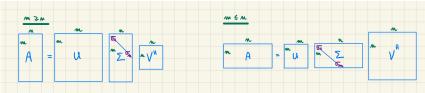
Singular Value Decomposition (SVD)

Any matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ can be factorized:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{H}}$$

- $\mathbf{U} \in \mathbb{C}^{m \times m}, \mathbf{V} \in \mathbb{C}^{n \times n}$ unitary matrices 1
- $\Sigma = \mathrm{Diag}(\sigma_i)_{i=1}^{\min(m,n)}$ diagonal
- $\sigma_1 \ge \cdots \ge \sigma_{\min(m,n)} \ge 0$ are singular values: unique and square roots of eigenvalues of $\mathbf{A}^H \mathbf{A}$ or $\mathbf{A} \mathbf{A}^H$.



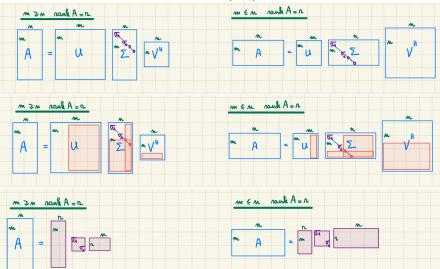
• With $\mathbf{U}=[\mathbf{u}_1\dots\mathbf{u}_m]$ and $\mathbf{V}=[\mathbf{v}_1\dots\mathbf{v}_n]$, sum of rank-1 matrices:

$$\mathbf{A} = \sum_{i=1}^{max} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathrm{H}}$$

 $^1\mathrm{U}\mathrm{U}^\mathrm{H}\!=\mathrm{U}^\mathrm{H}\!\mathrm{U}=\mathrm{Id}_m$ and $\mathbf{V}\mathbf{V}^\mathrm{H}\!=\mathbf{V}^\mathrm{H}\!\mathbf{V}=\mathrm{Id}_n$

"Economy size" SVD

If rank $\mathbf{A} = r$, then $\sigma_{r+1} = \cdots = \sigma_{\min(m,n)} = 0$ and $\mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathrm{H}}$



Matrix norms

Write SVD decomposition:
$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$$
 $\mathbf{\Sigma} = \mathrm{Diag}(\boldsymbol{\sigma})$, with singular values vector $\boldsymbol{\sigma} = \begin{bmatrix} \sigma_1 \\ \vdots \end{bmatrix}$.

- ℓ_2 (or Schur/spectral) norm: $\|\mathbf{A}\|_2 = \max_{i=1}^r \sigma_i$. Prop: $\|\mathbf{A}\|_2 = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$ is the operator norm.
- Frobenius norm: $\|\mathbf{A}\|_{\mathrm{F}} = \sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}$. $\underline{\mathsf{Prop}}: \|\mathbf{A}\|_{\mathrm{F}} = \sqrt{\mathrm{Tr}[\mathbf{A}^{\mathsf{H}}\!\mathbf{A}]}$ corresponds to scalar product $\langle \mathbf{X}, \mathbf{Y} \rangle = \mathrm{Tr}[\mathbf{X}^{\mathsf{H}}\!\mathbf{Y}]$.
- nuclear norm (or trace norm): $\|\mathbf{A}\|_* = \sum_{i=1}^r \sigma_i$
- Norm on matrix \leftrightarrow norm on vector of singular values: $\|\mathbf{A}\|_2 = \|\boldsymbol{\sigma}\|_{\infty} \qquad \|\mathbf{A}\|_F = \|\boldsymbol{\sigma}\|_2 \qquad \|\mathbf{A}\|_* = \|\boldsymbol{\sigma}\|_1$

Eckart-Young theorem

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ or rank r and let $\|.\|$ be either $\|.\|_2$ or $\|.\|_F$. Write $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$ the SVD.

The solution to:

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{A} - \mathbf{X}\|$$
 s.t. rank $\mathbf{X} \le p$

is given by $\mathbf{X}_p = \mathbf{U} \mathbf{\Sigma}_p \mathbf{V}^H$ where $\mathbf{\Sigma}$ obtained from $\mathbf{\Sigma}$ by setting the r-p smallest singular values to zero: $\sigma_{p+1} = \cdots = \sigma_r = 0$

Low-rank approximation

Example on on image

64 sing. val.

2 sing. val.

16 sing. val.

128 sing. val.

4 sing. val.

32 sing. val.

All 512 sing. val.

Maximizing variance

Random $\mathbf{x} \in \mathbb{R}^n$, centered, covariance $\mathbf{C} = \mathbb{E}\{\mathbf{x}\mathbf{x}^\top\} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^\top$ with $\boldsymbol{\Lambda} = \mathrm{Diag}(\lambda_i)_{i=1}^n$ and $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$, \mathbf{U} orthogonal.

Objective: find uncorrelated and maximal variance linear combinations of \mathbf{x} find unit norm vectors $(\mathbf{w}_i)_{i=1}^p$ such that:

$$ullet y_1 = {\mathbf w}_1^{ op} {\mathbf x} \ : \ \mathbb{E}\{y_1^2\} \ \text{is maximal} o {\mathbf w}_1 = {\mathbf u}_1$$

Solution:

$$\overline{\mathbb{E}\{y_1^2\}} = \mathbf{w}_1^{\top} \mathbf{C} \mathbf{w}_1$$
 yields:

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|_2 = 1} \mathbf{w}_1^{\top} \mathbf{C} \mathbf{w}_1 = \mathbf{u}_1$$

Maximizing variance

Random $\mathbf{x} \in \mathbb{R}^n$, centered, covariance $\mathbf{C} = \mathbb{E}\{\mathbf{x}\mathbf{x}^\top\} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^\top$ with $\boldsymbol{\Lambda} = \mathrm{Diag}(\lambda_i)_{i=1}^n$ and $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$, \mathbf{U} orthogonal.

Objective: find uncorrelated and maximal variance linear combinations of \mathbf{x} find unit norm vectors $(\mathbf{w}_i)_{i=1}^p$ such that:

- $ullet y_1 = {\mathbf w}_1^{\top} {\mathbf x} \ : \ \mathbb{E}\{y_1^2\} \ \text{is maximal} o {\mathbf w}_1 = {\mathbf u}_1$
- $y_2 = \mathbf{w}_2^{\top} \mathbf{x} : \mathbb{E}\{y_2 y_1\} = 0$ and $\mathbb{E}\{y_2^2\}$ is maximal $\to \mathbf{w}_2 = \mathbf{u}_2$

Solution:

$$\overline{\mathbb{E}\{y_2^2\}} = \mathbf{w}_2^{\mathsf{T}} \mathbf{C} \mathbf{w}_2$$
 and $\mathbb{E}\{y_2 y_1\} = \mathbf{w}_2^{\mathsf{T}} \mathbf{C} \mathbf{w}_1 = \lambda_1 \mathbf{w}_2^{\mathsf{T}} \mathbf{u}_1$ yield:

$$\mathbf{w}_2 = \arg\max_{\|\mathbf{w}\|_2 = 1, \mathbf{w}^\top \mathbf{u}_1 = 0} \mathbf{w}_2^\top \mathbf{C} \mathbf{w}_2 = \mathbf{u}_2$$

Maximizing variance

Random $\mathbf{x} \in \mathbb{R}^n$, centered, covariance $\mathbf{C} = \mathbb{E}\{\mathbf{x}\mathbf{x}^\top\} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^\top$ with $\boldsymbol{\Lambda} = \mathrm{Diag}(\lambda_i)_{i=1}^n$ and $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$, \mathbf{U} orthogonal.

Objective: find uncorrelated and maximal variance linear combinations of \mathbf{x} find unit norm vectors $(\mathbf{w}_i)_{i=1}^p$ such that:

- $ullet y_1 = {\mathbf w}_1^{\top} {\mathbf x} \ : \ \mathbb{E}\{y_1^2\} \ \text{is maximal} o {\mathbf w}_1 = {\mathbf u}_1$
- $y_2 = \mathbf{w}_2^{\top} \mathbf{x} : \mathbb{E}\{y_2 y_1\} = 0$ and $\mathbb{E}\{y_2^2\}$ is maximal $\to \mathbf{w}_2 = \mathbf{u}_2$
- $y_3 = \mathbf{w}_3^{\top} \mathbf{x}$ such that: $\mathbb{E}\{y_1 y_3\} = \mathbb{E}\{y_2 y_3\} = 0$ and $\mathbb{E}\{y_3^2\}$ maximal $\to \mathbf{w}_3 = \mathbf{u}_3$
- . . .

Solution:

$$\overline{\mathbb{E}\{y_2^2\}} = \mathbf{w}_2^{\mathsf{T}} \mathbf{C} \mathbf{w}_2$$
 and $\mathbb{E}\{y_2 y_1\} = \mathbf{w}_2^{\mathsf{T}} \mathbf{C} \mathbf{w}_1 = \lambda_1 \mathbf{w}_2^{\mathsf{T}} \mathbf{u}_1$ yield:

$$\mathbf{w}_2 = \arg\max_{\|\mathbf{w}\|_2 = 1, \mathbf{w}^{\mathsf{T}} \mathbf{u}_1 = 0} \mathbf{w}_2^{\mathsf{T}} \mathbf{C} \mathbf{w}_2 = \mathbf{u}_2$$

Minimizing quadratic error

Random $\mathbf{x} \in \mathbb{R}^n$, centered, covariance $\mathbf{C} = \mathbb{E}\{\mathbf{x}\mathbf{x}^\top\}$

Objective: find p-dimensional linear subspace $\subset \mathbb{R}^n$ such that projection of \mathbf{x} minimizes quadratic error:

$$\min_{\mathbf{w}_1, \dots, \mathbf{w}_p} \mathbb{E} \left\{ \|\mathbf{x} - \sum_{i=1}^p (\mathbf{w}_i^{\top} \mathbf{x}) \mathbf{w}_i \|_2^2 \right\}$$

where $\mathbf{W} = [\mathbf{w}_1 \dots \mathbf{w}_p] \in \mathbb{R}^{n \times p}$ orthonormal basis $(\mathbf{W}^\top \mathbf{W} = \mathbf{Id}_p)$.

Minimizing quadratic error

Random $\mathbf{x} \in \mathbb{R}^n$, centered, covariance $\mathbf{C} = \mathbb{E}\{\mathbf{x}\mathbf{x}^\top\}$

Objective: find p-dimensional linear subspace $\subset \mathbb{R}^n$ such that projection of x minimizes quadratic error:

$$\min_{\mathbf{w}_1, ..., \mathbf{w}_p} \mathbb{E} \left\{ \|\mathbf{x} - \sum_{i=1}^p (\mathbf{w}_i^{\top} \mathbf{x}) \mathbf{w}_i \|_2^2 \right\}$$

where $\mathbf{W} = [\mathbf{w}_1 \dots \mathbf{w}_p] \in \mathbb{R}^{n \times p}$ orthonormal basis $(\mathbf{W}^\top \mathbf{W} = \mathbf{Id}_n)$.

$$\mathbb{E}\left\{\|\mathbf{x} - \sum_{i=1}^{p} (\mathbf{w}_{i}^{\top} \mathbf{x}) \mathbf{w}_{i}\|_{2}^{2}\right\} = \text{Tr}(\mathbf{C}) - \sum_{i=1}^{p} \mathbf{w}_{i}^{\top} \mathbf{C} \mathbf{w}_{i}$$
minimize error
maximize variance

→ similar to previous problem, same solution.

Whitening

Random $\mathbf{x} \in \mathbb{R}^n$, centered, covariance $\mathbf{C} = \mathbb{E}\{\mathbf{x}\mathbf{x}^\top\} = \mathbf{U} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \mathbf{U}^\top$ with $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$, $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_n]$ orthogonal.

Let $\mathbf{y} = \mathbf{W}^{\top} \mathbf{x}$.

• With PCA, $\mathbf{W} = [\mathbf{u}_1 \dots \mathbf{u}_p]$:

$$\mathbb{E}\{\mathbf{y}\mathbf{y}^{ op}\} = \mathbf{W}^{ op}\mathbf{C}\mathbf{W} = \left[egin{array}{ccc} \lambda_1 & & & \ & \ddots & & \ & & \lambda_p \end{array}
ight]$$

Data has been decorrelated.

$$ullet$$
 With $\mathbf{W}=\left[\mathbf{u}_1\dots\mathbf{u}_p
ight]egin{bmatrix} \lambda_1^{-1/2} & & & \ & \ddots & \ & & \lambda_p^{-1/2} \end{bmatrix}$:

$$\mathbb{E}\{\mathbf{y}\mathbf{y}^{\top}\} = \mathbf{Id}_{p}$$

Data has been whitened.

Empirical data point of view

- $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{n \times T}$: set of T vector samples
- Empirical covariance $\hat{\mathbf{C}} = \frac{1}{T} \mathbf{X} \mathbf{X}^{\top}$
- For any $\mathbf{W} = [\mathbf{w}_1 \dots \mathbf{w}_p]$ with orthonormal columns:

$$\frac{1}{T} \sum_{t=1}^{T} \underbrace{\|\mathbf{x}_{t} - \sum_{i=1}^{p} (\mathbf{w}_{i}^{\top} \mathbf{x}_{t}) \mathbf{w}_{i}\|_{2}^{2}}_{\text{quadratic error}} = \operatorname{Tr}(\hat{\mathbf{C}}) - \frac{1}{T} \sum_{t=1}^{T} \underbrace{\|\mathbf{W}^{\top} \mathbf{x}_{t}\|_{2}^{2}}_{\text{norm of projection}}$$

→ minimize quadratic error ↔ maximize norm of projection

SVD based PCA

Compute "economy size" SVD of set of T vector samples $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{n \times T}$:

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

where
$$\operatorname{rank} \mathbf{X} = p$$
 and $\mathbf{\Sigma} = \left[egin{array}{ccc} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_p \end{array} \right]$

- Empirical covariance: $\hat{\mathbf{C}} = \frac{1}{T}\mathbf{X}\mathbf{X}^{\top} = \frac{1}{T}\mathbf{U}\mathbf{\Sigma}^{2}\mathbf{U}^{\top}$
- → PCA readily obtained (vectors in U)
- $ightharpoonup \mathbf{W} = \mathbf{U} \mathbf{\Sigma}^{-1}$ is a whitening matrix and $\mathbf{Y} = \mathbf{W}^{\top} \mathbf{X}$
- → If p < n, rows of **X** linearly dependent and $\mathbf{Y} \in \mathbb{R}^{p \times T}$: dimension reduction has been performed.

Example on MNIST dataset

