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Introduction

Topics in the course

Introduction and generalities about optimization

Notions of convexity
» Convex sets and functions
» Separation theorem
@ Optimization problems
» ( Convex optimizations problems: LP, QP, SOCP, SDP )
» Optimality conditions
Duality

» Lagrange duality
» Conjugate function and Fenchel duality
» Karush-Kuhn-Tucker optimality conditions

Algorithms

» Notions on unconstrained optimization (gradient, Newton)
» Notions on constrained optimization (interior points)
» Basic introduction to proximal methods
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Introduction

Optimization softwares

Many free and commercial softwares exist for optimization:
@ optimization solvers: SeDuMi, SDPT3, CPLEX, Gurobi, Mosek, ...
@ high level modelling languages and parsers: CVX, YALMIP, ...

but many algorithms are not that complicated and can be programmed
(e.g. with Matlab/Scientific Python)!
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Introduction

Useful references

Convex optimization:

e Boyd and Vandenberghe, Convex Optimization (Cambridge University
Press)

@ http://stanford.edu/ boyd/

@ Borwein and Lewis, Convex Analysis and Nonlinear Optimization,
Theory and Examples (Canadian Mathematical Society)

Proximal algorithms:
e N. Parikh and S. Boyd, Proximal Algorithms (Foundations and Trends
in Optimization, 1(3):123-231, 2014)

@ S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed
Optimization and Statistical Learning via the Alternating Direction

Method of Multipliers (Foundations and Trends in Machine Learning,
3(1):1-122, 2011.)
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Introduction

Some notations

R real numbers
Ry nonnegative (> 0) numbers
Ryt positive (> 0) numbers
S n x n real-valued symmetric matrices
St /St n X n sym. positive semidefinite /definite matrices
AT transpose of the matrix A
tr A trace of the matrix A
1 all ones (column) vector
1|2 Euclidian norm
1 / 1l 01 / oo norm
sup / inf supremum / infimum
=k /=K /=<K/*"K inequalities wrt to cone K. If not specified,
</ =(=/*>) K is positive orthant or S’}
[+ positive part [z]; = max(0, x)
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Introduction

Optimization problems

Unconstrained optimization problem

Given a function fj : R™ — R, find 2* € R"™ such that:
Ve e R" 1 fo(z") < fo(z)

Constrained optimization problem
Given functions fo : R" - R and f; : R" - R fori=1,...,m, find 2*
such that:

fz(a:*) S O,i = 1,... ,m

fo(x®) < fo(x), V€ R"™ such that fi(z) <0,i=1,...,m

Discrete optimization (not covered in this course):
fo and f; are functions D — R with:

@ D finite : combinatorial optimization problem

@ D = Z: integer programming
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Introduction

Optimization problem

{min Jo(z)

st. fi(x) <0, i=1,....m

o x = (z1,...,r,)": optimization variables
o fo:R™ — R: objective function

o fi :R" - R,i=1,...,m: constraint functions

Optimal value: p* := inf{fo(x) | fi(z) <0, fori=1,...

Optimal solution: z* satisfies f;(z*) <0, i =1,...

7m}

,m and:

fo(x™) < fo(zx) for all = that satisfy f;(z) <0, i=1,...,
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Introduction

Examples

Portfolio optimization
@ variables: amounts invested in different assets
@ constraints: budget, max./min. investment per asset, minimum return
@ objective: overall risk or return variance
Data fitting
@ variables: model parameters
@ constraints: prior information, parameter limits
@ objective: measure of misfit or prediction error
Signal restoration
@ variables: signal values
@ constraints: prior informations, value limits

@ objective: data fit + regularization
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Introduction

Example: (linear) classification

e Training data (fi,¢;)i=1,....m where forany i =1,... ,m:
» f; € R™ : features,
» ¢; € {+1,—1} : category.

o Classify new data f € R™ in the two classes.
Linear classifier ¢ = sign(x " f) : find weight vector z

@ Associated optimization problem with /5 regularization:

Imn Z ( —¢i(x )) + vl|z|2 (v = const. >0)

where cost function ¢(z) can be:
p(z) =1(z = 0)

v

» ¢(z) =log(1 + e *) (logistic regression)
» o(z) = [1 — 2]+ (support vector machine)
> p(2) =
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Introduction

General optimization problem:

e very difficult to solve (if nonconvex)
@ methods involve some compromise, e.g.:

» local optimization method (nonlinear programming): not always
finding the solution

» global optimization: very long computation time, worst case
complexity grows exponentially with problem size

~ These algorithms are often based on solving convex subproblems
Convex optimization problems can be solved efficiently and reliably:
o least-squares problems (analytical solution even exist in this case)
@ linear programming problems

@ many other convex programming problems
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Introduction

Convex optimization problem

min. fo(x)
st filx) <b;, i=1,...,m

Objective and constraint functions are convex

Includes as special cases: least squares, linear programming

Convex optimization is “almost a technology":
» reliable and efficient algorithms (but generally no analytical solutions)
» computation time (roughly) proportional to max{n?, n?m, F'} where F
is cost of evaluating f;'s and their first+second derivatives

Many problems can be solved via convex optimization:

» often difficult to recognize
» many tricks for transforming problems

12/160



Introduction Nec. notions

Euclidian space

Euclidian space E (finite dimension) with inner-product (., .)
o Often E=R" and (z,y) =2y =Y 1" 2y
(Euclidian) norm ||z||2 = /(z, x)

Cauchy-Schwarz inequality: |(z,y)| < [|z||2]ly||2

Orthogonal complement:

Gt ={yeE|(z,y) =0forall z € G}

@ Ball of center zq radius r > 0:
B(zg,r] ={z € E|||lx — xo| <1} (closed ball)
B(woﬂ“[ = {37 € E‘ |z — x| < 7“} (open ball)
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Introduction Nec. notions

Dual norm

Let ||.|| be a norm on E.
Associated dual norm ||.||.:

2]l == sup (z, )
el <1

(z,2) < ||z[l«]lz]
Dual norm of ||.||2 is itself.
||l.llcc @and ||.]|1 are dual norms of each other.

. . 1 1
Dual of £)-norm is ¢, norm with ste= 1.

I|.]l«x = ||-]| (need not hold in infinite dimensional spaces)
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Introduction Nec. notions

Open and closed sets

Interior, closure, boundary
interior of a set C:
int C = {z € C|B(x,e[C C for sufficiently small ¢}
A set C is open if C = int C' and closed if its complement is open.
closure of a set C:
clC = {x € E|for any (small) ¢, B(x,e[NC # 0}
boundary of aset C: bdC =clC \ int C

core of a set C' = set of points = € C such that for any direction d € E,
x 4 td € C for all small t. Note that int C' C core C' (but core C' may be larger
than int C).

15/160



Introduction Nec. notions

Linear maps, adjoint, null space

E and F two Euclidian spaces.

o A:E — Fis linear if A(\x + py) = Nz + pAy
for any z,y € E and A\, u € R.

@ Linear functions E — R have the form (a,.) for some a € E
o Affine functions = linear + constant
e Adjoint of A is the linear map A* : F — E such that:

(A*y,z) = (y, Ax) forany z € E,y € F

» If E=R" F =RP, adjoint of A: R" — RP is given by A"
o Null space (kernel): Ker A = {z € E| Az = 0}
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Introduction Nec. notions

Symmetric matrices

o Set of symmetric matrices: S" = {M € R™" | M T = M}

o Positive semidefinite matrices: S = {M € S"|z" Mz > 0 for all z}
o Positive definite matrices: §7, = {M € §" |z Mx > 0 for all z # 0}
@ Inner product:

(A,B) = tr AB for A, B € S"

o M € S% (resp. ST, ) will be written M > 0 (resp. M > 0).
Similarly (see later):

A-BeSy < A=B A-BeS}, < A~-B
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Introduction Nec. notions

Domain and extended-value function

Let f be a function E — R (often, E = R").
Domain: dom f = {x € E| f(x) exists} (dom f C E)

If f:dom f — R, we use the extended-value extension of f:

f:E— RU{+o0}

xr—>{f(x) if x € dom f
+oo ifx ¢ dom f

» Often simplifies the notation and provides a unifying view.

» dom f={z € E|f(z) < oo}
o If dom f # (0, the function is said proper
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Introduction Nec. notions

Extended-value functions

Examples

e Log-barrier f : R — R defined by:

—log(—z) ifz <0,
400 if > 0.

fz) =

dom f=R__

e Indicator function of a given set C' C E:

Zc(x):{o ifz e,

400 otherwise.

domic =C
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Introduction Nec. notions

Gradient vector
Let f:R" — R.

e Gradient (column) vector V f(z):

0f(x)
8xi

V()] =

First-order approximation of f near Z:

~

h@)=f@+Vi@ (-7
o Ex:

fz)=a'x Vix)=a
g(z) =z Mz Vg(z)=(M+ Mz
= 2Mzx if M symmetric.
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Introduction Nec. notions

Hessian matrix

Let f:R" — R.
e Hessian matrix V2f(z) (often denoted by H(z) in this course):
0*f (x)
200
[v f(x)]lj 8xlax]

Second-order approximation of f near Z:

~

folw) = @)+ V@) (2 —7) + %(3? -z) V(@) (x — T)
e Ex:

fx)=a'z V2f(x) =0
glz) =z Mz Vig(x)=M+M"
= 2M if M symmetric.
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Introduction Nec. notions

Lower semi-continuous function (I.s.c.)

fis l.s.c. if and only if at any point z:

T @ = @) < i f(en)

fis ls.c. < epigraph {(z,t) € R" x R| f(x) <t} is a closed set

" N\

|.s.c. non l.s.c.
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Part |l

Convexity, convex optimization
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Convex set

Convex set: contains line segment between any two points in the set

z,yeC,0<0<1=0z+(1—-0)yecC

e Points of the form 6z + (1 — #)y with 0 < § < 1 corresponds to the
line segment between x and y.
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Convex sets
Affine set

Affine set: the line through any two points in the set is contained in the set

z,yeC,0eR=0zx+(1-0)yeC

e Points of the form 6z + (1 — #)y with # € R corresponds to the line
through = and y.
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Affine and convex hull

Affine hull of set C = all affine combinations of points in C
aﬁC:{91x1+"'+9kxk|xi cC0+--- 40, = 1}
Convex hull of set C' = all convex combinations of points in C'

CODVC:{91:L‘1+"'—|—9]€33]€‘:L‘Z'60,92'20,91+"'+9k:1}
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Hyperplanes and halfspaces in R”
Let a € R",a # 0 and b € R:

o Hyperplane: {z € R"|a'x = b}: convex and affine

a a'z="0

o

o Halfspace: {z € R"|a'z < b}: convex but not affine
a a'z=0b

@ a is the normal vector
@ The hyperplane separates the whole space R™ in two halfspaces
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o
Balls and ellipsoids
Euclidian ball:

B@,r]={z|llz ~ 7|2 <r} = {z|(z —7) (@ —7) <1?}
= {Z +rulllulz <1}

Ellipsoid:

E={z|(x—7)" Pz ~7) <1} where PST,

With A = P1/2, other representation: £ = {Z 4+ Au||juls < 1}
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Conver sets
Operations that preserve convexity (1/3)

Intersection : the intersection of any number of convex sets is convex

Ex:

@ Polyhedra: intersection of a finite number of hyperplanes/halfspaces
» P={xla; 2 <bj,j=1,....mc;' x =d;,i=1,...,p}
» Simplex {fovg + -+ + Opvi |0 = 0,170 =1}
(vo, - .., vy affinely independent)

@ Intersection of halfspaces:
{x e R"™ /|30, @ coskt| < 1,Vt € [-n/3,7/3]}
o Positive semidefinite matrices: S} = (1, .,{M € S"| x Mx >0}

Convex hull of a set S: intersection of all convex sets containing S.
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Conver sets
Operations that preserve convexity (2/3)

Affine transformation: the image and inverse image of a convex set
under an affine function is convex.

Ex:
@ Scaling, translation, projection.
Sum S+ Sy ={zx+yx €S, ye S}
Partial sum {(z,y1 +y2) ; (z,y1) € S1, (x,y2) € Sa}

Polyhedron (inverse image of nonnegative orthant)

Ellipsoid (image/inverse image of the unit Euclidian ball)

Solution set of a Linear Matrix Inequality (LMI):
{xERn|$1A1+"'+ann jB}
where B, Ay, ..., A, are given in SP
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Conver sets
Operations that preserve convexity (3/3)

Perspective function
P(z,t) = % where P:R" x Ry — R"

— image and inverse image through perspective remains convex.

Linear-fractional f(z) = c‘f‘rfcibd with dom f = {z|c'z +d} >0 —

preserve convexity (as a composition of affine and perspective functions).
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Relative interior

interior of a set C:
int C' = {z € C'| B(x,e[C C for sufficiently small ¢}
relative interior of a set C' = interior of C relative to its affine hull:

relint C = {z € C'| B(z,e[NaffC C C for sufficiently small £}
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Cones

Cone C: for every z € C and 60 > 0, we have 0z € C

Convex cone C': for every z1,z9 € C and 601,65 > 0, we have
0121 + Oox9 € C

T

x2
@ Conic hull of a set C:
{91$1+"'+9kxk|xi60,02-20,1':1,...,13}
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Examples of cones

34/160

o Nonnegative orthant R! = {z ¢ R"|z; > 0,i=1,...,n}
e Positive semidefinite matrices
St ={MeS"|M =0} ={MeS"|2" Mz >0,Vr € R"}

where S™ is the set of symmetric matrices.

@ Norm cone
{(z,t) e R"" ||| < ¢}
When ||.|| = |.]|2, also called quadratic / second-order / Lorentz cone

@ Cone of positive polynomials

K={peR"|pi+pat+-+pt" " >0,Vt €0,1]}



Normal cone

Normal cone to a convex set C at T € C:
Ne(@) ={de€E|{d,z—T) <0,Vx € C}
when E = R", simplifies to:

Ne@) ={deR"|d"(z —7) < 0,Yz € C}
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Proper cones, generalized inequalities

Proper cone:
- convex
- closed
- solid (i.e. nonempty interior)

- pointed (i.e. contains no line: z € K,—x € K = = = 0)

Generalized inequalities w.r.t. proper cone K:

r3xkyesy—csek
r<gyey—ceintK (interior of K)
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Convexity

Examples of generalized inequalities

° K =T} gives usual partial ordering on R™ (componentwise)

r3gy = x; <y, Vi

AN

e K =8' = set of symmetric positive semidefinite matrices
A=XB < B-AcS}|
@ K = cone of positive polynomials

p3xq = 0= (0 —p1)+ (g2 —p2)t+- 4 (gn —pa)t",Vt
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Separating hyperplane
Separating hyperplane theorem If C' and D are disjoint convex sets

(C'ND =10), there exist a # 0,a € R™ and b € R such that:

VazeC,aTajgb andVazeD,aTaJZb

The hyperplane {z|a'x = b} separates C and D.
a'z=5b
a'z<b

a'z>b
a
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Strict separation

Basic separation If C closed and convex and y ¢ C, there exist
a#0,a € R" and b € R such that:

Vx € C, aTx§b<aTy

a'rz=>

a'z<b

.y a'z>b

a
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o
Supporting hyperplanes
Supporting hyperplane C C R", Z € bdC If a # 0 and

Vo € Cia'x <a'T, then {x € R"|a"z = a'Z} is a supporting
hyperplane of C.

8
S

If C' is convex, then there exist a supporting hyperplane at every boundary
point of C.
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Convex function
f:R™ — R is convex if dom f is a convex set and
f0x+(1—0)y) <O0f(x)+(1-0)f(y)

forall z,y €dom f, 0 <6 < 1.

x y
e strictly convex when: f(fz+ (1 —0)y) <0f(xz)+ (1 —0)f(y)
e f is concave if (—f) is convex.
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Epigraph
The epigraph of a function f : R™ — R is:

epif = {(z,t) € R""'|z € dom f, f(x) < t}

x Yy

e [ is convex if and only if its epigraph is convex.
o sublevel set: Cy, := {z| f(z) < a}

> C, is a convex set if f convex
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Jensen’s inequality

For a convex function f:
o fllx+(1—-0)y) <O0f(x)+ (1 —0)f(y): called Jensen’s inequality
@ extends to
» sums (finite or not): for 61,...,6, >0, 61 +---+ 6, =1:

fOrxy + -+ 0,xp) <O f(x1)+ -+ 0pf(xp)

» integrals and expected values: if p(z) is a pdf with support S C dom f:

£ /S 1p() dr) < /S f@)p(e) de FE{X}) < E{f(X)}
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Examples of convex/concave functions

convex
o Ile]
e max(xy,...,oTy)
o f(z,y) = %2 with dom f =R x Ry
o log(e™ + -+ +¢e™)
concave
o f(z)= (T =)"/"
o f(X) =logdet X with dom f =S ..
convex and concave

o affine functions: f(z) =a'x+b
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First order conditions

Differentiable f with convex domain is convex if and only if:

f(x)> f@) + V@) "(x—T) Va,Tecdomf

T €T

The linear approximation of f is a global underestimator.
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Second order conditions

Twice differentiable f with convex domain:
f convex < V2f(z) =0 Vzedomf
If V2f(z) =0 Vax € dom f, then f strictly convex.
o Ex: f(z) = 32" Pz +q'x +r defined on R" is:

» convex iff P = 0 (concave iff P < 0),
» strictly convex iff P > 0 (strictly concave iff P < 0).
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Operations that preserve convexity
(1/3)

Nonnegative weighted sums: f = w; fi1 + -+ + wy, fi, is convex if
f1,---, fm convex and w1, ..., wy, > 0.

Composition with an affine mapping: = — f(Ax + b) is convex (resp.
concave) if f convex (resp. concave)

Pointwise maximum: z — max{ fi(z),..., fm(x)} is convex if
fiy--+, fm convex (extends to supremum).
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Operations that preserve convexity
(2/3)

Composition: let g: R* - R¥and h: R¥ - Rand f =hog:R* =R
defined by f(x) = h(g(z)).

@ f is convex if h is convex nondecreasing and g is convex,

@ f is convex if h is convex nonincreasing and g is concave,

@ f is concave if h is concave nondecreasing and g is concave,
e [ is concave if h is concave nonincreasing and g is convex.

(Easy proof in simple real valued differentiable case.)
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Operations that preserve convexity
(3/3)

Minimization: if f(z,y) convex in (z,y), C # 0, g(x) = infycc f(x,y) is
convex in z provided g(x) > —oo for some z.

Perspective of a function: perspective function of f : R® — R is
g : R"™!1 — R defined by

glx,t) =tf(z/t)

The perspective preserves convexity.
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How to prove convexity?

@ verify definition, often simplified by restricting to a line:

> f is convex if and only if it is convex when restricted to any line that
intersects dom f
Ex: prove concavity of f(X) = logdet X with dom f =87 .

@ for twice differentiable functions, second-order condition

© show that f is obtained from simple convex functions by operations
that preserve convexity.
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Convex optimization

Optimization problem in standard form

General form, non convex (but can be):

o x = (z1,...,r,)": optimization variables

@ fo: D — R: objective or cost function

o f; :D—R,i=1,...,m: inequality constraint functions

e hj:D—=R,j=1,...,p: equality constraint functions
optimal value: p* := inf{ fo(z)|fi(z) < 0,h;(z) = 0,2 € D}

@ p* = 400: problem unfeasible (no x satisfies the constraints)

@ p* = —oo: problem unbounded below
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Convex optimization

Vocabulary, remarks

o Constraints:
» implicit: € D intersection of all functions domain:
D C dom f; and D C dom h;
» explicit: fi(z) <0, hj(z) =0
» unconstrained problem: only implicit constraints
o Feasible point: any z that satisfies the constraint.
» feasibility problem = find a feasible point = special case of general
problem with fo(z) =0
@ optimal point z*:
» z* global optimal if feasible and p* = fy(2*) <
» x7 . local optimum if feasible and fo(zf.) < fo
|z — zf .|| < o and z feasible.

fo(z) for any feasible
(z) for any z such that
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Convex optimization

Convex optimization problem (standard form)

min. fo(z) (x €D =nN;%,dom f;)
st. fi(x) <0, i=1,....m

T .
a; T = bi, 1= 1,.. .y

@ objective f and constraint functions f1,..., f,, are convex
@ equality constraints are affine.

often written as:

min. fo(z) (z € D)
st. fi(x) <0, i=1,....,m
Ax =b

Remark: can be written with inequalities only.
Indeed, for i = 1,...,p, replace the equalities by the two inequalities
a;"x—b;<0and —a; Tz +b; <0
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Convex optimization

Feasible set of a convex optimization problem

@ General convex problem with inequalities only:

min. fo(z) (x € D)
st. fi(x) <0, i=1,....m

o for all 4, the sublevel set C; = {z € R"| fi(z) < 0} is convex (follows
from convexity of f;)

o feasible set X := DN, C; is convex

@ A convex optimization problem minimizes a convex function over a
convex set (take care: some convex sets may be nasty and intractable)
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Convex optimization

Global / local optimality for a convex optimization problem

Any locally optimal point of a convex problem is globally optimal.

Proof: Let 7 . be a local optimum. For an R > 0,
Vr feasible, ||z — i || < R = fo(xi,.) < folx).
xy . not global = fo(T) < fo(x},,) for a feasible T.

Let z = (1 —0)x}, . + 0T with 6 =

R .
u blEs *Troc” < 1 and use convexity to get a
contradiction:

fo(wfoc) < f()(Z) < (1 - a)fo(xfoc) + Hf()(f) < fo(wfoc)
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Convex optimization

Optimality criterion
For convex and differentiable fy (dom fy open).

x* is optimal if and only if:
V fo(z*)T (x — 2*) > 0 for all feasible z.

@ z* feasible and:

(normal cone)

e Equivalent condition: —V fo(z*) € Nx(z*)
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Optimality criterion

(examples, see the exercises)
Particular cases, with differentiable fy (dom f, open):

@ unconstrained problem: min. fy(x)

z* optimal & Vfy(z*) =0, 2 € dom fo

min. fo(z)

@ equality constrained problem:
d y P {s.t. Az =b

z* optimal &  Vfy(z")+ATv* =0, Az*=b, z*edomf

min. fo(x)

@ minimization over nonnegative orthant:
st.x>=0

x* optimal & 2% =0, Vfo(z") =0,
V@) =0i=1,..,n
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Convex optimization

Strict separation

Basic separation If C closed and convex and y ¢ C, there exist

a#0,acR"and bcRsuchthat Ve € C, a'z<b<aly.

a'lz="b

a'z<b

R4 a'z>b

a

Proof: Let T be a minimizer of f(x) = ”x_2y||2 on C (which exists).
Optimality condition —V f(Z) € N (), yields for all x € C

(y—7)"(x—7) <0 thatis:
(y—7) T e<@y-2)"T<(y—17)y.
~— ~—

=:a =:b
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Duality and optimality conditions
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(EENESCIE AN Lagrangian and dual problem

Lagrangian (inequality constraints only)

min. fo(z) reDCR"
st. fi(x) <0, i=1,....m

with D :=N", dom f;.

Lagrangian £: D x R™ — R
L(z,X) = folx +ZAfZ

@ ); are Lagrange multipliers, A = (Aq,...,A\m) .
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(EENESCIE AN Lagrangian and dual problem

Lagrangian: linear approximation interpretation
Equivalent unconstrained form:

min. f(z) := fo(z) + ZZR, (fi(z))
i=1

Replace indicator functions by “soft” constraint/underestimator:

r_(u)

it
(A = 0)

For A = 0:
L(z,)) = fo(x +ZAfZ ()
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(EENESCIE AN Lagrangian and dual problem

Lagrange dual function

Dual function

Lp(A) == ;g)ﬁ(m,x) = Inf (fo(x) + Z)\ifi(l‘)>
i=1

e Lp is concave (even if non convex problem), can be —oco
e Lower bound property: if A = 0, then Lp(A) < p*
Proof: for A = 0 and x feasible:

E( —fo +Z)\ fz <f0()

Il>0§

Taking the infimum on the Lh.s yields Lp(\) < fo(z) for any feasible x and
hence the result.
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ez el clrc) 52 2w
The dual problem

Lagrange dual problem

{max. Lp(A)

st.A>=0

d* :=sup Lp(N\)
A0

@ It is a convex problem
@ A dual feasible if A = 0, A\ € dom Lp

Weak duality: d* < p* always holds (also for nonconvex problems)
p* — d* is called duality gap.
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Ceeeilpliallueien
Weak and strong duality

Weak duality (always holds): d* < p*

Strong duality: d* = p*
@ does not hold in general

@ holds for convex problems under constraint qualifications (see later).
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(EENESCIE AN Lagrangian and dual problem

Duality and max-min inequality
Primal with optimal value p*: | min. fo(z) (z € D)
st fi(z) <0, i=1,...,m
@ Lagrangian: L(z,\) := fo(x) + Y ivy Nifi(x)
@ Primal reads also:

* = inf sup L(z, A
P meD&lg( )

@ Dual problem:

d* = sup inf L(x, A
)\EI())IGD ( )

@ We have (max-min inequality):

sup inf L(z, ) < inf sup L(z, A
At%wE'D ( ) a:E'D)\tPE) ( )

Strong duality when strong max-min/saddle-point property satisfied
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(EENESCIE AN Lagrangian and dual problem

Geometric interpretation of duality

Convex case

min. fo(z)
{ z€D Lp(\) = inf fo(z) + A f1(z)
st fi(z) <0 <P
) fO
\(Jio , f1(z))
(w1, x2) Lp(N) =d* =p*
D
Lp(A)—
o D( ) f1

Jo+Af1 =cst
slope: (—X)
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(EENESCIE AN Lagrangian and dual problem

Geometric interpretation of duality

Non-convex case

2D Lo(\) = inf fo(z) + Mf(x)

{min. fo(x)
s.t. fi(z) <0

(fo(, f1(z))

/

x1
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|ETEENESCIE AN Optimality conditions: KKT

Lagrangian (inequality constraints only)

min. fo(z) reDCR"
st. fi(x) <0, i=1,....m

with D :=N", dom f;.

Lagrangian £: D x R™ — R
L(z,X) = folx +ZAfZ

@ ); are Lagrange multipliers, A = (Aq,...,A\m) .
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|ETEENESCIE AN Optimality conditions: KKT

Lagrangian sufficient conditions

Assume (z*, \*) € D x R™ satisfies:

Vi=1,...,m, filz*) <0
Vi=1,...,m, A >0
Vi=1,...,m, A fi(z¥) =0
Vx feasible, L(z*, \*) < L(x, \")

then, z* is optimal (global minimum).

Proof: For any feasible x:

fola*) = L{z*, X*) < L(2, M) = fo(x) + 332, N fi(@) < fo()
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@ \* : Lagrange multiplier vector

@ Remark: no convexity!

<0

(primal feasability)
(dual feasability)
(complementary slackness)

(z* minimizes L(., \*))



Optimality conditions: KKT
KKT conditions (Karush-Kuhn-Tucker)

Convex case: sufficient conditions

Assume (z*, \*) € int D x R satisfies:

Vi=1,...,m, filz*) <0 (primal feasability)
Vi=1,...,m, Ar>0 (dual feasabiilty)

Vi=1,...,m, X fi(x*) =0
Vfo(z*) + 25 ATV fi(z*) = 0

Lagrangian)
then, if the problem is convex, x* is optimal.
@ )\* : Lagrange multiplier vector
@ Remark: for convex functions fq, f1,..., fm, last condition implies

L(z*, \*) < L(x,\)
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(complementary slackness)

(z* critical point of the



|ETEENESCIE AN Optimality conditions: KKT

Necessary optimality conditions (Fritz-John)

min. fo(z) reDCR"
st. fi(x) <0, i=1,....,m

e Active set at point x: I(z) = {i € {1,...,m}| fi(z) = 0}

@ Fritz-John optimality conditions:
If 2. € int D is a local minimizer, there exist Ao, A1,..., A >0
such that:

)‘vao wloc Z AV fi wloc) =

iel(zf,.)

o For i ¢ I(x} ), complementary slackness yields \; = 0 ~» terms don't
appear above.
@ To rule out the case Ay = 0, constraint qualification at z7j

(required for KKT to be necessary conditions)
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|ETEENESCIE AN Optimality conditions: KKT

Local constraint qualifications

Constraint qualifications at a point x:

e MFCQ (Mangasarian-Fromovitz constraint qualification):
there is a direction d satisfying V fi(x)"d < 0 for all i € I(x)

o LICQ (linear independence constraint qualification):
{Vfi(z)}icr(z) are linearly independent
Obviously: LICQ = MFCQ
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|ETEENESCIE AN Optimality conditions: KKT

Global constraint qualification (Slater)

@ Slater constraint qualification for convex problem with constraints
fi(fL‘)SO, 2':1,...,m
» there exists & € relint D with f;(2) <0, i=1,...,m

@ Refinement: affine inequalities need not be strict. For constraints
fi(l‘)ﬁo, i=1,...,m
Axr <b, Czx=d

» there exists & € relint D with f;(2) <0, i=1,...,mand Az <b,Cx=d
+ For a convex problem: Slater = MFCQ at any feasible point.

+ Slater = there exist a strictly feasible point

+ Slater = strong duality and dual value attained when d* > —o0
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|ETEENESCIE AN Optimality conditions: KKT

KKT necessary optimality conditions

Suppose zf . is a local minimizer of
inf{fo(z) |z €D, fi(x) <0,i=1,...,m}

If MFCQ holds at zj ., there is a Lagrange multiplier vector \* for xj :

Vi=1,...,m, fi(ajfoc) <0 (primal feasibility)
Vi=1,...,m, Ar >0 (dual feasibility)
Vi=1,...,m, X filar,.) =0 (complementary slackness)
N Mmook e ok (2. critical point of the
Vio(zoe) + 225, ATV fiag,) = 0 Lagrangian)
Remarks:

@ No convexity here, but local minimizer considered.

@ For convex problems, above conditions are necessary and sufficient for
global optimality.
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ETENESCIE A Optimality conditions: strong duality and sensitivity analysis

Lagrangian (inequality constraints only)

min. fo(z) reDCR"
st. fi(x) <0, i=1,....m

with D :=N", dom f;.

Lagrangian £: D x R™ — R
L(z,X) = folx +ZAfZ

@ ); are Lagrange multipliers, A = (Aq,...,A\m) .
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Optimality conditions: strong duality and sensitivity analysis
Necessary optimality conditions (through strong duality)
If strong duality holds, =*,A* are primal, dual optimal. Then:
e x* minimizes x — L(x, \*)

~ Vg L(x, ) |gr =0 (see next slide)
° )‘:fz(w*) =0,7=1,...,m (complementary slackness)

Af>0= fi(z*)=0 fi(z) < 0= X =0
Proof: (write all inequalities, which become equalities)
d*=Lp(\*) = igfpﬁ(m,/\*) < L(z*,\%) < fo(a®) =p*

m

where L(z*,\*) = fo(a™*) + Z A fi(z

Remark: no convexity assumptlon
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ETENESCIE A Optimality conditions: strong duality and sensitivity analysis

Necessary KKT conditions (through strong duality)

If strong duality holds, 2*,A* are primal, dual optimal, then the following
conditions (called KKT) hold:

© Primal constraints: f;(z*) <0, fori=1,...,m
@ Dual constraints: Ay >0, fori=1,...,m
© Complementary slackness: X! fi(z*) =0fori=1,...,m

@ Gradient of Lagrangian w.r.t. = vanishes at z*:

Vfo(x*) + > NV fi(a)

i=1
Remark: no convexity assumption
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ETENESCIE A Optimality conditions: strong duality and sensitivity analysis

KKT sufficient conditions for convex problem

If 7, \ satisfy KKT for a convex problem, then they are primal/dual
optimal.

@ Primal constraints: fi(T) <0, fori=1,...,m

@ Dual constraints: X; >0, fori=1,...,m

© Complementary slackness: X fi(Z) =0fori=1,...,m
Q V.L@XD) = Viol@) + X7, NV (@) = 0

Indeed:

fo(T) = L(Z,\) from compl. slackness and primal feas.

= Lp()\) from vanishing of V,£(Z, ) and convexity.
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ETENESCIE A Optimality conditions: strong duality and sensitivity analysis

KKT necessary and sufficient conditions for convex problem

For a convex problem, if Slater’s condition is satisfied:
@ Strong duality holds,

e Dual optimal value is attained when d* > —oo (i.e. there exists A*
such that Lp(\*) = d* = p*),
o KKT conditions are sufficient and necessary for global optimality.

Remark: This generalizes V fy(z*) = 0 for unconstrained problem.
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Optimality conditions: strong duality and sensitivity analysis
Perturbation and sensitivity analysis (1/2)

@ Unperturbed optimization problem and dual
. Jmin. fo(z) max. Lp(A)
P sit. fi(z) <0, 1<i<m st.A>=0
@ Perturbed problem and dual

*( ) . min. fO(x) max. ﬁD(/\) — uT/\
P st fi(z) <wuyy, 1<i<m st.A>=0

Optimal value p*(u) as a function of parameters u
(for the original problem p* = p*(0))
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Optimality conditions: strong duality and sensitivity analysis
Perturbation and sensitivity analysis (2/2)

Assume for problem, strong duality and A* dual optimal.

o Global sensitivity:

p*(u) > Lp(N*) — ul A\ (weak duality pert. prob.)
> p*(0) — u' \* (strong duality)

o Local sensitivity: if p*(u) differentiable at 0:

«_ o (0)
)\i N Ouz

Proof: take u = te; where ¢; is it canonical basis vector and get

7})*“"’"’);”*(0) > —Affort >0 or < =\ fort <0.

@ Interpretation: ...
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ETENESCIE AN Equality constraints and examples

Lagrangian and dual function

Lagrangian £L: D x R™ x RP - R
(As, vj are Lagrange multipliers)

P
Lz, \v): +ZAfZ )+ > vihj(x)
j=1

Dual function Lp(A,v) :=infyep L(x, A, v)
e Lp is concave (even if non convex problem), can be —co

e Lower bound property: if A = 0, v € R?, then Lp(\,v) < p*
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ETENESCIE AN Equality constraints and examples

Lagrangian: linear approximation interpretation

Equivalent unconstrained form:

min. f(x) = fo(z +ZZR (fi(z +Z@{0}

Replace indicator functions by “soft” constraint/underestimator:

O —+00
®_(u) 170y (u)
iU viu
(A > 0) vi €R

/' u u

A>=0and v € RP, L(z,\,v) < f(z).
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ETENESCIE AN Equality constraints and examples

Lagrange dual function

Lagrange dual problem

d*:= sup Lp\v)=
A=0,vERP

max. Lp(\,v)
st.A>=0

@ It is a convex problem.
@ )\, v are dual feasible if A = 0, € R?, (\,v) € dom Lp
Weak duality (always holds): d* < p*

p* — d* is called duality gap.

Strong duality: d* = p*
@ does not hold in general.

@ holds for convex problems under constraint qualifications.
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Ealdenealalcons
Duality and max-min inequality

min. fo(z) (z€D)
st. fi(z) <0, i=1,....m
hj(x)=0, j=1,...,p
@ Lagrangian: L(z,\,v) := fo(x) + > i) Nifi(z) + 25:1 vih;(x)

@ Primal reads also:

Primal with optimal value p*:

*

= inf su Lz, \ v
P IGDueRPEzO (@A)

@ Dual problem:

d*= sup inf L(z,\ V)
vERP A=02ED

@ We have (max-min inequality):

d*= sup inf L(z,\,v) < inf sup L(z,\v)=p"
veRP A0 TE€ED z€D pecRP A=0

Strong duality when strong max-min/saddle-point property satisfied.
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Ealdenealalcons
KKT optimality conditions

86/160

hj(x*): s j: N

Ar>0, i=1,....,m

(v eR, j=1,...,p)

Afi(z®)=0, i=1,....,m

L(z*, N, v*) < L(x,\*,v"), Vaz feasible

(primal feasability)

(dual feasability)

(complementary slackness)

(z* minimizes £(., A", "))



Ealdenealalcons
KKT optimality conditions

fl(x*) < 07 1= ]-7 , M
hij(z*) =0, j=1,...,p
Ar>0, i=1,....,m
(vieR, j=1,...,p)
X filz*)=0, i=1,....m
Vfolz*) + ) NV fi(a*

i=1
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)+ Z viVhi(

(primal feasability)

(dual feasability)

(complementary slackness)

(z* critical point of
the Lagrangian)

@ Remark: for convex problem, last condition implies

L(x*, N5, v*

) < Lz, X\, v*

) for feasible x.



ETENESCIE AN Equality constraints and examples

Least-norm solution of linear equation (example)
Lagrange dual
min. |||} s.t. Az =b

o Lagrangian:
L(z,v)=x"z+v' (Az —b)
@ Dual function: (minimum of £ w.r.t. o when V., L(z,v) = 0)
Lo(w) = c(—%ATV, V)
= —iVTAATI/ — by < inf{||z||3| Az = b}

@ Primal and dual problems:

T

. 1

P - d* :max. — v 'AATv —b'v
s.t. Ax =b 4
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ETENESCIE AN Equality constraints and examples

Least-norm solution of linear equation (example)

KKT conditions and solution

min. |z||3 st. Az =b
Lagrangian: L(z,v) =2 'z +v'(Az —b)
Dual function: Lp(v) = —1vTAATY —bTv

o KKT conditions:
Az =D
2 + AT =0

o Solution (when AAT invertible):
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ETENESCIE AN Equality constraints and examples

LP (standard form) (example)
Lagrange dual

min. ¢'z  s.t. Az = b,x >0
e Lagrangian:
L \v)=caz—-Naz+ v (Az —b)

= b vt+(ct+tATv—NTa
@ Dual function:
by fATv—A+¢c=0
—o0o  otherwise.

Lp(A\v)= {

@ Primal and dual problems:
T

min. ¢’ x BT
p i st.Ar =0 d*: e T
-0 s.t.ATu—i—ciO
T —
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ETENESCIE AN Equality constraints and examples

LP (standard form) (example)
KKT conditions

min. ¢'z  s.t. Az = b,x >0

e Lagrangian:
L MA\v)=cz—Nz+ v (Ax —b)
= bvt(ctrATv-N"z
e KKT conditions:

Az* =0, 2>=0
A >=0
Naf=0, i=1,...,n

ATv  +c—\=0
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ETENESCIE AN Equality constraints and examples

Equality constr. convex quad. minimization (example)
KKT conditions

S T
.—x Px+ +
Tt e rwithPGS’}r.
s.t. Ax = b

o Lagrangian: L(z,v) =ia " Pe+q oz +r4+vT(Azx — D)

-2
o KKT conditions:

Az* =b, Pr*+q+ATv =0

2 E- 1

can be written as:
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Subgradient

A subgradient of f at T is any vector ¢ such that:

f@ +¢ (x—7) < f() forall z

o z+ f(T)+ &' (x —T) is a linear underestimator of f.

e if f convex and differentiable, V f(Z) is (unique) subgradient.
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Subdifferential

Definition

The subdifferential of f at T is the set of all subgradients, denoted by:

Of (@) ={p R | f(ZT)+ ¢ (x —T) < f(z) for all 2}

e Jf(T) is a closed convex set (always).
e Jf is a multi-function / set-valued map. Jf : R® — 2R"
o domdf = {zx € R"|9f(x) # 0}.

e If f convex and differentiable at Z € int dom f, then

of (@) ={Vf(@}
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Subdifferential

Examples
The subdifferential of f at T is the set of all subgradients:

0f(@) ={¢ €R"| f(@) + ¢ (z — ) < f(x) for all z}

e If f convex and differentiable at Z € int dom f, then
of(@) ={Vf(@)}
{-1} =<0,

o Absolute value: 9|.|(z) = { {1} =>0,
[~1,1] =0 J|.|(x)

e Indicator function: 9ic(T) = N (T) (normal cone operator)
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Fenchel duality

Fermat's rule

Characterization of global minimizer:

x* global minimizer of f & 0€ df(z")

Proof: Use definition of subdifferential:

0e€df(z*) e f(x*)+ (0,2 —a*) < f(x) for all

Remark:

@ holds also for nonconvex f.
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Fenchel duality

The Fenchel conjugate function (definition)

Let f: R"™ — R (with f(z) = oo for x ¢ dom f).
Fenchel conjugate:

f*(w) = sup (v'z — f(z))

reR™
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Fenchel duality

The Fenchel conjugate function (first properties)

f*(w) = sup (v'a — f(z))

reR?

e f*is convex
(because sup of affine functions. True for non convex f also.)

o f>gimplies f* < g~
o If dom f # 0, f* never takes the value —oo

o f*isl.s.c. (lower semi-continuous)
(because epigraph closed)
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Fenchel duality

Lower semi-continuous function (I.s.c.)

fis l.s.c. if and only if at any point z:

T @ = @) < i f(en)

fis ls.c. < epigraph {(z,t) € R" x R| f(x) <t} is a closed set

" N\

|.s.c. non l.s.c.
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Fenchel duality

Fenchel conjugate function

Examples

-b ifv=a

= + b * — )
° (@) =az ) {—I—oo otherwise.

vlogv —v if v >0,

[+] frg T * pr -

f@)=e ) {—I—oo otherwise.

—log(—v)—1 ifv <0,

o f(z) = —loga 1) = { &) |
400 otherwise.
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Fenchel duality

Fenchel conjugate function
Examples (continued)

o f(x)= %xTQx with @ > 0 ffv) = %UTQ_lv.

o f(x) =3I} Fr@) = 3lvl3.
_ oy 0 el <1,

° fla)= ”xH f (U) B {—l—oo otherwise.
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Fenchel duality

Dual norm

Let ||.|| be a norm on E.
Associated dual norm ||.||.:

2]l == sup (z, )
el <1

(z,2) < ||z[l«]lz]
Dual norm of ||.||2 is itself.
||l.llcc @and ||.]|1 are dual norms of each other.

. . 1 1
Dual of £)-norm is ¢, norm with ste= 1.

I|.]l«x = ||-]| (need not hold in infinite dimensional spaces)

101/160



Fenchel-Young inequality

e Forany z and v in R™:  f(z)+ f*(v) >v'x
o Equality case:

f@)+ ff(v)=v'z e vedf(x)
e For f convex, l.s.c., proper, equality case:

f@)+ ffv) =v 'z e vedf(x)
S x e df(v)
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Fenchel duality

Fenchel biconjugate

@ The biconjugate f** = (f*)* is convex |.s.c.
(from properties of f*(v) = sup,eg- (v’ z — f(2)))
e f**is a minorant of f
(follows from Fenchel-Young inequality f(z) > v'a — f*(v))

Theorem

For any function f : R™ —] — oo, 4+00]:

f=f"< fisclosed (ls.c.) and convex
& For all points in R",

f(z) = sup{a(x) | @ an affine minorant of f}

For proper closed convex functions, the conjugacy operation induces a
bijection.
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Fenchel duality

Let f: R™ =] — 00, +00] and g : R™ —] — 0o, +00] be given function and
A e R™x™,

pr = ienﬂgn{f(x) + g(Ax)} (primal value)
d* == sup {—f*(ATv) — g*(—v)} (dual value)
veR™
We have:

o Weak duality: d* < p* (proof: Fenchel-Young inequality)

e Strong duality: if f and g are convex, under qualification
constraints!: p* = d*
and the supremum in the dual problem is attained if finite.

10 € core(dom g — A dom f) or stronger condition A dom f N cont g # ()
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Fenchel and Lagrange duality

@ Primal problem (as in Fenchel: previous slide): mille. f(z) + g(Ax)
reR?

@ Equivalent constrained problem:

in. ty=A
(%yg[g}wwf(x)Jrg(y) st.y=Ax

e Lagrangian and dual function:

L(z,y,v) = f(z)+ g(y) + v' (y — Ax)

inf L(z,y,v) = — sup {' ATv — f(2)} — sup {(—v) 'y — g(y)}
Ty TER™ yEeRm

=—f(A"v) = g"(-v)

@ Dual problem: max. — f*(ATv) — g*(—v) is exactly Fenchel dual!
veR™

(see previous slide)
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Part IV

Algorithms
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Algorithms Unconstrained minimization

Unconstrained minimization

With f: R™ — R convex, twice differentiable, find solution to:

*

p*: m%cn. f(z)

e Optimality condition: Vf(z*) =0
e Produce a sequence of points z(*) € dom f such that:

fa®) = p*
e Starting point z(©) required, such that:

() ¢ dom f
sublevel set {z | f(x) < f(z(©)} is closed
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Algorithms Unconstrained minimization

Descent methods
Starting from z(©) repeat for k =0,1,2,...:
2 = 20 i Az®) with fa® D)) < f(a®)
@ ¢t > 0 is the step size or step length
o Az() is the search direction or step and must satisfy:
V") TAz® <0

(because f(z™)) + V£ ()T (tAz®)) < f(x*+1) from convexity)

o Simplified notation:
current point: x, search direction: Ax

next point: =z + tAx with: f(z7) < f(z)
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Algorithms Unconstrained minimization

Step size and line search

o Constant step size t > 0 chosen and fixed.
e Exact line search ¢ = argmin, f(z + tAx)

e Backtracking (with parameters o €]0,1/2[, 8 €]0, 1[)
starting at ¢ = 1, repeat ¢ := St until:

flz+tAz) < f(z) + atVf(z) Az

(also known as Armijo's rule)
graphical interpretation:
A\

~
~

f(x +tAx)
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Algorithms Unconstrained minimization

Unconstrained descent method

given starting point z(© € dom f, tolerance ¢ > 0,
repeat:

© Compute search direction Az(*)

@ Stopping criterion: quit if it is smaller than e.

© Choose step size t (backtracking, line search, constant, ...)
Q Update: z(*++D) = z(k) 4 g Az (k)

Possible search directions for a descent method:
o gradient: Axéled = -V f(x®)
. k .
o (normalized) steepest descent: Az*) = argmin {Vf(z®)Tv | o] < 1}

@ Newton: Axfj? = —V2f () IV f(zF))
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Algorithms Unconstrained minimization

Gradient descent

Gradient descent direction (at point z):
Agraqg = =V f(x)

Stopping condition: usually |V f(z®))[]y < e.
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Algorithms Unconstrained minimization

Strongly convex function

[ is strongly convex iff f — Z[|z||3 is convex for an m > 0.
For twice continuously differentiable f, equivalent to V2f(x) = mid

Implications:

® f(y) > flx)+Vf(x) (y—z)+ Zlly— |3 (convexity)
o p* > f(z) — &= ||Vf(x)||3  (minimize above r.h.s. w.r.t. y)
@ Sublevel sets are bounded (because of the first inequality above). On

{z| f(x) < f(z(©)}, Hessian max. eigenvalue bounded:
V2f(z) < MId.

= fy) < fx)+ Vi) (y—z)+ Ly — 3

e M/m is an upper-bound on the condition number of V2 f(z).
mid < V2f(z) <= MId
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Algorithms Unconstrained minimization

Convergence

(Gradient with exact line search)

For strongly convex f:

Fa®) —p* < F(f(0) —p)

@ ¢ €0,1] is a constant, depends on z(*) and the function f.
ec=1-% ifmld=V?f(z) < MK

o f(z®) — p* < e after at most W iterations.

~ gradient very simple but very slow, rarely used in practice.
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Gradient with optimal step

Gradient descent of f(z, y) = 4(x? + ny?) with n = 3.0
Starting point (1. 1). optimal step

Gradient descent of f(r, y) = X(x? + ny?) with n = 9.0
Starting point (1, 1). optimal step
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Gradient with fixed step

Gradient descent of f(x y) = §(2* +ny?) with 1 = 5.0 Gradient descent of f(,y) = §(2* + 1) with 1 = 5.0

. Fixed step — a3 with L ~ Lipichitz constant and o = L0 .\ Fixed step — a3 with L = Lipichitz constant and = 0.0

3 3

2 = 3 2 = 3

0 { 0 {
4 - E -
E = s =
- -
O ) ] 7 H O ) ] 7 H
Gradient descent of f(z,) = §(2° + 11?) with 1 = 5.0 Gradient descent of f(z,y) = 3(2° + i) vith 1

.\ Fixed step — a3 with L = Lipichitz constant and o = 0.7 . Fixed step — a2 with L - Lipschtz constant and o = 0.3

3 3

2 B 2 2 B 2

] = [ 7 i ] = [ 7 i
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Algorithms Unconstrained minimization

Steepest descent

Normalized direction (at z for given ||.||)
Atygq = argmin{V f(z) v | [Jv]| < 1}

Unnormalized direction: Axgq = |V f(2)||«Aznsq

e For Euclidian norm, Azgq = AZgraq.

o For the norm ||z||p = (2T P2)Y/? with P € S7, Azyq = —P~ 'V f(x).
@ For 41 norm, Axgq = —af(‘r'_:) e; where ¢; is i-th standard basis vector

and i such that HVf(a:)Hool: IV ()]l
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Algorithms Unconstrained minimization

Newton step

Newton method: general descent method with search direction
Ay = =V f(2) 'V f(z).
@ x + Az, minimizes second order approximation

Folz4v) = f(2)+ V@) o+ %Nv? Fla)

@ x + Auxy; solves linearized optimality condition

Vi(z+v)~ Vi) + Vif(z)w
=0

o Aux, is steepest descent direction at x in local Hessian norm
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Unconstrained minimization
Newton decrement

Measure of the proximity of x to x*:

1/2

Ma) = (V@) V2 F (@) V(@)

*

@ gives an estimate of f(x) — p*, using quadratic approximationf:

o 1
f(w) —inf Fly) = SA()?
y
@ equal to the norm of the Newton step in the quadratic Hessian norm
1/2
Az) = (AmeV2f(x)Axm)

@ directional derivative in the Newton direction: Vf(2) " Az, = —A(x)?

@ affine invariant (unlike ||V f(z)]|2)
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Algorithms Unconstrained minimization

Unconstrained Newton method

given starting point (%) € dom f, tolerance ¢ > 0,

repeat:
@ Compute the Newton step Axgz) and decrement A(z(¥).
@ Stopping criterion: quit if \2/2 < ¢
© Choose step size t by backtracking line search.

Q Update: z(*++1) = z(k) 4 tAa?gE)

o descent method: for all k, f(z*+t1)) < f(z(*))

o affine invariant: Newton iterates for f(y) = f(Ty) with starting point
y(o) — T_lx(o) are y(k) — T_lx(k)_
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Algorithms Unconstrained minimization

Convergence
Newton method

For f strongly convex (V2 f(x) = mld) and Hessian L-Lipschitz, there exist 7,
with 0 < <m?/L, v > 0:

o if [V f(z™)||2 > n (damped phase):

FaD) = fa®) < —

o if [Vf(z™)|l2 > n (quadratically convergent phase), bactracking selects
unit step and:

L (k+1) L (k+1) ?
2—m3||Vf($ N2 < { 5, 5lIVF(@ )2

— number of iterations until f(z) — p* < € bounded above by:

f(@0) —p* 2m?
f + log, log, T2c
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VLTI A Equality constrained minimization

Equality constrained minimization

With f: R™ — R convex, twice differentiable, find solution to:

min. f(z)
st. Az =b

o Optimality condition: there exists a v* such that:

Ax* =b
Vi) +ATv* =0
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VLTI A Equality constrained minimization

Equality constr. convex quad. minimization (example)
KKT conditions

S T
.—x Px+ +
Tt e rwithPGS’}r.
s.t. Ax = b

o Lagrangian: L(z,v) =ia " Pe+q oz +r4+vT(Azx — D)

-2
o KKT conditions:

Az* =b, Pr*+q+ATv =0

2 E- 1

can be written as:
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VLTI A Equality constrained minimization

Equality constrained Newton method (1/2)

e Newton step at feasible point x is given by:

e )1

Interpretation:
» Aux, solves second order approximation.
» Linearized optimality conditions.

@ Newton decrement (expression differs from unconstrained case, same
interpretation):

Az) = (AxntTVQf(x)_lem> i = ( — Vf(x)TAxm> V2
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Equality constrained minimization
Equality constrained Newton method (2/2)

given starting point z(® € dom f with Az(®) = b (feasible),
tolerance € > 0,
@ Compute the Newton step Az, and decrement A(z).
@ Stopping criterion: quit if A2/2 < e
© Choose step size t by backtracking line search.
Q Update: z*+D) = z(F) 4 ¢ Az

repeat:

o feasible descent method: for all k, f(z**+1D) < f(z*®) and
%) feasible

o affine invariant
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Equality constrained minimization
Infeasible start Newton method (1/2)

Newton method can be generalized to infeasible = (i.e. Ax #b)
Newton step at infeasible point x is given by:

2 ) - [

primal-dual interpretation

@ write optimality conditions as r(y) = 0, where:
y= (@)  rly) = (Vi) +ATv, Az —b)

o linearizing 7(y) = 0 gives r(y + Ay) ~ r(y) + Dr(y)Ay = 0 and
yields the above equation with w = v + Avy.
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Equality constrained minimization
Infeasible start Newton method (2/2)

given starting point () € dom f, v(©,

tolerance € > 0, o €]0,1/2[, 8 €]0, 1]
repeat:

@ Compute primal and dual Newton steps Axy, Avyg

@ Bactracking line search on ||7]|2.

t:=1

while ||r(z + tAzy, v + tAvgll2 > (1 — at)|lr(z, v)||2, t := Bt
@ Update: zF+t1) = () 1t Az v+D = ,(B) L Ay,

until Az =0 and ||r(z,v)|]2 <e

@ not a descent method: f(z**+1) > f(z(*¥) is possible
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VAL Interior point methods

Inequality constrained minimization

Notations and assumptions

With functions f; convex, twice continuously differentiable and A € RP*"™,
rank A = p, find solution to:

min. fo(x)
p* st. fi(x) <0, i=1,....m
Az =D

Assumptions:
e p* is finite and attained

@ problem is strictly feasible: there exist Z with
Z € dom fy fi(z)<0,i=1,...,m, Az =1
— strong duality holds, dual optimum is attained.
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VAL Interior point methods

Inequality constrained minimization

Reformulation

Original problem reads also:

min. fo(z)
p*: st. fi(x) <0, i=1,....m
Ax =10

Using indicator function (1 (u) = 0 if w < 0 and +oo otherwise)
~ equality constrained problem:

. min. fo(z) + > w_(fi(z))
: i=1
s.t. Ax =b
~» Find an approximation for 1g_.
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VAL Interior point methods

Logarithmic barrier

Plot of u» — 1/t*log(—u)

oo
LD | 1)
= AN
o

-10 -8 -6 -4 -2 0

@ Fort>0, uw— —% log(—u) is a smooth approximation of ur_

@ Approximation improves as t — oo
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VAL Interior point methods

Approximate problem

X min. fo(z) + Y w_(fi(z))
p - i=1
st. Az =b
Approximation with logarithmic barrier ¢(x Zlog —fi(z

win. folr) — Zlog ~filw
st. Ax =0

~ equality constrained problem
~~, can be solved by Newton method for increasing values of ¢

130/160



2P R Dot
Central path

For t > 0, define x*(t) as the solution of

min. fo(z) — % Zlog(—fi(ﬂﬁ))
i=1
st. Ar=b

Central path is {z*(t)|t > 0}

One can prove:

P2 fola*(t) =

~ *(t) converges to optimal point as t — oo
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VAL Interior point methods

Central path: proof of suboptimality bound
From previous slide, z*(t) satisfies for a
Az™(t) = b,  fi(a"(t )) <0
V fo(x Z f Vfl N +ATr=0

Last equation reads V fo(z*(t)) + Y1) Af(¢)V fi(2*(t)) + ATv*(t) = 0 with
Af(t) =1/(=tfi(z*(t))) > 0 and v*(t) = ©. Since 2*(t) minimizes original
Lagrangian at A*(t), v*(¢), the latter are dual feasible and:

= L(z"(t), A" (1), v" (1))

p* = Lo\ (1), v (1))
> fola*(£) + D A(6) fila™ (1) + 7 () T (Aa* (t) = b)

> fo(z*(t) —
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VAL Interior point methods

Barrier method

Given strictly feasible z, t = +0), 1> 1, tolerance € > 0,
repeat:

@ Centering step. Compute x*(¢) by minimizing ¢ fy 4+ ¢ subject to
Ax =b.

Update. x := x*(t).
Stopping criterion. quit if m/t < e.

© 00

Increase t. t := ut.

Terminates with fo(z) — p* <

Centering usually done using Newton's method, starting at current x

@ Choice of u involves a trade-off: large ;1 means fewer outer iterations,
more inner (Newton) iterations; typical values: p = 10 — 20.

@ Several heuristics for choice of #(©)
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VAL Interior point methods

Feasibility and phase | methods
Feasibility problem: find z such that

file) <0, i=1,....m, Ax=0b (1)

Phase |: computes strictly feasible point for barrier method
Basic phase | method

min. s
st. filx) <s, 1=1,...,m (2)
Axr =b

o If z, s feasible with s < 0, then x strictly feasible for (1).
o If optimal value p* of (2) is positive, then (1) infeasible.

e If p* =0 in (2) and attained, then (1) feasible (but not strictly).
if ¥ = 0in (2) and not attained, then (1) infeasible.
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VAL Interior point methods

Generalized inequalities

min. fo(z)st. fi(r) <k, 0, i=1,...,m
{ Ax =10

@ fy convex

o f; : R™ — R¥ convex with respect to proper cones K; C RFi

o f; twice continuously differentiable

e A € RP*™ with rankA = p

@ We assume p* is finite and attained

@ We assume proble is strictly feasible; hence strong duality holds and
dual optimum is attained

~ Ex: SOCP, SDP
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VAL Interior point methods

(A few words about) Convergence

Number of outer (centering) iterations: exactly

Fog(m/(d(w

log 11

plus the initial centering step (to compute z*(¢(9)))

Centering problem: see convergence analysis of Newton's method
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Part V

Proximal methods
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Proximal methods

Generalities about proximal methods

Gradient and Newton methods:

e smooth functions (differentiable once or twice),

e medium size problems (Newton), sometimes larger (gradient)
Proximal methods:

@ suitable for smooth and non-smooth functions,

@ suitable for constrained and unconstrained problems,

o large size and distributed implementations,

@ based on high level "prox" operation, which is itself an optimization
problem.
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Proximal methods

(Sub)-gradient in non differentiable case

Gradient descent, non differentiable case

Va2 +ny? if |y <,
flx,y) =

Ly if [y > 2.

Optimal step size
Starting point: (x(o),y(o)) =(n,1)
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Proximal methods

Proximal operator

Let f be a closed proper convex function.

Proximal operator

. 1
prox,(v) = Argmin, /(z) + 5 | — ol

Proximal operator of the scaled function (with A > 0)

. 1
prox, ;(v) = Argmin,, f(x) + ﬁ”x — |13
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Proximal methods

Projection and prox

With ¢ indicator function of convex set C, proximal operator
generalizes projection Il¢:

. 1
proxy,, (v) = Argmin, 10 (x) + ﬁHx — v||§
= Argmin,cc ||z — v[f3

= I¢(v)

e Ex: for C an affine subset C' = {z| Az = b}:

(v)=1d—AT(AAT) 1A+ AT(AAT)

prOXZ{z | Az=b}
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Proximal methods

Prox: examples
Affine function: f(z) =b"z +c:
prox, ¢(v) = v — Ab
Quadratic function: f(z) =227 Az +bTz + c with A € S
prox,¢(v) = (Id + M) — \b)

Indeed: above expression(s) obtained by setting derivative to zero
Vf(z)+ %(r —v)=Ax +b+ %(.’r —v)=0

e Shrinkage operator: Proxiy (v) = 1%\1} or more generally:
A

1

pI‘OXngg(U) == —1 + )\U
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Proximal methods

» For 15 order approximation f1(z) = f(z0) + V.f(z0) " (& — z¢):
prox, ; (z0) = zo — AV f(zo)
» For 2" order approximation

fo(x) = f(20) + Vf(z0) " (z — o) + 3 (x — 20) " V2 f(20)(z — w0):

-1
prox, (o) = zo — (%Id + V2f(a:0)> V f(zo)
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Proximal methods

Interpretation of prox

) 1
proxys(v) = Argmin, f(z) + oo = v

@ prox,¢(v) moves from v towards the minimum of f, penalized by the
cost of staying near to v depending on A

e Connection with gradient step (under some assumptions, for small \):

prox, ¢(v) =~ v — AV f(v)
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Prox and subdifferential

From prox,¢(v) = Argmin, f(z) + %Hx —v|)3, it follows:

p=prosy(v) & 0€05(p)+ 1(p )
& vep+AIf(p)

< wve(ld+Mof)(p)

Resolvent
For an operator 7T, the resolvent of T'is (Id + AT~ L.

Resolvent of subdifferential
prox,; = (Id + AOf)~

In addition, prox,  is single-valued.
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Soft thresholding

(Scalar case)

proxy||(.) of absolute value is the soft thresholding operator:

v—X ifv>
Sx(v) = sign(v)[|v] — )\]+ =10 if —A<v<),
A Soft-thresholding operator v + A If v S _A.

— S1(x)
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Proximal methods

prox of separable sum

If () = 225y filzo),

Proxy (v1)
prox;(v) = :

prox f.n (vn)

> For f(z) = |le|:

[PTOXA||.||1(U)} = S\(v;)

(2

> For f(x) = 1[3:

1
proxap(v) = {155 )
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Other properties of prox

@ Precomposition: if f(z) = f(ax + 3),
prox, 7(v) = é [ prox,zy s (av + B8) — ]
@ Postcomposition: if f(z) = af(x) + b with a > 0,
PTOXAf”(U) = Proxgny (v)
o Affine addition: if f(z) = f(z) +a'z +b,
prox, 7(v) = prox,;(v — Aa)
@ Regularization: if f(z) = f(z) + p/2[|z — a3,

prox, 7(v) = prox;\f((j\/)\)v + (pA)a) where A = /(1 + Ap)
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Proximal methods

Moreau decomposition
Let f*(v) = sup,(v,x) — f(x) be the Fenchel conjugate of f.

Moreau decomposition

v = prox;(v) + prox s« (v)
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Proximal methods

Moreau decomposition
Let f*(v) = sup,(v,x) — f(x) be the Fenchel conjugate of f.

Moreau decomposition

v = prox;(v) + prox s« (v)

Proof: Let p = prox,(v) and define ¢ = v — p. By definition of prox, ¢ € df(p)
and hence p € 9f*(g), which means v — ¢ € df*(q) and hence g = prox;. (v).
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Proximal methods

Moreau decomposition
Let f*(v) = sup,(v,z) — f(x) be the Fenchel conjugate of f.

Moreau decomposition

v = prox;(v) + prox s« (v)

Proof: Let p = prox;(v) and define ¢ = v — p. By definition of prox, ¢ € df(p)
and hence p € 9f*(q), which means v — ¢ € 9f*(q) and hence ¢ = prox;.(v).
» generalizes orthogonal decomposition:
» take L a subspace and f =1:

3 (v) =sup(v' @ —p(z)) = supv ' x
x

z€L
+oo ifvTag#0foranazy € L
= T =12 (v)
0 ifv'z=0forallz e L

where L+ = {y |y 2 =0forall 2 € L}

» The Moreau decomposition reads: v = Il (v) + I . (v)
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Proximal methods

Fixed points of prox

Minimizers of f are fixed points of prox;:

x* minimizes f < x* = prox(z*)

Proof:

= f(x) > f(z*) for any z hence f(a) + 5z —2*[3 > f(z*) + 3lla* — 2*|3
which proves that * minimizes the |.h.s. expression.

« & = prox;(v) if and only if Z minimizes f(x) + 3|z — v[|3, that is if and only
if 0 € 0f(Z)+ (& —v). With & = v, we get 0 € 9f(Z) and thus 2 = v = z*.
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Proximal methods

Proximal point algorithm

Proximal minimization algorithm

g+ = Prox) s (x(k)>

@ Convergence can be justified, few applications.
> lterative refinement method for solving Az = b (A € S%):

) = g0 4 (A 4 eld) (b — AzF)
+» Proximal point minimization of g(z) = 12T Az — b a:
prox,,(v) = (I + M) v + AAv — AAv + \b)

=v— (%Id + A7 (Av — b)
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Proximal methods

Proximal gradient

@ Split objective:

min. f(z)+ g(z)

f:R" >R, g:R" - RU{oo} are |.s.c., proper, convex;
f is differentiable and g can be nonsmooth

@ Proximal gradient method:
kD) = proxy, 4 (az(k) - )\ka(az(k)))
where A\ > 0 is a step size.

> Converges with fixed step size A, = A €]0,2/L] when Vf is Lipschitz
continuous with constant L.
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Proximal methods

LASSO (Least Absolute Shrinkage and Selection Operator)

(Proximal gradient algorithm)

1
min. 5”141‘ —b|I3 +~lz]l1
e Splitting:
1
flx) = §||Afv—b||§ 9(x) =7l
Vi(z) = AT (Az —b) Prox,, () = Sy ()
o Proximal algorithm:

2 = gy (N) —AAT (Az®) — b))

' ) L
where fixed step-size 0 < A < AT AT

> Sometimes called ISTA (lterative Shrinkage-Thresholding Algorithm),
accelerated version called FISTA (Fast ISTA).
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Alternating Direction Method of Multipliers (ADMM)

(seen as a proximal algorithm)
@ Split objective:

min. f(z) + g(z)
fyg:R" - RU{oo} are ls.c., proper, convex.
f and g can be nonsmooth.
o Alternating direction method of multipliers (ADMM):

D) = prox)\f(z(k) —u®)

= prox)\g(w(kﬂ) +u®)
WF D ) (k1) kD)

(k1)

> Also known as Douglas-Rachford splitting.
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Augmented Lagrangian and prox operator

e min. f(x) + g(x) equivalent to:

{min- f(@) +9(2)

st.x—2=0

o Augmented Lagrangian (with parameter p > 0):

Ly(z,2y) = f(@) +9(z) +y" (@ = 2) + Ello — 2I1

1.
pY:

can be written with © =
Ly( — Pl — 2 _ Pr2
p(@,2,y) = f(@) +9(2) + Sllw — 2+ ullz = Sllullz

u)

= Argmin, L,(7, 2,y) = prox,,(z + u) where \ = %.

= Argmin, L,(z,2,y) = prox,s(z —
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Alternating Direction Method of Multipliers (ADMM)

(seen as an augmented Lagrangian method)

e min. f(x) + g(x) equivalent to:

{min- f(@) +9(2)

st.x —2=0
o Augmented Lagrangian (with parameter p > 0):
Ly(z,2.9) = f(@) +9(z) +y" (& = 2) + Sllo — 2I3
o Alternate Direction Method of Multipliers (ADMM) iterations:

2+ = Argmin, L,(z, 2™, y(*))

Sk+1) . Argmin, Lp(.’li(kﬂ)azay(k))
y(k+1) = y(k) + P(l'(k+1) — Z(k+1))
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Proximal methods

Basis pursuit
(ADMM algorithm)

min. [|z|;
s.t. Ax = b
o Equivalent to:
min. o, 4z=p}(®) + [[2[l1
st.x—2=0
o ADMM iterations (derived from slide 154):
2D = T | apmpy

Z(k+1) — S}\(x(k-i-l) +u(k))

(2B — (k)

with S): a soft thresholding and TIy, | 4,—3): projection.
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Proximal methods

LASSO (Least Absolute Shrinkage and Selection Operator)
(ADMM algorithm)

o1
min. §||AIL’ — b3 +vllzl

o Equivalent to:
min. 2|z — b3 + 2l
st.x—2z=0
o ADMM iterations (derived from slide 154):
gD = AAT A+ 1) (20 — u®)) 4 XATD)
A+ = S)\V(w(k”q) +u®)
w®HD = (B) (k) (k)

with Sy,: soft thresholding.
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Alternating Direction Method of Multipliers (ADMM)

(seen as an augmented Lagrangian method)

min. f(z)+ g(2)
st. Ar+ Bz =c

o Augmented Lagrangian (with parameter p > 0):
Ly(z,2,y) = f(z) +g(2) +y' (Az + Bz — ¢) + gHAaz + Bz — |

o Alternate Direction Method of Multipliers (ADMM) iterations:

2+ .= Argmin, Lp(x,z(k),y(k))

Skt1) . Argmin, Lp(x("’“),z,y(k))

y(k—i-l) — y(k) +p(A:E(k+l) —I—Bz(k+1) - C)
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Generalized LASSO

(ADMM algorithm)
1 P
min. 5 [[Az = blf3 + [ Fzls

e Equivalent to:
1
min. §||Aa7 —bll5 + 2l
st. Foe. —2 =0

o ADMM iterations (derived from slide 159 with p = 1/), compare with slide
158):

T = +pF ' F)™ + pF ' (2\Y —u
(k+1) (ATA P T ) I(ATb p T( (k) (k)))
2D = Sv/p(Fx(kH) +u®)
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