Performance analysis of subspace-based
algorithms in CES data models

Jean-Pierre Delmas and Habti Abeida

Abstract Subspace-based algorithms that exploit the orthogonality between a sam-
ple subspace and a parameter-dependent subspace have proved very useful in many
applications in signal processing. The statistical performance of these subspace-
based algorithms depends on the deterministic and stochastic statistical model of the
noisy linear mixture of the data, the estimate of the projector associated with differ-
ent estimates of the scatter/covariance of the data, and the algorithm that estimates
the parameters from the projector. This chapter presents various complex circular
(C-CES) and non-circular (NC-CES) elliptically symmetric models of the data, as
well as different associated non-robust and robust covariance estimators. These esti-
mators include the sample covariance matrix (SCM), the maximum likelihood (ML)
estimate, robust M -estimates, Tyler’s M -estimate and the sample sign covariance
matrix (SSCM). The asymptotic distributions of these estimators are also derived.
This enables us to unify the asymptotic distribution of subspace projectors adapted
to the different models of the data and demonstrate various invariance properties
that have impacts on the parameters to be estimated. Particular attention is paid to
the comparison between the projectors derived from Tyler’s M -estimate and SSCM.
Finally, this study investigates the asymptotic distributions of parameter estimates
characterized by the principal subspace derived from the distributions of subspace-
based parameter estimates. In particular, the efficiency with respect to the stochastic
and semiparametric Cramér-Rao bound is considered.
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1 Introduction

Noisy linear mixtures of signals in which the parameter of interest is characterized
by the range space of the mixing matrix are very common in many applications,
including array processing and linear system identification (see e.g., [1,29,38]). To
get rid of the nuisance parameters, subspace-based estimates obtained by exploiting
the orthogonality between a sample subspace and a parameter-dependent subspace
have been exploited since the seminal paper [46] that introduces the multiple signal
classification (MUSIC) algorithm for direction of arrival (DOA) estimation. These
methods are always the object of active research in many applications (see e.g., [14,
30,56]), with generally many possible algorithms (see e.g., [24] for special structures
of the mixing matrix). In these noisy linear mixtures, two statistical models have been
commonly used [49]. If the signals in the mixture are nonrandom, but rather unknown
deterministic parameters, the model is called deterministic or conditional. Otherwise,
they are random and the model is a stochastic or unconditional model. Subspace-
based algorithms associated with these two models have been intensely studied in the
circular complex Gaussian framework (see e.g., [1, 14, 24,29, 30, 38, 46,49, 56] and
references therein). But this framework is often insufficient for non-Gaussian heavy-
tailed distributed data that are well modeled by circular (C-CES) or non-circular
complex (NC-CES) elliptically symmetric distributions.

The aim of this chapter is to unify and complement various deterministic and
stochastic CES models of the data and asymptotic distributions of the associated
projectors derived from different estimates of the covariance matrix of the paramet-
ric noisy linear mixture data presented in the literature. The asymptotic distribution
(w.r.t. the number of measurements) of the sample covariance matrix (SCM), max-
imum likelihood (ML), robust M, Tyler’s M, and sample sign covariance matrix
(SSCM) estimate of the covariance are considered. This allows us to derive the
asymptotic distributions of the associated projectors, whose covariances have a uni-
fied structure, and consequently to prove several invariance properties. Particular
attention is paid to the comparison between the projectors derived from Tyler’s M -
estimate and SSCM, yielding that the performance of Tyler’s M -estimate is much
better than that of SSCM, except for high dimensional data and not too small dimen-
sion of the principal subspace w.r.t. this data dimension. In that case, they are close
and where the SSCM can be advantageously be used instead of Tyler’s M -estimate
for its lower computational complexity. Finally, asymptotic distributions of estimates
of parameters characterized by the principal subspace derived from the distributions
of projectors are studied, in particular, the efficiency with respect to the stochastic
and semiparametric Cramér-Rao bound.

The rest of this chapter is organized as follows. Section 2 specifies the determinis-
tic and stochastic C-CES and NC-CES distributed noisy linear mixture models, and
the different associated parameterized mixing matrices. Subspace-based algorithms
are interpreted in Section 3 as compositions of mappings. The asymptotic distribu-
tions of different non-robust and robust covariance estimates adapted to C-CES and
NC-CES distributed data models are presented in Section 4. This allows us to derive
the asymptotic distribution of the associated projectors and to prove different prop-
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erties in Section 5. Asymptotic distributions of subspace-based parameter estimates
are studied in Section 6. Finally, the chapter is concluded in Section 7.

The notations used in this chapter are those presented in chapter 1 to which
some specific notations are used in the following. In particular RES,,, (i, R, g), C-
CES,.(i, R, g), NC-CES,, (i, R, C, g), CN,,,(1t, R) and CN,,, (e, R, C) denote
the real elliptically symmetric (RES) distribution, C-CES, NC-CES, circular and non-
circular Gaussian distributions of dimension m with finite second-order moments,
respectively, where 1, R and C are the mean, the covariance and complementary
covariance matrices, respectively, and g the density generator. The matrix J denotes

the 2m x 2m exchange matrix <(; (I)> .2F1(a,b, ¢, x) is the Gauss hypergeometric

functions with » F (a, b, ¢, ) = 5oy fol t=1(1 — )e=b=1(1 — to)~%dt for ¢ >
b > 0 and |z| < 1 where B(x,y) is defined in chapter 1. Finally, throughout the
chapter, circularity is defined only up to the second order.

2 Noisy linear mixture model

Consider the following general noisy linear mixture model!
xX;=As;+n, €eC™ i=1,..,n, )

where (x;)?_, are independent observations, s, and n, represent a signal of interest
and an additive measurement noise, respectively, which are assumed to be zero-
mean mutually and uncorrelated. n; is assumed to be complex circular spatially
uncorrelated with E(n;n’) = 621 and E(n;n?) = 0.

Deterministic and stochastic parametric data models have been commonly used to
model the distribution of (s;, n;), where n; is complex circular Gaussian distributed
[49]. These two statistical data models are extended here within the framework of
CES distributions.

2.1 Deterministic CES data model

In the conditional or deterministic model, the signal sequence (si)izL__,n is con-
ditioned from an independent zero-mean Gaussian process. As explained in [49],
the sequence (s;);=1,.n is the same here in all the realizations of the random
data (x;);=1,.. n. For complex-valued s; with arbitrary circularity, we assume that
limy, o0 = >i si85 = Ry o exists and is also positive definite. The law of large

number implies that:

! x; can represent the sampled complex baseband amplitudes of the data at the output of m passband
antennas.
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For strictly non-circular complex (also called rectilinear) valued s;, i.e. satisfying
the condition

Sik = ri,kew’f ,k =1,..,p where r; , are real-valued, 3)

def . . .
and let r; = (ry1,...,7;,)7 where lim, oo £ 3" rir7 = R, o exists and is
also positive definite. The phases ¢ associated with each k-th source are assumed
fixed, but unknown during the observation. To take into account this property (3)

. . . ~ def
of the signals s; ;, we consider the extended observation x; = [xI,x7]|T =

A,r; + [n7, nH]7T which leads as in (2) to

I~~~ ~
Rioo © lim ~ Y %% = A, R, Al + 02L, @)
n—oo N P
where A, def Aéi*} with A ! Diag(e'?1, ..., e%»). In this deterministic model

(Si)i=1,...n or (r;)i=1,.n and (¢1,...,¢,) are unknown deterministic parameters.
However, the noise n; is assumed C-CES distributed with density generator g,,. Con-
sequently, the distribution of the observed data x; is either C-CES,,,(As;, 021, g,,)
or C-CES,,(AAr;, 021, g,,) distributed, for complex-valued s; with arbitrary cir-
cularity or rectilinear, respectively.

2.2 Stochastic Gaussian data model

In the unconditional or stochastic model, both s; and n; are usually assumed Gaussian
distributed and independent of each other. s; is here either circular, rectilinear or
non-circular and non-rectilinear complex-valued. In the complex circular case, x;
are CN,, (0, R,) distributed, where the covariance R, is given by

R, ¥ E(x;x") = AR,AY + 021, (5)

where R, & E(s;s!?) is positive definite.

In the complex rectilinear case, the signals s; 1, k = 1, .., p, satisfy constraint (3).
In this case, the distribution of x; is characterized by the covariance of the extended
observation X; given by

R; € B(xxT) = A, R, A + 521, (6)

)

with R, % E(r;xT), and thus, x; are CN,,, (0, R,, C,) distributed with
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R, = AAR, A*A" 1 52T and C, = AAR,AAT. (7

For the arbitrary non-circular case, the distribution of x; is also characterized by
the extended covariance matrix R; given by

R; = AcR:Al + 0L, ®)
with R; & E(5;5H) = (g;f gz ,where 3; ' [s7 sH)T and A, (g A?* )

Thus x; are CN,,,(0, R, C,) distributed with

R, = AR,AY 4 62T and C, = AC,AT, 9)

def . . .
where C; = E(s;s!) is a symmetric complex matrix.

2.3 Stochastic CES data model

A first extension of the stochastic Gaussian data model consists in modeling the
independent signals s; and n; by CES distributions to take into account pos-
sible heavy-tailed (with respect to the Gaussian one) signals. For circular and
non-circular (both rectilinear and non-rectilinear signal s;) cases, s; is respec-
tively C-CES,(0, R, gs) and NC-CES, (0, R, C,, g5) distributed?, and n; is C-
CES,, (0,021, g,) distributed. It is worth noting here that in this stochastic data
model x; is not CES distributed (except for Gaussian distributions) because this
family of distributions is not closed under summations.

To take advantage of robust covariance matrix estimates available in the context
of CES distributions, the CES distribution has been preferred over the Gaussian
distribution to model the data x; in many DOA finding and beamforming processing
(seee.g., [17,39,40,42]). In this case, the distributions of s; and n; are generally not
specified, but only their second-order statistics are imposed by setting the structured
covariance in (5) or extended covariance matrices in (6) and (8). More specifically,
in the case of circular complex and non-circular complex signals s;, the observations
x; are C-CES,,,(0, R, g,,) and NC-CES,,,(0, R, C,, g..) distributed, respectively.
Moreover, as a particular case of this modeling, the complex compound Gaussian
distribution which is a subclass of CES distributions that was used to model the clutter
in radar [22] has also been used in robust and sparse M -estimation of DOA [37, eq.
1] in the form of the model:

x; = As; +m; & /7, (As] + 1), (10)

2 Note that for rectilinear s;, this modeling is equivalent to r; being RES,, (0, R, gs) distributed.
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where the so-called texture 7; > 0 (with E(7;) = 1) is independent of (s}, n}) which
are complex Gaussian distributed. In this case s; and n; are uncorrelated but not
independent, unlike s and n} which are independent.

2.4 Parameterized mixing matrix

Since the complex-valued signals s;, can be either circular, non-circular and non-
rectilinear or rectilinear signals, together with the dependence of (1) on m X p
mixing matrix A and on the parameter of interest § € R¥, leads us to distinguish
the following two considered parameterized cases:

* For circular, and non-circular and non-rectilinear complex-valued signals s;, € is
characterized by the subspace generated by the columns of the full column rank
matrix A with p < m. We will use the parameterizations

B(0) ¥ A (11)

in the circular case and
def 7 AO

in the non-circular and non-rectilinear case.
¢ For rectilinear complex-valued signals s;, 8 is characterized by the subspace
generated by the columns of the full column rank 2m X p extended mixing matrix
B(O) <A, = {A‘Ajﬂﬁ*} with p < 2m. (13)
This low-rank signal in full-rank noise data model (1) encompasses many far or
near-field, narrow or wide-band DOA models with scalar or vector-sensors for an
arbitrary number of parameters per source s; , (with s; def (Si1y--Siks oo si’p)T)
and many other models as the bandlimited SISO, SIMO [38] and MIMO [1] chan-
nel models. For example, parametrization (13) can be applied for DOA estimation
modeling with rectilinear or strictly second-order sources and for SIMO channels
estimation modeling with BPSK or MSK symbols [13] where 6 represents both the
localization parameters (azimuth, elevation, range) and the phase of the sources, and
the real and imaginary parts of channel impulse response coefficients, respectively.
Whereas, parametrization (12) is used for DOA modeling with generally non-circular
and non-rectilinear complex sources.
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3 Subspace-based estimation approaches

Since the parameter of interest @ is characterized by the subspace generated by the
columns of the full column rank matrices A, A. or A,, a simple way to get rid of
the nuisance parameters, is to consider subspace-based algorithms as the following

mapping:

(X1, .0, X, oo Xn) — RS TT = IT(R) 2% 0 = alg(IT), (14)

5 . . def
where R can be either any ¢ estimate R, of R, E(x;x)
def

f R; = E(x;x), and 1T denotes the orthogonal prOJeCthl’l matrlx H [resp "

or any estimate R~

m] associated w1th the so-called noise subspace of R [resp., m] Le., if R
[VS, V., ]A[V,, V,]H denotes the EVD of R, where A gathers the eigenvalues of
R, in decreasmg order, V, and V,, are m x pand m x (m —p) unitary matrices,
respectively, I » IS given by V VH The functional dependence 0 = alg( )
constitutes an extension of the mapping

(6) “ 1-B(6)[BX(6)B(6) ‘B (0) 5 0, (15)
in the neighborhood of IT(6) with B(6) can either be A, A, or A.. Each exten-
sion alg(.) specifies a particular subspace-based algorithm. Conventional MUSIC
algorithm [46] based on /ﬁx and non-circular MUSIC algorithms [2] based on
ﬁ;c for parametrization (6) can be seen as examples in DOA estimation. Among
these algorithms are the asymptotically minimum variance (AMYV) algorithm or the
asymptotically best consistent estimators (ABC) introduced by Porat and Friedlan-
der [45] and Stoica et al [48], respectively. This algorithm minimizes the covariance
matrlx of the asymptotic distribution of the estimate 0 among all the estimates
alg( ) (14) satisfying alg(IT(0)) = 0 and a regularity condition (see (74)). The
associated covariance is a lower bound that plays the role of benchmark against
competing algorithms "alg". According to mapping (14), the statistical properties of
the estimate 6 depends on both the choice of the covariance estimate R and that of
the subspace-based algorithm "alg".

Note that direct ML approaches have been extensively studied to estimate DOA
parameters from the data. But they generally require non-convex multidimensional
minimizations except for a single source for which the deterministic and stochastic

ML algorithms coincide with the conventional Capon algorithm (see e.g., [12, chap.
16]).
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4 Asymptotic distributions of covariance estimates

Analyzing the asymptotic performance of the subspace-based estimation approaches
in (14) first requires determining the asymptotic distribution of different covariance
estimators R adapted to the different data models presented in Section 2.

4.1 Deterministic data model

We only consider in this model the sample covariance matrix (SCM) estimates R=
% S xix2T for complex-valued of arbitrary circularity signals s; and extended

SCM estimates R = % S XX for complex rectilinear-valued signals s;. Under
finite fourth-order moments of n;, we get for complex-valued of arbitrary circularity
signals s;:

~

Bvec(R)) = (A" ® A)[- 57 @51 + odvec(D), 16)

~ 1 1 — 1 —
R)) = - | [A*(= sIHAT 2T+ 21 @ [A(= sHAH
Cov(vec(R)) n([ (nzizssz) J@oy I+ 0, 1@ (nzi:ssl) ])
1
+ —Cov(n] ®n;), (17)
n

where Cov(n} ® n;) = ot[(1 + kn)I + kpvec(I)vec? (I)] with

2
Koy = M -1 (18)
m(m+1)
is the kurtosis parameter? of n; and Q,, is its 2nd-order modular variate. Using the
Liapounov central limit theorem (CLT) for independent non identically distributed
Lv. X ® x; (see e.g. [31, Th. 2.7.1]) and the Slutsky theorem (see e.g. [31, Th.
5.1.6]), we get the following convergence in distribution [3], [5].

o~

Vn(vec(R) — vec(R)) -4 CN,,2(0, R, , R, K), (19)

with R %' R, . defined in (2), K defined in chapter 1 and

R,, = A'R, AT @021+ 02IR AR oo A7 + 02 (14K, )T+ K, vec(I)vec! (T)],
(20)

3 Note that for C and NC-CES,,, distributions, the kurtosis parameter ., », is defined by the kurtosis
E(Q? E(Q?

parameter of the associated RES2,,, distribution k.. 2,m = 27;(2;;;?;) —1= m(( m:*:”l))

Qcom = 1 Q. 2m Where Q¢ ,, and Q. 2, are the 2nd-order modular variates of the associated

C and NC-CES,,,, and RES2,,, distributions (see chapter 1).

— 1 with
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where R o is defined in Section 2.1. Similarly, we obtain for complex rectilinear-
valued s; that

~

vn(vee(R) — vec(R)) =4 CNyp2 (0, R, , R, K) 1)
with R %' R . defined in (4) and

R,, = [[+KJ @ D[(AiR,, Al ©02I) + (021® A, R, oAl
+ ot (14 w1 + o2k vec(I)vecT (). (22)

4.2 Stochastic data model

We consider here two cases. In the first one, s; and n; are both CES distributed for
which only the SCM estimate is considered. In this case, x; is not CES distributed.
In the second one, x; is CES distributed and many robust covariance estimates are
considered.

4.2.1 SCM estimators for both CES distributed s; and n;

Let's start first with the SCM estimates R = 1 ™" x;x# andR = L Y7 | ;%
for respectively circular and complex of arbitrary circularity signals s;, where s;
and n; are both CES distributed and have finite fourth-order moments. By applying
the classic CLT to the r.v. X} ® x; and X ® X;, we get, respectively, the following
asymptotic distribution of R which did not appear in the literature:

Vn(vee(R) — vec(R)) —4 CN,,2(0, R, , R, K), (23)
Vn(vec(R) — vec(R)) =g CNyp2(0, R, , R, K), (24)

with R def R, defined in (5) and R def R ; defined in (6) and (8), respectively, and

R,, = (R; @ R,) + :[(A'RIAT) @ (AR,A™)
+ vec(AR AT )vec! (AR AH)] + ot ki, [T + vec(I)vec” (I)],  (25)
R, = I+ KJ ®J)][(R: @ R;) + rs(AR:AT) @ (ARsAH)
+ HSVeC(;&CRg:&f)VeCH(AcRg;&fr) + otk
402k vee(I)vec (I), (26)
where  is the kurtosis parameter of s; given by ks = pEﬁf’l) — 1 and where 9, is
the 2nd-order modular variate of s;. Note that (24) and (26) remain valid for complex

BL98) 1 where O, is the 2nd-order

rectilinear signals s; if « is replaced by x, =
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modular variate of r; which is RES, (0, R,, g5) distributed. Furthermore, in this
case ACR§A£{ reduces to ATRTAfI.

4.2.2 Covariance estimates for CES distributed x;

Now consider the cases where the observations x; are C-CES,,(0,R,, g,) and
NC-CES,.(0,R,, C,, g.) distributed. For these distributions, many covariance es-
timators have been proposed in the literature. This study examines the asymptotic
distributions of various estimators, including the SCM, ML and M, Tyler’s and
SSCM estimators.

4.2.2.1 SCM estimators

Under finite fourth-order moments of x;, applying again the classic CLT to the r.v.

xF @ x; and X] ® X;, we get the convergences in distribution (23) and (24) for the

SCM estimate R with also R, % R, defined in (5) and R %' R;; defined in (6) and

(8), respectively, and with now R,., and R, are given by [3], [5]:

R, = 01(R: ® R,) + gavec(R,)vec (R,), 27)
R,, = 1[I+ K(J ®J)](R: ® Rz) + oavec(Rz)vec (Rz), (28)

with 01 = 1 + Kk, and 09 = k,, where k., is the kurtosis parameter of x; given by

Ky = ”]LE(;?_%)I) — 1 where Q. is the 2nd-order modular variate of x;. Note that thanks
to the linear one to one mapping X; «— X; with X; = (Re(x;)T, Im(x;)T)T €

R2™, (27) and (28) can be directly deduced from the convergence in distribution of
the SCM estimate = 37" | x;x7 of R; def E(x;x7), given by [43, p. 5]

Vn(vee(R) — vec(Rz)) —a RNy (0, R, ), (29)

with
R,, = (1 +kz)(I+ K)(Rz ® Rz) + rzvec(Rz)vec” (Rz), (30)

where k7 = Kk, by definition of the kurtosis x, of the complex-valued r.v. x; given
in footnote 4. For heavier tails than Gaussian distributions, we have x, > 0 and can
be very large without any upper bound, and consequently, the SCM estimator can be
a very poor estimator of the covariance matrix.

4.2.2.2 ML estimators

To take into account the particular CES distribution of x;, the ML estimator is
often considered as the benchmark estimator. From the p.d.f. of the complex-
valued data x;: p(x) = |Rz|7Y2g,(1x¥R;'X) which reduces to p(x) =
IR.|Lgs (xR x) in the circular case (see chapter 1), the ML estimate R of
R, and R; are respectively solutions of the implicit equations
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ﬁ:

S|

n n

~ ~ 1 1 o 4o\ ~ -
E wx(xf{R_lxi)xixfI and R = E o <2xfIR_1xi> xixiH,
i=1 i=1

n &
(€19
with ¢ (t) def 7g%(t) dg; t(t) . Under existence, uniqueness and usual regularity con-

ditions, the ML estimate of R, and R; are generally asymptotically efficient with
a speed of convergence in y/n. Thus, we get the convergences in distribution (23)
and (24), with also R % R, defined in (5) and R % R;; defined in (6) and (8),
respectively, where R, and R, can be deduced from the matrix Slepian-Bangs
formula [4,7,9,23] associated with the single parameters R, and R; and are still
given by (27) and (28) with

m(m + 1)

_o e ) 20’1(1—0'1)
7T E[0242(Q,)]

1+2m(1—o1) (32)

and o9 = —

4.2.2.3 M estimator

Since the ML estimator may be drastically affected by the presence of outliers or when
the data distribution deviates slightly from the CES distribution of the model, robust
estimators of the covariance of the data have been proposed. Among the different
families of robust estimators, we focus our attention on the class of M -estimators
introduced by Maronna [36] for RES distributions. Applied to RESs,,(0, Rz, gz)
distributed data X;, with g5(t) = 27™g, (%) (see Chapter 1), these M-estimators

were defined as solutions R of the implicit equation

—_

~

R=2>) u (xR '%)%%], (33)

where uz(.) is any real-valued weight function on [0, c0) not related to a particular
RES distribution. Under sufficient conditions (called Maronna conditions), it was
proved in [36, Th. 4], the existence and uniqueness of solution R of (33). It has also
been proved in [36, Th. 2] the existence and uniqueness of the solution V of

V = Efuz (%] V7Ix)x:x]]. (34)
Sufficient conditions are also given in [36, Th. 5] to ensure the strong consistency
of the estimate R solution of (33) to the solution V of (34). V is related to Rz by
V = ¢ 'R, where cis the unique solution of E[cQzuz (cQz)] = 2m. [36, Appendix
3]. This is equivalent to the solution of

E[cQuug(cQa)] = m, (35)

for CES distributions [42, (rel (46)]. Using a general result on M -estimators given
in [25, Sec. 4], Maronna proved in [36, Th. 6] the asymptotic gaussianity of R. Then,
using the affine invariance property of any M -estimators and the general structure of
the covariance of radial random matrices, the covariance of the asymptotic distribu-
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tion (called also asymptotic error covariance) of R was specified in [50, Appendix
2].

Extensions of M -estimators to C-CES distributed data were introduced in [39]
and later studied and used in various signal processing application (see [42] and
references therein). Then, it was extended to NC-CES distributed data [5]. Since

x; are NC-CES,,, (0, R, C,, g,) distributed by definition if X = %MH X; (where
def

M= % <} II> is unitary) are RESs,, (0, Rz, gz) distributed, (33) is equivalent
def

to (36) where u,(t) = ux(%)
estimate of R; = 2MR ;M

_ Zum <~HR )mH (36)

(see Chapter 1) and where R now denotes the M-

Moreover in the particular complex circular case where R; = < 1:({)” 1:({)* ) , imposing
xT

Rin (36) to be block diagonal structured as R z, the M -estimate R of R, introduced
in [39] is derived as solution of:

~ 1< ~
R=- (xR x;)x;x1. 37
n;u (x; X;)XiX; (37)

Thus, all the properties of the M/ -estimate R of R are transferred to the M -estimates
RofR and R; for C-CES and NC-CES [5] distributions, respectlvely In particular,
we get the convergences in distribution (23) and (24) where R def c’lRm in the

def _ . . . .
circular case and R = ¢ 'Rj in the complex of arbitrary circularity case, and

where R, and R, are given by (27) and (28), respectively, with [42], [35]

E[Q2u2(cQ.)]
m(m + DL+ m(m+ 1] Te,)?

(38)

o1 =

e E[(Qauz(cQx) )]
_ UL (CLy ) — MCy B 2
72 = (m+ cy)? m (39

with ¢, % E[c2Q2u,(cQ,)] with u(t) % du,(t)/dt. Note that for ug(t) =

©z(t), the M-estimate gives the ML estimate for which ¢ = 1. Using the identity

E[Q2¢),(Q.)] = E[Q2¢2(Q,)]—m(m+1) proved in [5, Appendix] with ¢ (£) <

dp,(t)/dt, (38)and (39) reduce to (32).
4.2.2.4 Tyler’s M estimator

Tyler’s M estimator was introduced in [51] for RES distributions as a solution of (33)
with the weight function uz(t) = 277” It became very popular in signal processing
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applications because it enjoys important properties among which to have a distri-
bution that does not depend on the RES distribution of the data. Extensions of this
estimator to C-CES [42], [44] and to NC-CES distributions [5] are straightforward
using the real x; € R?™ representation of CES distributed x; € C™. They are given
by the solution R of the implicit equation

o 2m - XX
R="" ; TR R (40)

constrained to Tr(R) = 2m for NC-CES distributed x;, which reduces to the
solution R of

n H
S ﬂ XX
R=— ; TR 1)

constrained to Tr(ﬁ) = m for C-CES distributed x;. Here too, all the properties
of the Tyler’s M -estimate of R; are transferred to the Tyler’s M -estimates of R,
and R; for C-CES and NC-CES distributions, respectively. In particular, we get the

convergences in distribution (23) and (24) where R def %Rx in the complex

def
circular case and R = Tr( R in the complex of arbitrary circularity case, and

where R,., and R, are glven by (27) and (28), respectively, with [51]:

= (wi) (100) o= (i) w(03)

4.2.2.5 SSCM estimator

The SSCM estimator is another distribution-free estimator of R, and R ; thatis easier
to compute than Tyler’s M estimator. It was first introduced [10, 32] under various
names and then studied [16, 33, 34,41, 54,55] in the context of RES distributions.
It was proved in particular that the expectations of the SSCM and SCM share the
same eigenvectors with different eigenvalues with the same multiplicity and with
a monotone one-to-one but rather complicated correspondence [16]. As for the
covariance matrices of the SSCM and SCM estimates, it was proved that they are
similarly structured. They also share the same eigenvectors with different eigenvalues
[33,34]. C-CES [8] and NC-CES [6] extensions of the definition and properties (lf
the SSCM given in the RES context are also straightforward. The SSCM estimate R
of R, and R; are given by

R = 7112 % and R= zn: i 3)

for C-CES and NC-CES distributed x;, respectively. Under only ﬁmte second-order

moments of X;, applying the classic CLT to r.v. ﬁ and ¥ |2 , gives the asymp-

Hx \

totic distributions of R which is also given by (23) and (24) where now
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. m . 2m
de H de ~ ~ ~H
R = ZXkaVk and R = ZXkaVk , (44)
k=1 k=1

respectively, where 7" ApvpvE and Y27 AV denote respectively the
EVD of R, and R;, and where closed-form expressions of the eigenvalues xy
and Y, are given by [6, rel. (11), (12)]. The covariances R,., and R, of the asymp-
totic distributions (23) and (24) share, respectively, the same eigenvectors as (27)
and (28), whose expressions of the different eigenvalues i, ¢, Vi.e — XxX¢ and Yie,
ke — Xt Xe in the EVD [6, rel. (15-16)] of R, and R, are given by [6, rel.
(17-20)].

5 Asymptotic distributions of subspace projector estimates

The asymptotic distributions of covariance estimates enable us to infer certain prop-
erties of the corresponding subspace projector estimates.

5.1 Asymptotic inadmissibility of subspace projector estimates

Tyler’s M-estimate is the ML of R, when the data are real-valued angular central
Gaussian distribution distributed [52]. It is similarly straightforward to prove that
Tyler’s M-estimates RTY and ng are also the ML of R and Rz, for complex cir-
cular [27] and non-circular [6] angular central Gaussian distributed data whose p.d.f.
with respect to the Lebesgue measure on complex unit sphere CS™ are respectively
given by

p) = TR, 7 (xRS ) @s)
and om
p(x) = #\RJ” (XIR; R (46)

using the linear one to one mapping X; «— X;. Thus, by the invariance property
T I

of the ML estimator, its associated orthogonal projector IT zy = II(RLY) (resp.,

—~T ~

ij = H(R;Fy)) (14) is the ML of the orthogonal projector IT, (resp., I1 ;). This

implies that for complex angular central Gaussian distributed data, the following

relationship between the covariance of the asymptotic distribution of the projector
based on ML, Tyler’s M, and SSCM estimates

R =R}Y <R}Mand R)!" = R}Y < RJ°M. (47)

Consequently, thanks to the free distribution property of Tyler’s M -estimate and
SSCM estimate in the C-CES and NC-CES family, where is added the circular and
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non-circular complex angular central Gaussian distribution [51], we can extend to
arbitrary C-CES and NC-CES with finite second-order moments distributed data, the
matrix inequalities between covariance of the asymptotic distribution of the projector
based on Tyler’s M and SSCM estimates (47). This gives:

R <RPMand RYY < RJSM. (48)

Furthermore it was proved in [6] that when R, — Al and R; — AL inequalities
(48) approach equalities. These inequalities (48) show that the estimator TT1¥ (resp.,
ﬁgy) asymptotically dominates the estimator ﬁiSCM (resp., ﬁESCM) in the sense of
the mean squared error. This property of asymptotic inadmissibility of the projector
associated with the SSCM proved firstly for RES distributed data in [33] and [34],
extends to arbitrary C-CES and NC-CES distributed data. However, since the SCM
is very sensitive to heavy-tailed CES distributions, RS and R35M is often
bounded above by R7“™ and R7“M respectively, for such distributions. An example
of such behavior is given in Fig.2 and conditions for which the performance of Tyler’s
M -estimate and SSCM are close are specified in Section 5.3.

5.2 Asymptotic distributions of projector estimates

From the asymptotic distributions (19), (21), (23) and (24) of the different estimates
R adapted to the different models presented in Section 2, we note that R converges
in probability to the matrices R. All these matrices are structured as

R =S+, (49)
where Span(S) = Span(B(8)), where B(6) denotes the mixing matrices
R=R+5§R) ST =T11(6) + §(IT) (50)

for orthogonal projectors [26] (see also the operator approach in [28]) applied to
I1(0) associated with the noise subspace of R,

S(IT) = —TI(0)5(R)S* — S#§(R)II(O) + o(6(R), (51)

the asymptotic behaviors of II and R are directly related. A standard theorem of
continuity (see e.g., [47, p. 122]) (called also Delta-method) on regular functions of
asymptotically Gaussian statistics applies and we get
Vn(vee(IT) — vec(IL(6))) —q CN,2(0, R, R K) (52)
Vn(vec(TT) — vec(TI(6))) =4 CNyp2 (0, Ry, , Ry K), (53)

for circular and non-circular complex-valued s;, respectively, where IT(0) is given
by (15) with its associated B(6) and where
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R, =[(SI* @II,) + (TI} @ S¥)|R,, [(S1# @ II,) + (I}  S¥)], (54)
R., = [(ST# @ IL) + (I} ® ST)R,. [(ST# ® II) + (I} ® ST)), (55)

where R and R, are given by (20), (25), (27) and by (22), (26), (28), respectively,
and where each of the two matrices (S, Il,) and (Sz, II;) are the matrices S and
I1(0) associated with circular and non-circular complex-valued s;, respectively.

Then plugging expressions (20), (25), (27) of R, and (22), (26), (28) of R,
in (54) and (55), and using II, S, = 0 and II;S; = O, the following theorem
extending [15, Th/IV.1] is proved:

Theorem 1 The covariance matrices R, and R of the asymptotic distributions
(52) and (53) of the different projector estimates 11 associated with the different data
models presented in Section 2 have an unified structure given by

R, = (UT @ I1(9)) + (IT* () ® U), (56)
R, = I+ K(J ®J)][(UT @ I1(8)) + (IT"(8)  U)]. (57)

Here I1(0) are the projection matrices Y ;' ., vivi ZiTP_H vivl and
Z k=2p+1 vkvk on the noise subspace (i.e., on the orthogonal complement of the

range of A, A and AC ), associated with circular, rectilinear, and non-rectilinear
and non-circular complex-valued s;, respectively. On the other hand, the matrices
U depend on the covariance estimates R studied in Section 4.

For the deterministic model and the stochastic model where both s; and n; are
CES distributed, U takes the common form

2 2
_ #pa# # o3 (Ak + Fnoy) H
=o, 2S*RS™ + ko (S )2 ];:1 Or — 02)? ViV, (58)

wih R ¥ R, = R, = 327 MvivH and S & AR, A = AR,AH
for s; deterministic of arbitrary circularity and circular stochastic. Similarly for
rectilinear s;, (58) also applies where Rx 00» Rm, ARS C>OAH AR,AT, )\, and
v}, are replaced by Rz o, Rz, A Ry, ooA A R, A )\k and vy, respectively.

Furthermore, for non-circular and non- rectllmear stochastlc s; (58) still applies where

R Rz, S df A A R; A and p, \; and vy, are replaced, respectively, by 2p, )\k

and V.
For the stochastic model, where x; is CES distributed, we get for SCM, ML, M
and Tyler’s estimator:

P 2 p Y
)\kO’n H ~H
U:’L?(E vavk> aHdU:ﬁ<E k—0’2) ,Vk->, (59)

k=1 k=1

for circular and rectilinear s;, respectively, with:
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= Yscm = 1 + K, for the SCM estimate, (60)
9 et YImL = o1 for the ML estimate given by (32), 61)
def

= Yy = 2oy for the M-estimate where oy and ¢

are given by (38) and (35), respectively, (62)

e 1
9 < Y1y =14 — for the Tyler’s M-estimate. (63)
m

For non-circular and non-rectilinear s;, the second relation of (59) also applies by
replacing p by 2p.
For the SSCM estimator, U is given by

p ~

P
Vk H Tk ~ ~H
U= 5 ViV and U = < =5 VLV , (64)
; O —x)2 " ; G —x)2 "

for circular s; where y def Xp+1 = Xp42 = --. = Xm (see (44)) and ~y;, def Vi,p+1 =
Vkp+2 = --- = Yk,m, and rectilinear s; where X def Xp+1 = Xp42 = - = X2m
~ def ~ ~ ~ . .

(see (44)) and 5, = Vie,p+1 = Vhk,p+2 = --- = Vk,2m are given in [6, rel. (17)-(20)].
For non-circular and non-rectilinear s;, the second relation of (64) also applies by
replacing p by 2p.

Two remarks are in order from Theorem 1 for the deterministic model and the
stochastic model where both s; and n; are CES distributed:

* The projector estimators have the same asymptotic distribution in both determin-
istic and stochastic CES distributed models for s;, regardless of whether s; is
arbitrary circular or rectilinear. This contrasts with the covariances of the asymp-
totic distributions of R, (20), (25) and Rz (22), (26), which are different. This
generalizes classical results on many subspace-based DOA estimators [49] that
were proven under the complex circular Gaussian noise framework.

* The asymptotic distributions of the projector estimators remain invariant to the
distribution of s;, regardless of whether s; is of arbitrary circularity or is recti-
linear. This property also generalizes classical results on subspace-based estima-
tors [11] that were proven under the complex circular Gaussian noise framework.

5.3 Relative efficiency

For circular or non-circular CES distributed data x;, the covariance matrices of the
asymptotic distribution of the projector derived from the SCM, ML, M, and Tyler’s
estimators are proportional. The proportionality coefficient ¥ (60)-(63) serves as an
efficiency index for the estimation of the projector. This proportionality relation only
holds for the projector derived from the SSCM estimator when A; = ... = A, and
Xl = .= Xp which implies that 1 = ... = xp, 71 = ... = Ypand X1 = ... = Xp»
1 = ... =7, in (64), and hence
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def 001 (A —02)?
9 =9 = "
SSOM = = xXE Mot

nd 9 9 Yegons = M _ (>\1~— o)’
(Xl - X)Q A1 O'?L

(65)
in the circular and rectilinear cases, respectively. For non-circular and non-rectilinear
s;, the second relation of (65) also applies under the condition A\; = ... = Ag,,. To
obtain insight into how the asymptotic inadmissibility of the SSCM is affected
whenever R, # Al and R; # Al (see discussion after (48)), the following theorem
is proved in [6, th. 5]:

Theorem 2 The asymptotic efficiency of the SSCM estimate relative to Tyler’s M -
estimate defined by the ratio r def U1y /Psscm, is given by the closed-form expres-
sions in the circular case under the assumption \\ = ... = A, and rectilinear case
under the assumption Al=..= /\p, respectively, by:
LR(,m—p+1,m+21—p)?

= 66
2F1(27m7p+17m+2a17p) ( )

and
[2F1(1 m—£+1 m+2 1—@]2

2F1(2,m—E+1,m+21-p)’

(67)

=
def o2 ~ def o
where p = 2 and p = b
tions of respectively p and p from the intervals (0,1) to (0,1). Furthermore in the
neighborhood of p =1, p = 1 and p = 0, p1 = 0, we have respectively:

2
» and these ratios are monotonic increasing func-

_ . (m—p+1(p+1) > 2
e =l e aem gy (P e =) “
:1_((2m—p+2)(p+2)
A(m + 2)2(m + 3)

) (1—p)*+o(1-p)? (69)

and
0m 1(1) forp=1 (70)
Te =
(14 )1 = )L +o0mp(1)) forp>1
Om.p(1) forp=1,2

" {<1+ D)1= )14 omp(D) forp>2 70
where first-order expansions of oy, (1) and oy, p(1) satisfying lim,_,o 0y, (1) =
limz_,o Omp(1) = 0 are given by [6, rel. (57-58)]. For non-circular and non-
rectilinear s;, relation (67) and the expansions of v, also apply under the condition
AL = ... = Ay Where p is replaced par 2p.

It follows from (68) and (69) that the performance of the subspace estimation
derived from SSCM and Tyler’s M -estimate are very similar for close eigenvalues,
and particularly for large values of m and p. It follows, conversely, from (70) and (71),
that for well-separated eigenvalues, the performance of the SSCM-based subspace
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estimation is largely outperformed by those derived from Tyler’s M estimate for
p = 1and p = 1,2 for C-CES and NC-CES distributed data because r. and r,
tend to zero as p and p tend to zero, respectively. Note, however, that for m and p
large, the performance of the subspace estimation derived from SSCM and Tyler’s
M estimate are very similar because 7 and . are equivalent to (1 + ) (1 — I%) <1

and (1+ %)(1 — %) < 1as p and p tend to zero, respectively. Consequently, despite
the asymptotic inadmissibility of subspace projectors built from the SSCM estimate,
the performance of this estimator and those derived from Tyler’s M -estimator are
close in particular for large values of m and not too small values of p. Therefore, we
can conclude that SSCM estimate is of great interest from the point of view of its
lower computational complexity for large values of m.

6 Asymptotic distributions of subspace-based parameter
estimates

The asymptotic distributions of projector estimates given in Theorem 1 allow us to
derive the asymptotic distribution of subspace-based parameter estimates for any
algorithms "alg" (14) which are assumed to be differentiable4.

6.1 Asymptotic distribution of parameter estimate

Again using a standard theorem of continuity (see e.g., [47, p. 122]) (called also
Delta-method), we get:

V(6 — 6) —4 RN, (0, R3®), (72)
where Rglg is given by:
R2® = D,,R,D/, (73)

with R, = R_ [resp., Ry = R, ]is given by (56) [resp., (57)], for circular [resp.,
non-circular] s;, and where D, is the differential (or Jacobian) matrix defined by
the relation

6 = alg(IT) = alg(IT1()) +Daygvec(IT — IT(8)) + o(II — IT(0)).  (74)
]

Using the unified expressions of R, and R, of Theorem 1 where U is given by
(58) and (59), we get the following theorem:

4 Note that since IT(6) is Hermitian, the mappings "alg" are differentiable w.r.t. IT(0) i.f.f.
they are differentiable w.r.t. (Re(I1(@)),Im(II(0))). This last hypothesis being verified by most
algorithms "alg".
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Theorem 3 The covariance matrix Rglg of the asymptotic distribution of the pa-

rameter estimate 0 given by any subspace-based algorithm "alg" satisfying the
previously aforementioned assumptions, derived from the SCM, ML, M and Tyler’s
M covariance estimate, breaks down as follows

R = JRS™ + 5, R, (75)

lg . . . al . e
where Rg’a € is the covariance matrix R;f & derived for Gaussian distributed data

x; and in the second term Rg"lg is a positive definite matrix obtained only in the
deterministic and stochastic model where n; is non-Gaussian C-CES distributed.
¥ = 1 in the deterministic and stochastic model where n; is C-CES distributed, 1 is
given by (60)-(63) for CES distributed data x; and k,, is the kurtosis parameter of
the noise, which is zero for Gaussian distributed noise.

In particular, for CES distributed x;,

Rglg = ﬂRg’alg (76)
and all the analytical theorems concerning the asymptotic distributions of subspace-
based parameter estimates derived in the Gaussian framework extend with a simple
multiplicative term ¢, especially in DOA estimation.

For the SSCM estimate, (76) also applies where 9 is given by (65) but only in
the case Ay = ... = A, and Xl =..= Xp. In contrast, for an arbitrary spectrum of
eigenvalues, there is no longer a direct relationship between R*'® and RS 2.

In the deterministic and stochastic model where n; is non-Gaussian C-CES dis-
tributed, the structure of R2'2 is affected due to the additive term R;J ale Purthermore,

R¥& > RY%18 and RY® < Rg’alg for super-Gaussian (x,, > 0) and sub-Gaussian
(kn, < 0) distributed noise, respectively.

Besides, the covariance of the asymptotic distribution of the estimate ) given by
the AMV algorithm [45], [48] takes the particular expression [5]:

RV = (I " (9)R¥1T'(9)) ™ an

where IT'(6) def %1‘;1(9)). It has been proved in [5] that the AMV estimates 6

derived from the projector estimates 1T built on the ML estimate of R, and R; for
respectively stochastic C-CES and NC-CES distributed data x; are asymptotically
efficient, i.e., the covariance matrices RMEAMY of their asymptotic distributions
reach the stochastic Cramér-Rao bound (CRB) of the parameter 8 when the density
generator g is known. Consequently the following theorem is deduced from (48),
(73) and (77):

Theorem 4 For CES distributed data x;, the covariance of the Gaussian asymptotic
distribution of the estimated parameter 0 derived for any subspace-based algorithm
"alg" built on the SSCM is bounded below by those built on Tyler’s M estimate.
These two covariance matrices being themselves bounded below by the CRB.
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n x CRB() = (I (0)RV"7 1T (6)) !

_ Rg/IL’AMV < Rg/IL,alg < Rg‘y,alg < R;SCM,alg’ (78)

where RMY denotes the covariance of the asymptotic distribution of IT built on the
ML estimate of R, and R; for respectively C-CES and NC-CES distributed data
X;, and Rg/ﬂ"alg, ng’alg and R;SCM’alg denote the covariance of the asymptotic

distribution of the parameter 0 estimated by the algorithm "alg" built on the ML,
Tyler’s M and SSCM covariance estimate, respectively.

Theorem 4 proves that the AMV subspace-based estimators built on Tyler’s
M -estimator of the covariance matrix are not efficient. To obtain a truly robust ef-
ficient subspace-based estimator, one has to find M -estimators with an appropriate
weight function u,(.) such that ¥y be close or equal to ¢yy,. Note that similarly
to the projector estimate, there is no general order relation between RSSCM’alg and

REMale However, since the SCM is very sensitive to heavy-tailed CES distribu-

tions, R>5™:212 can be bounded above by R5M218 o such distributions.

Considering now the stochastic CRB in (78), the following common closed-form
expression has been proved in [5]:

o2 dall dag\1 ™"
. . def def S HAHp -1 def
where o7 is given by (32). apg = vec(A), H = R AR, AR, and I1(0) =
e def def

IT,(0) in circular case, agy ef vec(A,), H = Rﬂiflﬁgl;&rRr and I7(0) =
IT;(0) in the rectilinear case® associated with the structured extended covariance (6)

and ay % vec(A), HY (R,AH,C,AT)R;! ( ﬁféi) and I7(0) ' 11,.(0)

in the non-circular and no-rectilinear case associated with the structured extended
covariance (8).

In general, this stochastic CRB is upper bounded by the semiparametric CRB
introduced by [18] when the density generator g is considered as an infinite-
dimensional unknown nuisance parameter. This semiparametric CRB has been stud-
ied for RES and C-CES distributions in [20] and [19], respectively. In particular, a
closed-form expression of this bound has been derived in [17] for the DOA parameter
of C-CES distributed observations. By slightly modifying and extending the proof
given in the support document of [19] to general C-CES and NC-CES distributed
noisy linear mixture models (1), it has been proved in [5], that this semiparametric
CRB coincides with the stochastic CRB given by (79). We note that this property is
very specific to the parameter of interest characterized by the column space of the
mixing matrix. This property is explained by the fact that this column space does not
depend on the density generator g. It is important, however, to note that if the AMV
subspace-based estimator derived from the ML estimate of the covariance of the

H
dag

5 Note that in this case 70

T dag .
(HT® I1(8)) 54 is real-valued.
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data x; is asymptotically efficient w.r.t. the stochastic CRB, it is no longer asymptot-
ically efficient w.r.t. the semiparametric CRB because this ML M -estimate requires
the knowledge of the density generator g. To obtain asymptotically semiparametric
efficient subspace-based estimator of 8, the AMV estimator would have to be built
on an asymptotically semiparametric efficient estimator R of the covariance of the
data in (14) like the one proposed in [21].

6.2 Numerical illustrations

To illustrate the asymptotic distributions of subspace-based parameter estimates, we
focus on the conventional and non-circular MUSIC-based DOA estimation algorithm
[2]. We consider that two uncorrelated circular or rectilinear sources of equal power
o2, are impinging on an uniform linear array with m sensors for which A = [a;, ay)
with a,, = (1,0, ..., em=D%)T where ), = 7 sin ay, with oy, are the DOAs
relative to the normal of array broadside. The SNR is defined as SNR = 02 /52 The
Jacobian Dy, ;. is given for the conventional MUSIC algorithm by (see [2] for the
non-circular MUSIC algorithm):

T 1 7 P H
Dusic = le with df = —(a, ®all +al @a, ) (80)
d; Ak, k

and ay, k def 2alk,H IT,a) where aj, def day, /dfy. In these circular and rectilinear
scenarios, the variances of the asymptotic distribution of the estimates of #; and 65
are equal. Thus, we only consider the accuracy of source 1 in the sequel.

In this illustration, we choose the Student ¢-distribution that belongs to the subclass
of the compound Gaussian distributions (See Chapter 1). It is parameterized by the
degree of freedom v (0 < v < co0) which controls the tails of the distribution that
are heavier than the Gaussian ones (obtained for v — 00). This distribution has first,
second and fourth-order moments if, respectively v > 1, v > 2 and v > 4 with
Ysom = 1+ Ky, = l’j—:i with v > 4 and 9yp, = 01 = %:’?2/2 We also remind
the reader that ¥, = 1 4 1/m for Tyler’s M estimate (see (63)).

In the first setup, the sources s; j are circular Gaussian distributed and the noise

n; is circular complex Student ¢-distributed with m = 6 and the SCM is used.

Fig.1a and 1b show the theoretical ratio = o [RS’mHSiChJ/ [Rz’mmch@ (where

[Rz’muSiC] is given by (75)) of the variances of the asymptotic distribution of 6;
for Gaussian distributed and Student ¢-distributed noise for different values of the
parameter v, respectively w.r.t. the DOA separation Af = |05 — 61|, and w.r.t. to
the SNR. We see that the performance deteriorates strongly for heavy-tailed noise
distributions (i.e., when v — 4) w.r.t. the Gaussian distribution and that degradation
increases for small DOA separation and small SNR.

In the second setup, we assume that the measurement x; are circular complex
Student ¢-distributed. We compare now the variances of the asymptotic distribu-
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5 ]171/[R§’mu5i°]171 for several values of v.

tion of @\1 estimated from the SCM, ML and Tyler’s M covariance estimate and

SSCM, respectively denoted by [RZCM’muSiC]Ll, [ g/IL’muSiC]M, [REY’HMSiC]171

and [RSSCM’mUSiC]Ll. The first three variances are proportional to [Rg’m“ic]l 1

given for x; circular Gaussian distributed (76), but |
proportional because

) (1 sin(mAg/2)

RESCM’muS’Ch’l is no longer

A = mo;

9 o sin(mA0/2) 9
msin(A9/2)> o # Ao = mo, (1 a msin(A9/2)> + o
(8D

. def i i
Consequently the ratios r; = | g/IL’muS’C}171/[R§CM’muSIC]1,1 = YuL/Yscom and

Ty déf [Rg/ILmusiC]1’1/[Rg‘y,musiC]

def i i
contrast to 73 = [Rg/IL’muSIC}171/[R§SCM’mHSIC}171 that also depend on Af and

SNR. Fig.2a and 2b show the theoretical ratio r1, 7o and r3 for v = 4.1 and two
values of m, respectively w.r.t. the DOA separation Af = |0y — 01| where the
array SNR (ASNR) (defined by mo? /o2 [53, Chap.9]) is fixed at 10dB and w.r.t.
to the ASNR where Af = |0 — 6| = 0.2rd. We clearly see that the performance
of the SCM-based estimate is very poor unlike that of Tyler’s M-based estimate
whose performance is very close to that of the ML-based estimate for heavy-tailed
noise distributions. As for the SSCM-based estimate, its performance is degraded
compared to that of Tyler’s M -based estimate, and this degradation increases when
the ASNR increases and Af decreases. This behavior is then explained by an increase
in the differences between eigenvalues \;, Ao and o2 consistently with the comment
following expression (48). But the SSCM-based estimate largely outperforms the
SCM-based estimate.

1,1 = Ymr/P1y depend only on m and v, in

)
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two values of m for v = 4.1.

In the third setup, the measurement x; are complex non-circular Student ¢-
distributed where R; is given by (8) with (¢1,¢2) = (5, % )rd and m = 6.
Fig.3a and 3b compare the theoretical asymptotic variance %[Rgmsmhd and MSEs
of non-circular MUSIC algorithms based on SCM, SSCM and Tyler’s M estimate
versus SNR. Note first that for v € [2,4], we get 91, = 7/6 and Iy, € [8/7,9/8].
So the asymptotic variance of Tyler’s M estimator and the CRB are too close to
be distinguishable in Fig.3. These figures also show that the theoretical asymptotic
variances given by the non-circular MUSIC algorithms based on SSCM and Tyler’s
M estimates from (73), are very close to each other and to their MSE for a weak SNR
and for v > 4. On the other hand, for 2 < v < 4, for which the fourth-order moments
of the data do not exist, and hence the asymptotic distribution of the non-circular
MUSIC estimates based on the SCM is not available, the associated MSE increases

strongly when v approaches 2, for which the data are no longer of second-order.

7 Conclusion

The aim of this chapter is to unify the different performance analyses of subspace-
based algorithms in C-CES and NC-CES data models within the same framework.
In particular, general closed-form expressions are given for the covariances of the
asymptotic distribution of different subspace projector estimates and the associated
subspace-based parameter estimates. This result allows us to prove various invari-
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Fig. 3 Theoretical asymptotic  variances %[RSCM’muSiC} s %[ng’musm]l,la
%[RESCM’mUSiC]l,l and MSEs (with 2000 Monte Carlo runs) of non-circular MUSIC
algorithm , versus SNR where 7" = 500 and A0 = 0.2rd for either v > 4 0or 2 < v < 4 and

m = 6.

ance properties and general inequalities between covariances of subspace-based
parameter estimates, including the stochastic and semiparametric CRB. Finally, note
that the presented asymptotic distributions have been obtained w.r.t. the number of
measurements. But the main shortcoming of these asymptotic distributions is that
they provide good approximations of the variances of the estimates only when the
sample size n is sufficiently large w.r.t. the data dimension m. However, when n is
comparable to m, it is necessary to use random matrix theory tools to develop new
subspace-based algorithms and their associated asymptotic distributions within the
CES framework.
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