ

T

7�!
g3
ðei2pf 1 ; . . . ; ei2pf K Þ

T
7�!
g4
ðf 1; . . . ; f K Þ

T

generated by the unstructured matrix RT.
The Jacobian of the MPD algorithm: An extension of

g1 is naturally obtained thanks to the Toeplization of
RT. So g1 is a linear operator whose associated matrix
is D1. An extension of g2 can be obtained, thanks to
the right singular vector of HT associated with its
smallest singular value. The derivative D2 of this
mapping is derived from [11, Theorem 8, rel. 4, p. 162].
Finally, derivatives D3 and D4 of the mappings g3
(rooting of polynomial CðzÞ ¼

PK
l¼0 clz

l) and g4
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(ðz1; . . . ; zK Þ
T7�!ðð1=2pÞ argðz1Þ; . . . ; ð1=2pÞ argðzK ÞÞ

T)
are classically derived from standard perturbation
calculus. Applying the chain differential rule, the
Jacobian of the MPD algorithm is DMPD

r ¼

D4D3D2D1.
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