Optimization

Marc Castella marc.castella@telecom-sudparis.eu

Télécom SudParis

September 7, 2023

Part I

Introduction

Topics in the course

- Introduction and generalities about optimization
- Notions of convexity
 - Convex sets and functions
 - Separation theorem
- Optimization problems
 - (Convex optimizations problems: LP, QP, SOCP, SDP)
 - Optimality conditions
- Duality
 - Lagrange duality
 - Conjugate function and Fenchel duality
 - Karush-Kuhn-Tucker optimality conditions
- Algorithms
 - Notions on unconstrained optimization (gradient, Newton)
 - Notions on constrained optimization (interior points)
 - ▶ Basic introduction to proximal methods

Optimization softwares

Many free and commercial softwares exist for optimization:

- optimization solvers: SeDuMi, SDPT3, CPLEX, Gurobi, Mosek, ...
- high level modelling languages and parsers: CVX, YALMIP, ...

but many algorithms are not that complicated and can be programmed (e.g. with Matlab/Scientific Python)!

Useful references

Convex optimization:

- Boyd and Vandenberghe, Convex Optimization (Cambridge University Press)
- http://stanford.edu/~boyd/
- Borwein and Lewis, Convex Analysis and Nonlinear Optimization, Theory and Examples (Canadian Mathematical Society)

Proximal algorithms:

- N. Parikh and S. Boyd, *Proximal Algorithms* (Foundations and Trends in Optimization, 1(3):123-231, 2014)
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers (Foundations and Trends in Machine Learning, 3(1):1–122, 2011.)

Some notations

\mathbb{R}	real numbers
\mathbb{R}_{+}	nonnegative (≥ 0) numbers
\mathbb{R}_{++}	positive (>0) numbers
\mathbb{S}^n	n imes n real-valued symmetric matrices
$\mathbb{S}^n_+/\mathbb{S}^n_{++}$	$n \times n$ sym. positive semidefinite /definite matrices
A^{\top}	transpose of the matrix $\it A$
$\operatorname{tr} A$	trace of the matrix ${\cal A}$
1	all ones (column) vector
$\ .\ _{2}$	Euclidian norm
$\ .\ _1 / \ .\ _{\infty}$	$\ell_1 \mathrel{/} \ell_\infty$ norm
sup / inf	supremum / infimum
$\preceq_K / \succeq_K / \prec_K / \succ_K$	inequalities wrt to cone K . If not specified,
\preceq / \succeq (\prec / \succ)	K is positive orthant or \mathbb{S}^n_+
[.]+	positive part $[x]_+ = \max(0, x)$

Optimization problems

Unconstrained optimization problem

Given a function $f_0: \mathbb{R}^n \to \mathbb{R}$, find $x^* \in \mathbb{R}^n$ such that:

$$\forall x \in \mathbb{R}^n : f_0(x^*) \le f_0(x)$$

Constrained optimization problem

Given functions $f_0: \mathbb{R}^n \to \mathbb{R}$ and $f_i: \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \dots, m$, find x^* such that:

$$f_i(x^*) \le 0, i = 1, \dots, m$$

 $f_0(x^*) \le f_0(x), \quad \forall x \in \mathbb{R}^n \text{ such that } f_i(x) \le 0, i = 1, \dots, m$

Discrete optimization (not covered in this course):

 f_0 and f_i are functions $\mathcal{D} \to \mathbb{R}$ with:

- ullet ${\cal D}$ finite : combinatorial optimization problem
- $\mathcal{D} = \mathbb{Z}$: integer programming

Optimization problem

$$\begin{cases} \min. f_0(x) \\ \text{s.t. } f_i(x) \le 0, \quad i = 1, \dots, m \end{cases}$$

- $x = (x_1, \dots, x_n)^{\top}$: optimization variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i: \mathbb{R}^n \to \mathbb{R}, i=1,\ldots,m$: constraint functions

Optimal value: $p^* := \inf\{f_0(x) | f_i(x) \le 0, \text{ for } i = 1, ..., m\}$

Optimal solution: x^* satisfies $f_i(x^*) \leq 0$, i = 1, ..., m and:

 $f_0(x^*) \leq f_0(x)$ for all x that satisfy $f_i(x) \leq 0, i = 1, \ldots, m$.

Examples

Portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

Data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Signal restoration

- variables: signal values
- constraints: prior informations, value limits
- objective: data fit + regularization

Example: (linear) classification

- Training data $(f_i, c_i)_{i=1,...,m}$ where for any i=1,...,m:
 - ▶ $f_i \in \mathbb{R}^n$: features, ▶ $c_i \in \{+1, -1\}$: category.
- Classify new data $f \in \mathbb{R}^n$ in the two classes. Linear classifier $\hat{c} = \operatorname{sign}(x^\top f)$: find weight vector x
- Associated optimization problem with ℓ_2 regularization:

$$\min_{x} \sum_{i=1}^{m} \varphi \left(-c_i(x^{\top} f_i) \right) + \gamma ||x||_2 \qquad (\gamma = \text{const. } > 0)$$

where cost function $\varphi(z)$ can be:

- $\varphi(z) = 1(z \ge 0)$
- $\varphi(z) = \log(1 + e^{-z})$ (logistic regression)
- $\varphi(z) = [1-z]_+$ (support vector machine)
- $\varphi(z) = e^z$

General optimization problem:

- very difficult to solve (if nonconvex)
- methods involve some compromise, e.g.:
 - local optimization method (nonlinear programming): not always finding the solution
 - global optimization: very long computation time, worst case complexity grows exponentially with problem size
- → These algorithms are often based on solving convex subproblems

Convex optimization problems can be solved efficiently and reliably:

- least-squares problems (analytical solution even exist in this case)
- linear programming problems
- many other convex programming problems

Convex optimization problem

$$\begin{cases} \min. f_0(x) \\ \text{s.t. } f_i(x) \le b_i, \quad i = 1, \dots, m \end{cases}$$

- Objective and constraint functions are convex
- Includes as special cases: least squares, linear programming
- Convex optimization is "almost a technology":
 - reliable and efficient algorithms (but generally no analytical solutions)
 - computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$ where F is cost of evaluating f_i 's and their first+second derivatives
- Many problems can be solved via convex optimization:
 - often difficult to recognize
 - many tricks for transforming problems

Euclidian space

Euclidian space \mathbf{E} (finite dimension) with inner-product $\langle .,. \rangle$

- Often $\mathbf{E} = \mathbb{R}^n$ and $\langle x, y \rangle = x^\top y = \sum_{i=1}^n x_i y_i$
- (Euclidian) norm $||x||_2 = \sqrt{\langle x, x \rangle}$
- Cauchy-Schwarz inequality: $|\langle x,y\rangle| \leq \|x\|_2 \|y\|_2$
- Orthogonal complement:

$$G^{\perp} = \{ y \in \mathbf{E} \, | \, \langle x, y \rangle = 0 \text{ for all } x \in G \}$$

• Ball of center x_0 radius $r \ge 0$:

$$B(x_0, r] = \{x \in \mathbf{E} \mid ||x - x_0|| \le r\}$$
 (closed ball)
$$B(x_0, r] = \{x \in \mathbf{E} \mid ||x - x_0|| < r\}$$
 (open ball)

Dual norm

Let $\|.\|$ be a norm on \mathbf{E} . Associated **dual norm** $\|.\|_*$:

$$||z||_* := \sup_{||x|| \le 1} \langle z, x \rangle$$

- $\bullet \langle z, x \rangle \le ||z||_* ||x||$
- Dual norm of $\|.\|_2$ is itself.
- $\|.\|_{\infty}$ and $\|.\|_{1}$ are dual norms of each other.
- Dual of ℓ_p -norm is ℓ_q norm with $\frac{1}{p} + \frac{1}{q} = 1$.
- $\|.\|_{**} = \|.\|$ (need not hold in infinite dimensional spaces)

Open and closed sets

Interior, closure, boundary

interior of a set *C*:

$$\operatorname{int} C = \{x \in C \,|\, B(x, \varepsilon[\subset C \text{ for sufficiently small } \varepsilon\}$$

A set C is open if $C = \operatorname{int} C$ and closed if its complement is open.

closure of a set C:

$$\operatorname{cl} C = \{x \in \mathbf{E} \mid \text{for any (small) } \varepsilon, B(x, \varepsilon \cap C \neq \emptyset) \}$$

boundary of a set C: $\operatorname{bd} C = \operatorname{cl} C \setminus \operatorname{int} C$

core of a set C= set of points $x\in C$ such that for any direction $d\in \mathbf{E}$, $x+td\in C$ for all small t. Note that $\mathrm{int}\,C\subseteq\mathrm{core}\,C$ (but $\mathrm{core}\,C$ may be larger than $\mathrm{int}\,C$).

Linear maps, adjoint, null space

${f E}$ and ${f F}$ two Euclidian spaces.

- $A: \mathbf{E} \to \mathbf{F}$ is linear if $A(\lambda x + \mu y) = \lambda Ax + \mu Ay$ for any $x, y \in \mathbf{E}$ and $\lambda, \mu \in \mathbb{R}$.
- Linear functions $\mathbf{E} \to \mathbb{R}$ have the form $\langle a, . \rangle$ for some $a \in \mathbf{E}$
- Affine functions = linear + constant
- **Adjoint** of A is the linear map $A^* : \mathbf{F} \to \mathbf{E}$ such that:

$$\langle A^*y, x \rangle = \langle y, Ax \rangle$$
 for any $x \in \mathbf{E}, y \in \mathbf{F}$

- ▶ If $\mathbf{E} = \mathbb{R}^n$, $\mathbf{F} = \mathbb{R}^p$, adjoint of $A : \mathbb{R}^n \to \mathbb{R}^p$ is given by A^\top
- Null space (kernel): $\operatorname{Ker} A = \{x \in \mathbf{E} \mid Ax = 0\}$

Symmetric matrices

- Set of symmetric matrices: $\mathbb{S}^n = \{M \in \mathbb{R}^{n \times n} \, | \, M^\top = M\}$
- Positive semidefinite matrices: $\mathbb{S}^n_+ = \{M \in \mathbb{S}^n \mid x^\top M x \geq 0 \text{ for all } x\}$
- Positive definite matrices: $\mathbb{S}^n_{++} = \{ M \in \mathbb{S}^n \, | \, x^\top M x > 0 \text{ for all } x \neq 0 \}$
- Inner product:

$$\langle A, B \rangle = \operatorname{tr} AB \text{ for } A, B \in \mathbb{S}^n$$

• $M \in \mathbb{S}^n_+$ (resp. \mathbb{S}^n_{++}) will be written $M \succeq 0$ (resp. $M \succ 0$). Similarly (see later):

$$A - B \in \mathbb{S}^n_+ \Leftrightarrow A \succeq B$$
 $A - B \in \mathbb{S}^n_{++} \Leftrightarrow A \succ B$

Domain and extended-value function

Let f be a function $\mathbf{E} \to \mathbb{R}$ (often, $\mathbf{E} = \mathbb{R}^n$).

Domain: dom
$$f = \{x \in \mathbf{E} \mid f(x) \text{ exists}\}$$
 (dom $f \subset \mathbf{E}$)

If $f: \operatorname{dom} f \to \mathbb{R}$, we use the extended-value extension of f:

$$f: \mathbf{E} \to \mathbb{R} \cup \{+\infty\}$$
$$x \mapsto \begin{cases} f(x) & \text{if } x \in \text{dom } f \\ +\infty & \text{if } x \notin \text{dom } f \end{cases}$$

- Often simplifies the notation and provides a unifying view.
- $dom f = \{x \in \mathbf{E} \mid f(x) < \infty \}$
- If dom $f \neq \emptyset$, the function is said **proper**

Extended-value functions

Examples

• Log-barrier $f: \mathbb{R} \to \mathbb{R}$ defined by:

$$f(x) = \begin{cases} -\log(-x) & \text{if } x < 0, \\ +\infty & \text{if } x \ge 0. \end{cases}$$

 $\operatorname{dom} f = \mathbb{R}_{--}$

• Indicator function of a given set $C \subset \mathbf{E}$:

$$i_C(x) = \begin{cases} 0 & \text{if } x \in C, \\ +\infty & \text{otherwise.} \end{cases}$$

 $\operatorname{dom} i_C = C$

Gradient vector

Let $f: \mathbb{R}^n \to \mathbb{R}$.

• Gradient (column) vector $\nabla f(x)$:

$$[\nabla f(x)]_i = \frac{\partial f(x)}{\partial x_i}$$

First-order approximation of f near \overline{x} :

$$\hat{f}_1(x) = f(\overline{x}) + \nabla f(\overline{x})^{\top} (x - \overline{x})$$

Ex:

$$\begin{split} f(x) &= a^\top x & \nabla f(x) = a \\ g(x) &= x^\top M x & \nabla g(x) = (M + M^\top) x \\ &= 2M x \text{ if } M \text{ symmetric.} \end{split}$$

Hessian matrix

Let $f: \mathbb{R}^n \to \mathbb{R}$.

• Hessian matrix $\nabla^2 f(x)$ (often denoted by H(x) in this course):

$$[\nabla^2 f(x)]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

Second-order approximation of f near \overline{x} :

$$\hat{f}_2(x) = f(\overline{x}) + \nabla f(\overline{x})^{\top} (x - \overline{x}) + \frac{1}{2} (x - \overline{x})^{\top} \nabla^2 f(\overline{x}) (x - \overline{x})$$

Ex:

$$\begin{split} f(x) &= a^\top x & \nabla^2 f(x) = 0 \\ g(x) &= x^\top M x & \nabla^2 g(x) = M + M^\top \\ &= 2M \text{ if } M \text{ symmetric.} \end{split}$$

Lower semi-continuous function (l.s.c.)

f is l.s.c. if and only if at any point x:

$$x_n \xrightarrow[n \to \infty]{} x \implies f(x) \le \lim_{n \to \infty} f(x_n)$$

f is l.s.c. \Leftrightarrow epigraph $\{(x,t)\in\mathbb{R}^n\times\mathbb{R}\,|\,f(x)\leq t\}$ is a closed set

22/160

Part II

Convexity, convex optimization

Convex set

Convex set: contains line segment between any two points in the set

$$x, y \in C, 0 \le \theta \le 1 \Rightarrow \theta x + (1 - \theta)y \in C$$

• Points of the form $\theta x + (1 - \theta)y$ with $0 \le \theta \le 1$ corresponds to the line segment between x and y.

Affine set

Affine set: the line through any two points in the set is contained in the set

$$x, y \in C, \ \theta \in \mathbb{R} \Rightarrow \theta x + (1 - \theta)y \in C$$

• Points of the form $\theta x + (1 - \theta)y$ with $\theta \in \mathbb{R}$ corresponds to the line through x and y.

Affine and convex hull

Affine hull of set C = all affine combinations of points in C

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \theta_1 + \dots + \theta_k = 1\}$$

Convex hull of set C = all convex combinations of points in C

$$\operatorname{conv} C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \theta_i \ge 0, \theta_1 + \dots + \theta_k = 1\}$$

Hyperplanes and halfspaces in \mathbb{R}^n

Let $a \in \mathbb{R}^n, a \neq 0$ and $b \in \mathbb{R}$:

• Hyperplane: $\{x \in \mathbb{R}^n \mid a^{\top}x = b\}$: convex and affine

• Halfspace: $\{x \in \mathbb{R}^n \mid a^\top x \leq b\}$: convex but not affine

- a is the normal vector
- The hyperplane separates the whole space \mathbb{R}^n in two halfspaces

Balls and ellipsoids

Euclidian ball:

$$B(\overline{x}, r] = \{x \mid ||x - \overline{x}||_2 \le r\} = \{x \mid (x - \overline{x})^\top (x - \overline{x}) \le r^2\}$$
$$= \{\overline{x} + ru \mid ||u||_2 \le 1\}$$

Ellipsoid:

$$\mathcal{E} = \{x \mid (x - \overline{x})^{\top} P^{-1} (x - \overline{x}) \le 1\} \quad \text{ where } P \in \mathbb{S}^n_{++}$$

With $A = P^{1/2}$, other representation: $\mathcal{E} = \{\overline{x} + Au \mid ||u||_2 \le 1\}$

Operations that preserve convexity (1/3)

Intersection: the intersection of any number of convex sets is convex

Ex:

- Polyhedra: intersection of a finite number of hyperplanes/halfspaces
 - $P = \{x \mid a_i^\top x \le b_i, j = 1, \dots, m, c_i^\top x = d_i, i = 1, \dots, p\}$
 - Simplex $\{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \mathbf{1}^\top \theta = 1\}$ $(v_0, \dots, v_k \text{ affinely independent})$
- Intersection of halfspaces:

$$\{x \in \mathbb{R}^m / | \sum_{k=1}^m x_k \cos kt | \le 1, \forall t \in [-\pi/3, \pi/3] \}$$

• Positive semidefinite matrices: $\mathbb{S}^n_+ = \bigcap_{x \neq 0} \{ M \in \mathbb{S}^n \, | \, x^\top M x \geq 0 \}$

Convex hull of a set S: intersection of all convex sets containing S.

Operations that preserve convexity (2/3)

Affine transformation: the image and inverse image of a convex set under an affine function is convex.

Ex:

- Scaling, translation, projection.
- Sum $S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$
- Partial sum $\{(x, y_1 + y_2) ; (x, y_1) \in S_1, (x, y_2) \in S_2\}$
- Polyhedron (inverse image of nonnegative orthant)
- Ellipsoid (image/inverse image of the unit Euclidian ball)
- Solution set of a Linear Matrix Inequality (LMI): $\{x \in \mathbb{R}^n \mid x_1A_1 + \dots + x_nA_n \leq B\}$ where B, A_1, \dots, A_n are given in \mathbb{S}^p

Operations that preserve convexity (3/3)

Perspective function

$$P(x,t) = \frac{x}{t}$$
 where $P: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$

 \rightarrow image and inverse image through perspective remains convex.

Linear-fractional $f(x) = \frac{Ax+b}{c^{\top}x+d}$ with $\operatorname{dom} f = \{x \mid c^{\top}x+d\} > 0 \to \text{preserve convexity (as a composition of affine and perspective functions).$

Relative interior

interior of a set *C*:

$$\operatorname{int} C = \{x \in C \mid B(x, \varepsilon[\subset C \text{ for sufficiently small } \varepsilon\}$$

relative interior of a set C = interior of C relative to its affine hull:

$$\operatorname{relint} C = \{x \in C \, | \, B(x,\varepsilon[\cap \operatorname{aff} C \subseteq C \text{ for sufficiently small } \varepsilon\}$$

Cones

Cone C: for every $x \in C$ and $\theta \geq 0$, we have $\theta x \in C$

Convex cone C: for every $x_1,x_2\in C$ and $\theta_1,\theta_2\geq 0$, we have $\theta_1x_1+\theta_2x_2\in C$

• Conic hull of a set C: $\{\theta_1x_1+\cdots+\theta_kx_k\,|\,x_i\in C, \theta_i\geq 0, i=1,\ldots,k\}$

Examples of cones

- Nonnegative orthant $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- Positive semidefinite matrices

$$\mathbb{S}^n_+ = \{ M \in \mathbb{S}^n \, | \, M \succeq 0 \} = \{ M \in \mathbb{S}^n \, | \, x^\top M x \geq 0, \forall x \in \mathbb{R}^n \}$$

where \mathbb{S}^n is the set of symmetric matrices.

Norm cone

$$\{(x,t) \in \mathbb{R}^{n+1} \mid ||x|| \le t\}$$

When $\|.\| = \|.\|_2$, also called quadratic / second-order / Lorentz cone

Cone of positive polynomials

$$K = \{ p \in \mathbb{R}^n \mid p_1 + p_2 t + \dots + p_n t^{n-1} \ge 0, \forall t \in [0, 1] \}$$

Normal cone

Normal cone to a convex set C at $\overline{x} \in C$:

$$\mathcal{N}_C(\overline{x}) = \{ d \in \mathbf{E} \mid \langle d, x - \overline{x} \rangle \leq 0, \forall x \in C \}$$

when $\mathbf{E} = \mathbb{R}^n$, simplifies to:

$$\mathcal{N}_C(\overline{x}) = \{ d \in \mathbb{R}^n \mid d^\top(x - \overline{x}) \le 0, \forall x \in C \}$$

Proper cones, generalized inequalities

Proper cone:

- convex
- closed
- solid (i.e. nonempty interior)
- pointed (i.e. contains no line: $x \in K, -x \in K \Rightarrow x = 0$)

Generalized inequalities w.r.t. proper cone K:

$$x \preceq_K y \Leftrightarrow y - x \in K$$

 $x \prec_K y \Leftrightarrow y - x \in \text{int } K$ (interior of K)

Examples of generalized inequalities

• $K = \mathbb{R}^n_+$ gives usual partial ordering on \mathbb{R}^n (componentwise)

$$x \preceq_K y \iff x_i \leq y_i, \forall i$$

ullet $K=\mathbb{S}^n_+=$ set of symmetric positive semidefinite matrices

$$A \leq B \iff B - A \in \mathbb{S}^n_+$$

• K = cone of positive polynomials

$$p \leq_K q \iff 0 \leq (q_1 - p_1) + (q_2 - p_2)t + \dots + (q_n - p_n)t^{n-1}, \forall t$$

Separating hyperplane

Separating hyperplane theorem If C and D are disjoint convex sets $(C \cap D = \emptyset)$, there exist $a \neq 0, a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that:

$$\forall x \in C, a^{\top}x \leq b$$
 and $\forall x \in D, a^{\top}x \geq b$

The hyperplane $\{x \mid a^{\top}x = b\}$ separates C and D.

Strict separation

Basic separation If C closed and convex and $y \notin C$, there exist $a \neq 0, a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that:

$$\forall x \in C, \quad a^{\top} x \le b < a^{\top} y$$

Supporting hyperplanes

Supporting hyperplane $C \subset \mathbb{R}^n$, $\overline{x} \in \operatorname{bd} C$ If $a \neq 0$ and $\forall x \in C, a^{\top}x \leq a^{\top}\overline{x}$, then $\{x \in \mathbb{R}^n \mid a^{\top}x = a^{\top}\overline{x}\}$ is a supporting hyperplane of C.

If C is convex, then there exist a supporting hyperplane at every boundary point of C.

Convex function

 $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if $\operatorname{dom} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom } f$, $0 \le \theta \le 1$.

- strictly convex when: $f(\theta x + (1 \theta)y) < \theta f(x) + (1 \theta)f(y)$
- f is **concave** if (-f) is convex.

Epigraph

The **epigraph** of a function $f: \mathbb{R}^n \to \mathbb{R}$ is:

$$epif := \{(x,t) \in \mathbb{R}^{n+1} | x \in dom f, f(x) \le t\}$$

- f is convex if and only if its epigraph is convex.
- sublevel set: $C_{\alpha} := \{x \mid f(x) \leq \alpha\}$
- $\triangleright C_{\alpha}$ is a convex set if f convex

Jensen's inequality

For a convex function f:

- $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$: called **Jensen's** inequality
- extends to
 - ▶ sums (finite or not): for $\theta_1, \ldots, \theta_p \ge 0, \ \theta_1 + \cdots + \theta_p = 1$:

$$f(\theta_1 x_1 + \dots + \theta_p x_p) \le \theta_1 f(x_1) + \dots + \theta_p f(x_p)$$

▶ integrals and expected values: if p(x) is a pdf with support $S \subset \text{dom } f$:

$$f(\int_{S} xp(x) \ dx) \le \int_{S} f(x)p(x) \ dx \qquad f(\mathbb{E}\{X\}) \le \mathbb{E}\{f(X)\}$$

Examples of convex/concave functions

convex

- $\bullet \|x\|$
- \bullet max (x_1,\ldots,x_n)
- $f(x,y) = \frac{x^2}{y}$ with dom $f = \mathbb{R} \times \mathbb{R}_{++}$

concave

- $f(x) = (\prod_{i=1}^{n} x_i)^{1/n}$
- $f(X) = \log \det X$ with $\operatorname{dom} f = \mathbb{S}_{++}^n$.

convex and concave

• affine functions: $f(x) = a^{T}x + b$

First order conditions

Differentiable f with convex domain is convex if and only if:

$$f(x) \ge f(\overline{x}) + \nabla f(\overline{x})^{\top} (x - \overline{x}) \quad \forall x, \overline{x} \in \text{dom } f$$

The linear approximation of f is a global underestimator.

Second order conditions

Twice differentiable f with convex domain:

$$f ext{ convex } \Leftrightarrow \nabla^2 f(x) \succeq 0 \quad \forall x \in \operatorname{dom} f$$

If $\nabla^2 f(x) \succ 0 \quad \forall x \in \text{dom } f$, then f strictly convex.

- Ex: $f(x) = \frac{1}{2}x^{\top}Px + q^{\top}x + r$ defined on \mathbb{R}^n is:
 - convex iff $P \succeq 0$ (concave iff $P \preceq 0$),
 - strictly convex iff $P \succ 0$ (strictly concave iff $P \prec 0$).

Operations that preserve convexity (1/3)

Nonnegative weighted sums: $f = w_1 f_1 + \cdots + w_m f_m$ is convex if f_1, \ldots, f_m convex and $w_1, \ldots, w_m \ge 0$.

Composition with an affine mapping: $x \mapsto f(Ax + b)$ is convex (resp. concave) if f convex (resp. concave)

Pointwise maximum: $x \mapsto \max\{f_1(x), \dots, f_m(x)\}$ is convex if f_1, \dots, f_m convex (extends to supremum).

Operations that preserve convexity (2/3)

Composition: let $g: \mathbb{R}^n \to \mathbb{R}^k$ and $h: \mathbb{R}^k \to \mathbb{R}$ and $f = h \circ g: \mathbb{R}^n \to \mathbb{R}$ defined by f(x) = h(g(x)).

- ullet f is convex if h is convex nondecreasing and g is convex,
- f is convex if h is convex nonincreasing and g is concave,
- ullet f is concave if h is concave nondecreasing and g is concave,
- ullet f is concave if h is concave nonincreasing and g is convex.

(Easy proof in simple real valued differentiable case.)

Operations that preserve convexity (3/3)

Minimization: if f(x,y) convex in (x,y), $C \neq \emptyset$, $g(x) = \inf_{y \in C} f(x,y)$ is convex in x provided $g(x) > -\infty$ for some x.

Perspective of a function: perspective function of $f:\mathbb{R}^n\to\mathbb{R}$ is $g:\mathbb{R}^{n+1}\to\mathbb{R}$ defined by

$$g(x,t) = tf(x/t)$$

The perspective preserves convexity.

How to prove convexity?

- verify definition, often simplified by restricting to a line:
- $\triangleright f$ is convex if and only if it is convex when restricted to any line that intersects $\operatorname{dom} f$
 - Ex: prove concavity of $f(X) = \log \det X$ with $\operatorname{dom} f = \mathbb{S}^n_{++}$.
- 2 for twice differentiable functions, second-order condition
- ullet show that f is obtained from simple convex functions by operations that preserve convexity.

Optimization problem in standard form

General form, non convex (but can be):

$$\begin{cases} \min. f_0(x) & (x \in \mathcal{D} \subset \mathbb{R}^n) \\ \text{s.t. } f_i(x) \le 0, & i = 1, \dots, m \\ h_j(x) = 0, & j = 1, \dots, p \end{cases}$$

- $x = (x_1, \dots, x_n)^{\top}$: optimization variables
- $f_0: \mathcal{D} \to \mathbb{R}$: objective or cost function
- $f_i: \mathcal{D} \to \mathbb{R}, i=1,\ldots,m$: inequality constraint functions
- $h_j: \mathcal{D} \to \mathbb{R}, j=1,\ldots,p$: equality constraint functions

optimal value:
$$p^* := \inf\{f_0(x)|f_i(x) \le 0, h_j(x) = 0, x \in \mathcal{D}\}$$

- $p^* = +\infty$: problem unfeasible (no x satisfies the constraints)
- $p^* = -\infty$: problem unbounded below

Vocabulary, remarks

- Constraints:
 - implicit: $x \in \mathcal{D}$ intersection of all functions domain:
 - $\mathcal{D} \subset \operatorname{dom} f_i \text{ and } \mathcal{D} \subset \operatorname{dom} h_j$
 - explicit: $f_i(x) \leq 0$, $h_j(x) = 0$
- unconstrained problem: only implicit constraints
- Feasible point: any x that satisfies the constraint.
 - feasibility problem = find a feasible point = special case of general problem with $f_0(x) = 0$
- optimal point x^* :
 - x^{\star} global optimal if feasible and $p^{\star} = f_0(x^{\star}) \leq f_0(x)$ for any feasible x
 - ▶ x_{loc}^{\star} local optimum if feasible and $f_0(x_{\text{loc}}^{\star}) \leq f_0(x)$ for any x such that $||x x_{\text{loc}}^{\star}|| \leq \alpha$ and x feasible.

Convex optimization problem (standard form)

$$\begin{cases} \min. f_0(x) & (x \in \mathcal{D} = \bigcap_{i=0}^m \text{dom } f_i) \\ \text{s.t. } f_i(x) \le 0, & i = 1, \dots, m \\ {a_i}^\top x = b_i, & i = 1, \dots, p \end{cases}$$

- objective f_0 and constraint functions f_1, \ldots, f_m are convex
- equality constraints are affine.

often written as:

$$\begin{cases} \min. f_0(x) & (x \in \mathcal{D}) \\ \text{s.t. } f_i(x) \le 0, \quad i = 1, \dots, m \\ Ax = b \end{cases}$$

Remark: can be written with inequalities only.

Indeed, for $i = 1, \dots, p$, replace the equalities by the two inequalities

Feasible set of a convex optimization problem

General convex problem with inequalities only:

$$\begin{cases} \min. f_0(x) & (x \in \mathcal{D}) \\ \text{s.t. } f_i(x) \le 0, & i = 1, \dots, m \end{cases}$$

- for all i, the sublevel set $C_i = \{x \in \mathbb{R}^n \mid f_i(x) \le 0\}$ is convex (follows from convexity of f_i)
- feasible set $X := \mathcal{D} \cap \bigcap_{i=1}^m C_i$ is convex
- A convex optimization problem minimizes a convex function over a convex set (take care: some convex sets may be nasty and intractable)

Global / local optimality for a convex optimization problem

Any locally optimal point of a convex problem is globally optimal.

<u>Proof:</u> Let x_{loc}^{\star} be a local optimum. For an R > 0,

$$\forall x \text{ feasible, } \|x - x_{\text{loc}}^{\star}\| < R \Rightarrow f_0(x_{\text{loc}}^{\star}) \le f_0(x)$$
 .

 x_{loc}^{\star} not global $\Rightarrow f_0(\overline{x}) < f_0(x_{\mathrm{loc}}^{\star})$ for a feasible \overline{x} .

Let $z=(1-\theta)x_{\mathrm{loc}}^{\star}+\theta\overline{x}$ with $\theta=\frac{R}{2\|\overline{x}-x_{\mathrm{loc}}^{\star}\|}<1$ and use convexity to get a contradiction:

$$f_0(x_{\text{loc}}^{\star}) \le f_0(z) \le (1 - \theta) f_0(x_{\text{loc}}^{\star}) + \theta f_0(\overline{x}) < f_0(x_{\text{loc}}^{\star})$$

Optimality criterion

For convex and differentiable f_0 (dom f_0 open).

 x^* is optimal if and only if:

• x^* feasible and: $\nabla f_0(x^*)^\top (x - x^*) \ge 0$ for all feasible x.

Equivalent condition: $-\nabla f_0(x^*) \in \mathcal{N}_X(x^*)$ (normal cone)

Optimality criterion

(examples, see the exercises)

Particular cases, with differentiable f_0 (dom f_0 open):

• unconstrained problem: $\min f_0(x)$

$$x^*$$
 optimal $\Leftrightarrow \quad \nabla f_0(x^*) = 0, \quad x^* \in \operatorname{dom} f_0$

• equality constrained problem: $\begin{cases} \min f_0(x) \\ \text{s.t. } Ax = b \end{cases}$

$$\boldsymbol{x}^{\star} \text{ optimal} \Leftrightarrow \quad \nabla f_0(\boldsymbol{x}^{\star}) + \boldsymbol{A}^{\top} \boldsymbol{\nu}^{\star} = \boldsymbol{0}, \quad \boldsymbol{A} \boldsymbol{x}^{\star} = \boldsymbol{b}, \quad \boldsymbol{x}^{\star} \in \operatorname{dom} f_0$$

• minimization over nonnegative orthant: $\begin{cases} \min. \ f_0(x) \\ \text{s.t. } x \succeq 0 \end{cases}$

$$x^*$$
 optimal $\Leftrightarrow x^* \succeq 0, \quad \nabla f_0(x^*) \succeq 0,$ $x_i^* [\nabla f_0(x^*)]_i = 0, i = 1, \dots, n$

Strict separation

Basic separation If C closed and convex and $y \notin C$, there exist $a \neq 0, a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $\forall x \in C, \quad a^\top x \leq b < a^\top y$.

<u>Proof:</u> Let \overline{x} be a minimizer of $f(x) = \frac{\|x-y\|^2}{2}$ on C (which exists). Optimality condition $-\nabla f(\overline{x}) \in \mathcal{N}_C(\overline{x})$, yields for all $x \in C$

Part III

Duality and optimality conditions

Lagrangian (inequality constraints only)

$$\begin{cases} \min. f_0(x) & x \in \mathcal{D} \subset \mathbb{R}^n \\ \text{s.t. } f_i(x) \le 0, & i = 1, \dots, m \end{cases}$$

with $\mathcal{D} := \bigcap_{i=1}^m \operatorname{dom} f_i$.

Lagrangian $\mathcal{L}: \mathcal{D} \times \mathbb{R}^m \to \mathbb{R}$

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

• λ_i are Lagrange multipliers, $\lambda = (\lambda_1, \dots, \lambda_m)^{\top}$.

Lagrangian: linear approximation interpretation

Equivalent unconstrained form:

min.
$$f(x) := f_0(x) + \sum_{i=1}^m i_{\mathbb{R}_-}(f_i(x))$$

Replace indicator functions by "soft" constraint/underestimator:

For $\lambda \succ 0$:

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \le f(x)$$

Lagrange dual function

Dual function

$$\mathcal{L}_D(\lambda) := \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right)$$

- ullet \mathcal{L}_D is **concave** (even if non convex problem), can be $-\infty$
- Lower bound property: if $\lambda \succeq 0$, then $\mathcal{L}_D(\lambda) \leq p^*$

<u>Proof:</u> for $\lambda \succeq 0$ and x feasible:

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \underbrace{\lambda_i}_{\geq 0} \underbrace{f_i(x)}_{\leq 0} \leq f_0(x)$$

Taking the infimum on the l.h.s yields $\mathcal{L}_D(\lambda) \leq f_0(x)$ for any feasible x and hence the result.

The dual problem

Lagrange dual problem

$$\begin{cases} \max \mathcal{L}_D(\lambda) \\ \text{s.t. } \lambda \succeq 0 \end{cases}$$

$$d^{\star} := \sup_{\lambda \succeq 0} \mathcal{L}_D(\lambda)$$

- It is a convex problem
- λ dual feasible if $\lambda \succeq 0, \lambda \in \text{dom } \mathcal{L}_D$

Weak duality: $d^* \leq p^*$ always holds (also for nonconvex problems) $p^* - d^*$ is called duality gap.

Weak and strong duality

Weak duality (always holds): $d^* \leq p^*$

Strong duality: $d^* = p^*$

- does not hold in general
- holds for convex problems under constraint qualifications (see later).

Duality and max-min inequality

Primal with optimal value
$$p^{\star}$$
:
$$\begin{cases} \min. \ f_0(x) & (x \in \mathcal{D}) \\ \text{s.t. } f_i(x) \leq 0, \quad i = 1, \dots, m \end{cases}$$

- Lagrangian: $\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$
- Primal reads also:

$$p^* = \inf_{x \in \mathcal{D}} \sup_{\lambda \succeq 0} \mathcal{L}(x, \lambda)$$

• Dual problem:

$$d^{\star} = \sup_{\lambda \succ 0} \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda)$$

We have (max-min inequality):

$$\sup_{\lambda \succeq 0} \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda) \le \inf_{x \in \mathcal{D}} \sup_{\lambda \succeq 0} \mathcal{L}(x, \lambda)$$

Strong duality when strong max-min/saddle-point property satisfied

Geometric interpretation of duality

Convex case

Geometric interpretation of duality

Non-convex case

Lagrangian (inequality constraints only)

$$\begin{cases} \min. f_0(x) & x \in \mathcal{D} \subset \mathbb{R}^n \\ \text{s.t. } f_i(x) \le 0, & i = 1, \dots, m \end{cases}$$

with $\mathcal{D} := \bigcap_{i=1}^m \operatorname{dom} f_i$.

Lagrangian $\mathcal{L}: \mathcal{D} \times \mathbb{R}^m \to \mathbb{R}$

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

• λ_i are Lagrange multipliers, $\lambda = (\lambda_1, \dots, \lambda_m)^{\top}$.

Lagrangian sufficient conditions

Assume $(x^*, \lambda^*) \in \mathcal{D} \times \mathbb{R}^m$ satisfies:

$$\begin{split} \forall i = 1, \dots, m, & f_i(x^\star) \leq 0 & \text{(primal feasability)} \\ \forall i = 1, \dots, m, & \lambda_i^\star \geq 0 & \text{(dual feasability)} \\ \forall i = 1, \dots, m, & \lambda_i^\star f_i(x^\star) = 0 & \text{(complementary slackness)} \\ \forall x \text{ feasible}, & \mathcal{L}(x^\star, \lambda^\star) \leq \mathcal{L}(x, \lambda^\star) & \text{(}x^\star \text{ minimizes } \mathcal{L}(., \lambda^\star)\text{)} \end{split}$$

then, x^* is optimal (global minimum).

Proof: For any feasible x:

$$\overline{f_0(x^*)} = \mathcal{L}(x^*, \lambda^*) \le \mathcal{L}(x, \lambda^*) = f_0(x) + \sum_{i=1}^m \underbrace{\lambda_i^* f_i(x)}_{\le 0} \le f_0(x)$$

- λ^* : Lagrange multiplier vector
- Remark: no convexity!

KKT conditions (Karush-Kuhn-Tucker)

Convex case: sufficient conditions

Assume $(x^*, \lambda^*) \in \operatorname{int} \mathcal{D} \times \mathbb{R}^m$ satisfies:

$$\forall i=1,\ldots,m, \qquad f_i(x^\star) \leq 0 \qquad \qquad \text{(primal feasability)}$$

$$\forall i=1,\ldots,m, \qquad \lambda_i^\star \geq 0 \qquad \qquad \text{(dual feasability)}$$

$$\forall i=1,\ldots,m, \qquad \lambda_i^\star f_i(x^\star) = 0 \qquad \qquad \text{(complementary slackness)}$$

$$\nabla f_0(x^\star) + \sum_{i=1}^m \lambda_i^\star \nabla f_i(x^\star) = 0 \qquad \qquad \text{(} x^\star \text{ critical point of the Lagrangian)}$$

then, if the problem is **convex**, x^* is optimal.

- λ^* : Lagrange multiplier vector
- Remark: for convex functions f_0, f_1, \ldots, f_m , last condition implies $\mathcal{L}(x^*, \lambda^*) < \mathcal{L}(x, \lambda^*)$

Necessary optimality conditions (Fritz-John)

$$\begin{cases} \min. f_0(x) & x \in \mathcal{D} \subset \mathbb{R}^n \\ \text{s.t. } f_i(x) \le 0, & i = 1, \dots, m \end{cases}$$

- Active set at point x: $I(x) = \{i \in \{1, ..., m\} | f_i(x) = 0\}$
- Fritz-John optimality conditions: If $x_{\text{loc}}^{\star} \in \text{int } \mathcal{D}$ is a **local minimizer**, there exist $\lambda_0, \lambda_1, \dots, \lambda_m \geq 0$ such that:

$$\lambda_0 \nabla f_0(x_{\text{loc}}^{\star}) + \sum_{i \in I(x_{\text{loc}}^{\star})} \lambda_i \nabla f_i(x_{\text{loc}}^{\star}) = 0$$

- For $i \notin I(x_{\text{loc}}^{\star})$, complementary slackness yields $\lambda_i = 0 \leadsto \text{terms don't}$ appear above.
- To rule out the case $\lambda_0 = 0$, constraint qualification at x_{loc}^{\star} (required for KKT to be necessary conditions)

Local constraint qualifications

Constraint qualifications at a point x:

- MFCQ (Mangasarian-Fromovitz constraint qualification): there is a direction d satisfying $\nabla f_i(x)^{\top}d < 0$ for all $i \in I(x)$
- LICQ (linear independence constraint qualification): $\{\nabla f_i(x)\}_{i\in I(x)}$ are linearly independent

Obviously: LICQ \Rightarrow MFCQ

Global constraint qualification (Slater)

- Slater constraint qualification for convex problem with constraints $f_i(x) \leq 0, \quad i = 1, \dots, m$
- \blacktriangleright there exists $\hat{x} \in \operatorname{relint} \mathcal{D}$ with $f_i(\hat{x}) < 0, \quad i = 1, \dots, m$
 - Refinement: affine inequalities need not be strict. For constraints $\begin{cases} f_i(x) \leq 0, & i=1,\ldots,m\\ Ax \leq b, & Cx=d \end{cases}$
- ▶ there exists $\hat{x} \in \operatorname{relint} \mathcal{D}$ with $f_i(\hat{x}) < 0, \quad i = 1, ..., m$ and $Ax \leq b, Cx = d$
- + For a convex problem: Slater ⇒ MFCQ at any feasible point.
- + Slater ≈ there exist a strictly feasible point
- + Slater \Rightarrow strong duality and dual value attained when $d^* > -\infty$

73/160

KKT necessary optimality conditions

Suppose x_{loc}^{\star} is a **local minimizer** of

$$\inf\{f_0(x) \mid x \in \mathcal{D}, f_i(x) \le 0, i = 1, \dots, m\}$$

If MFCQ holds at x_{loc}^{\star} , there is a Lagrange multiplier vector λ^{\star} for x_{loc}^{\star} :

$$\begin{split} &\forall i=1,\ldots,m, & f_i(x_{\mathrm{loc}}^{\star}) \leq 0 & \text{(primal feasibility)} \\ &\forall i=1,\ldots,m, & \lambda_i^{\star} \geq 0 & \text{(dual feasibility)} \\ &\forall i=1,\ldots,m, & \lambda_i^{\star}f_i(x_{\mathrm{loc}}^{\star}) = 0 & \text{(complementary slackness)} \\ &\nabla f_0(x_{\mathrm{loc}}^{\star}) + \sum_{i=1}^m \lambda_i^{\star} \nabla f_i(x_{\mathrm{loc}}^{\star}) = 0 & \text{(}x_{\mathrm{loc}}^{\star} \text{ critical point of the Lagrangian)} \end{split}$$

Remarks:

- No convexity here, but local minimizer considered.
- For convex problems, above conditions are necessary and sufficient for global optimality.

Lagrangian (inequality constraints only)

$$\begin{cases} \min. f_0(x) & x \in \mathcal{D} \subset \mathbb{R}^n \\ \text{s.t. } f_i(x) \le 0, & i = 1, \dots, m \end{cases}$$

with $\mathcal{D} := \bigcap_{i=1}^m \operatorname{dom} f_i$.

Lagrangian $\mathcal{L}: \mathcal{D} \times \mathbb{R}^m \to \mathbb{R}$

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$$

• λ_i are Lagrange multipliers, $\lambda = (\lambda_1, \dots, \lambda_m)^{\top}$.

Necessary optimality conditions (through strong duality)

If strong duality holds, x^*, λ^* are primal, dual optimal. Then:

- x^* minimizes $x \mapsto \mathcal{L}(x, \lambda^*)$
- $\nabla_x \mathcal{L}(x, \lambda^*)|_{x^*} = 0$ (see next slide)
 - $\lambda_i^{\star} f_i(x^{\star}) = 0, \ i = 1, \dots, m$ (complementary slackness)

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0 \qquad f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$$

<u>Proof:</u> (write all inequalities, which become equalities)

$$d^* = \mathcal{L}_D(\lambda^*) = \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f_0(x^*) = p^*$$

where
$$\mathcal{L}(x^\star, \lambda^\star) = f_0(x^\star) + \sum_{i=1}^m \lambda_i^\star f_i(x^\star)$$

Remark: no convexity assumption

Necessary KKT conditions (through strong duality)

If strong duality holds, x^*, λ^* are primal, dual optimal, then the following conditions (called KKT) hold:

- Primal constraints: $f_i(x^*) \leq 0$, for i = 1, ..., m
- ② Dual constraints: $\lambda_i^{\star} \geq 0$, for $i = 1, \dots, m$
- **3** Complementary slackness: $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$
- **9** Gradient of Lagrangian w.r.t. x vanishes at x^* :

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*)$$

Remark: no convexity assumption

KKT sufficient conditions for convex problem

If $\overline{x}, \overline{\lambda}$ satisfy KKT for a convex problem, then they are primal/dual optimal.

- **1** Primal constraints: $f_i(\overline{x}) \leq 0$, for $i = 1, \ldots, m$
- 2 Dual constraints: $\overline{\lambda}_i > 0$, for $i = 1, \dots, m$
- **3** Complementary slackness: $\overline{\lambda}_i f_i(\overline{x}) = 0$ for $i = 1, \dots, m$
- $\nabla_x \mathcal{L}(\overline{x}, \overline{\lambda}, \overline{\nu}) = \nabla f_0(\overline{x}) + \sum_{i=1}^m \overline{\lambda}_i \nabla f_i(\overline{x}) = 0$

Indeed:

$$f_0(\overline{x}) = \mathcal{L}(\overline{x}, \overline{\lambda})$$
 from compl. slackness and primal feas.
= $\mathcal{L}_D(\overline{\lambda})$ from vanishing of $\nabla_x \mathcal{L}(\overline{x}, \overline{\lambda})$ and convexity.

KKT necessary and sufficient conditions for convex problem

For a convex problem, if Slater's condition is satisfied:

- Strong duality holds,
- Dual optimal value is attained when $d^{\star} > -\infty$ (i.e. there exists λ^{\star} such that $\mathcal{L}_D(\lambda^{\star}) = d^{\star} = p^{\star}$),
- KKT conditions are sufficient and necessary for global optimality.

Remark: This generalizes $\nabla f_0(x^*) = 0$ for unconstrained problem.

Perturbation and sensitivity analysis (1/2)

Unperturbed optimization problem and dual

$$p^{\star}: \begin{cases} \min. \ f_0(x) \\ \text{s.t. } f_i(x) \le 0, \quad 1 \le i \le m \end{cases} \begin{cases} \max. \mathcal{L}_D(\lambda) \\ \text{s.t. } \lambda \succeq 0 \end{cases}$$

Perturbed problem and dual

$$p^{\star}(u) : \begin{cases} \min. f_0(x) \\ \text{s.t. } f_i(x) \le u_i, \quad 1 \le i \le m \end{cases} \begin{cases} \max. \mathcal{L}_D(\lambda) - u^{\top} \lambda \\ \text{s.t. } \lambda \succeq 0 \end{cases}$$

Optimal value $p^*(u)$ as a function of parameters u(for the original problem $p^* = p^*(0)$)

Assume for problem, strong duality and λ^* dual optimal.

Global sensitivity:

$$p^{\star}(u) \geq \mathcal{L}_D(\lambda^{\star}) - u^{\top} \lambda^{\star}$$
 (weak duality pert. prob.)
$$\geq p^{\star}(0) - u^{\top} \lambda^{\star} \text{ (strong duality)}$$

• Local sensitivity: if $p^*(u)$ differentiable at 0:

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0)}{\partial u_i}$$

<u>Proof</u>: take $u=te_i$ where e_i is i^{th} canonical basis vector and get $\frac{p^{\star}(te_i)-p^{\star}(0)}{t} \geq -\lambda_i^{\star}$ for t>0 or $\leq -\lambda_i^{\star}$ for t<0.

Interpretation: . . .

Lagrangian and dual function

$$\begin{cases} \min. \ f_0(x) & (x \in \mathcal{D} \subset \mathbb{R}^n) \\ \text{s.t. } f_i(x) \le 0, \quad i = 1, \dots, m \\ h_j(x) = 0, \quad j = 1, \dots, p \end{cases}$$

Lagrangian $\mathcal{L}: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ (λ_i, ν_j are Lagrange multipliers)

$$\mathcal{L}(x,\lambda,\nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \nu_j h_j(x)$$

Dual function $\mathcal{L}_D(\lambda, \nu) := \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu)$

- \mathcal{L}_D is **concave** (even if non convex problem), can be $-\infty$
- Lower bound property: if $\lambda \succeq 0$, $\nu \in \mathbb{R}^p$, then $\mathcal{L}_D(\lambda, \nu) \leq p^*$

Lagrangian: linear approximation interpretation

Equivalent unconstrained form:

min.
$$f(x) := f_0(x) + \sum_{i=1}^m i_{\mathbb{R}_-}(f_i(x)) + \sum_{j=1}^p i_{\{0\}}(h_j(x))$$

Replace indicator functions by "soft" constraint/underestimator:

 $\lambda \succeq 0$ and $\nu \in \mathbb{R}^p$, $\mathcal{L}(x,\lambda,\nu) \leq f(x)$.

For

Lagrange dual function

Lagrange dual problem

$$d^{\star} := \sup_{\lambda \succeq 0, \nu \in \mathbb{R}^{p}} \mathcal{L}_{D}(\lambda, \nu) = \begin{cases} \max. \mathcal{L}_{D}(\lambda, \nu) \\ \text{s.t. } \lambda \succeq 0 \end{cases}$$

- It is a convex problem.
- λ, ν are dual feasible if $\lambda \succeq 0, \nu \in \mathbb{R}^p, (\lambda, \nu) \in \text{dom } \mathcal{L}_D$

Weak duality (always holds): $d^* \leq p^*$

 $p^{\star} - d^{\star}$ is called **duality gap**.

Strong duality: $d^* = p^*$

- does not hold in general.
- holds for convex problems under constraint qualifications.

Duality and max-min inequality

Primal with optimal value
$$p^{\star}$$
:
$$\begin{cases} \min. \ f_0(x) & (x \in \mathcal{D}) \\ \text{s.t. } f_i(x) \leq 0, \quad i = 1, \dots, m \\ h_j(x) = 0, \quad j = 1, \dots, p \end{cases}$$

- Lagrangian: $\mathcal{L}(x,\lambda,\nu):=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{j=1}^p\nu_jh_j(x)$
- Primal reads also:

$$p^{\star} = \inf_{x \in \mathcal{D}} \sup_{\nu \in \mathbb{R}^p, \lambda \succeq 0} \mathcal{L}(x, \lambda, \nu)$$

• Dual problem:

$$d^{\star} = \sup_{\nu \in \mathbb{R}^{p}, \lambda \succeq 0} \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu)$$

We have (max-min inequality):

$$d^{\star} = \sup_{\nu \in \mathbb{R}^{p}} \inf_{\lambda \succeq 0} \mathcal{L}(x, \lambda, \nu) \leq \inf_{x \in \mathcal{D}} \sup_{\nu \in \mathbb{R}^{p}} \mathcal{L}(x, \lambda, \nu) = p^{\star}$$

Strong duality when strong max-min/saddle-point property satisfied.

KKT optimality conditions

$$\begin{split} f_i(x^\star) &\leq 0, \quad i=1,\ldots,m \\ h_j(x^\star) &= 0, \quad j=1,\ldots,p \\ \lambda_i^\star &\geq 0, \quad i=1,\ldots,m \\ (\text{dual feasability}) \\ (\nu_j^\star &\in \mathbb{R}, \quad j=1,\ldots,p) \\ \lambda_i^\star f_i(x^\star) &= 0, \quad i=1,\ldots,m \\ \mathcal{L}(x^\star,\lambda^\star,\nu^\star) &\leq \mathcal{L}(x,\lambda^\star,\nu^\star), \quad \forall x \text{ feasible} \quad (x^\star \text{ minimizes } \mathcal{L}(.,\lambda^\star,\nu^\star)) \end{split}$$

KKT optimality conditions

$$\begin{split} f_i(x^\star) &\leq 0, \quad i=1,\dots,m \\ h_j(x^\star) &= 0, \quad j=1,\dots,p \\ \lambda_i^\star &\geq 0, \quad i=1,\dots,m \\ (\text{dual feasability}) \\ (\nu_j^\star &\in \mathbb{R}, \quad j=1,\dots,p) \\ \lambda_i^\star f_i(x^\star) &= 0, \quad i=1,\dots,m \\ \nabla f_0(x^\star) &+ \sum_{i=1}^m \lambda_i^\star \nabla f_i(x^\star) + \sum_{i=1}^p \nu_j^\star \nabla h_j(x^\star) = 0 \\ \end{split} \qquad \text{(complementary slackness)}$$

• Remark: for convex problem, last condition implies $\mathcal{L}(x^{\star}, \lambda^{\star}, \nu^{\star}) \leq \mathcal{L}(x, \lambda^{\star}, \nu^{\star})$ for feasible x.

Least-norm solution of linear equation (example)

Lagrange dual

min.
$$||x||_2^2$$
 s.t. $Ax = b$

Lagrangian:

$$\mathcal{L}(x,\nu) = x^{\top}x + \nu^{\top}(Ax - b)$$

• Dual function: (minimum of \mathcal{L} w.r.t. x when $\nabla_x \mathcal{L}(x,\nu) = 0$)

$$\mathcal{L}_D(\nu) = \mathcal{L}(-\frac{1}{2}A^{\top}\nu, \nu)$$

= $-\frac{1}{4}\nu^{\top}AA^{\top}\nu - b^{\top}\nu \le \inf\{\|x\|_2^2 \mid Ax = b\}$

• Primal and dual problems:

$$p^* : \begin{cases} \min x^\top x \\ \text{s.t. } Ax = b \end{cases} \qquad d^* : \max -\frac{1}{4} \nu^\top A A^\top \nu - b^\top \nu$$

Least-norm solution of linear equation (example)

KKT conditions and solution

min.
$$||x||_2^2$$
 s.t. $Ax = b$

- Lagrangian: $\mathcal{L}(x,\nu) = x^{\top}x + \nu^{\top}(Ax b)$
- Dual function: $\mathcal{L}_D(\nu) = -\frac{1}{4}\nu^\top A A^\top \nu b^\top \nu$
- KKT conditions:

$$\begin{cases} Ax^* = b \\ 2x^* + A^\top \nu^* = 0 \end{cases}$$

• Solution (when AA^{\top} invertible):

$$\begin{cases} x^* = A^\top (AA^\top)^{-1} b \\ \nu^* = -2(AA^\top)^{-1} b \end{cases}$$

LP (standard form) (example)

Lagrange dual

min.
$$c^{\top}x$$
 s.t. $Ax = b, x \succeq 0$

Lagrangian:

$$\mathcal{L}(x,\lambda,\nu) = c^{\top}x - \lambda^{\top}x + \nu^{\top}(Ax - b)$$
$$= -b^{\top}\nu + (c + A^{\top}\nu - \lambda)^{\top}x$$

• Dual function:

$$\mathcal{L}_D(\lambda, \nu) = \begin{cases} -b^\top \nu & \text{if } A^\top \nu - \lambda + c = 0\\ -\infty & \text{otherwise.} \end{cases}$$

• Primal and dual problems:

$$p^{\star}: \begin{cases} \min c^{\top} x \\ \text{s.t. } Ax = b \\ x \succeq 0 \end{cases} \qquad d^{\star}: \begin{cases} \max c - b^{\top} \nu \\ \text{s.t. } A^{\top} \nu + c \succeq 0 \end{cases}$$

LP (standard form) (example)

KKT conditions

min.
$$c^{\top}x$$
 s.t. $Ax = b, x \succeq 0$

Lagrangian:

$$\mathcal{L}(x, \lambda, \nu) = c^{\top} x - \lambda^{\top} x + \nu^{\top} (Ax - b)$$
$$= -b^{\top} \nu + (c + A^{\top} \nu - \lambda)^{\top} x$$

KKT conditions:

$$\begin{cases} Ax^* = b, & x^* \succeq 0 \\ \lambda^* \succeq 0 \\ \lambda_i^* x_i^* = 0, & i = 1, \dots, n \\ A^\top \nu^* + c - \lambda^* = 0 \end{cases}$$

Equality constr. convex quad. minimization (example) KKT conditions

$$\begin{cases} \min. \ \frac{1}{2} x^{\top} P x + q^{\top} x + r \\ \text{s.t. } Ax = b \end{cases} \text{ with } P \in \mathbb{S}^n_+.$$

- Lagrangian: $\mathcal{L}(x,\nu) = \frac{1}{2}x^{\top}Px + q^{\top}x + r + \nu^{\top}(Ax b)$
- KKT conditions:

$$Ax^* = b$$
, $Px^* + q + A^\top \nu^* = 0$

can be written as:

$$\begin{bmatrix} P & A^\top \\ A & 0 \end{bmatrix} \begin{bmatrix} x^\star \\ \nu^\star \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

Subgradient

A **subgradient** of f at \overline{x} is any vector ϕ such that:

$$f(\overline{x}) + \phi^{\top}(x - \overline{x}) \le f(x)$$
 for all x

- $x \mapsto f(\overline{x}) + \phi^{\top}(x \overline{x})$ is a linear underestimator of f.
- if f convex and differentiable, $\nabla f(\overline{x})$ is (unique) subgradient.

Subdifferential

Definition

The **subdifferential** of f at \overline{x} is the set of all subgradients, denoted by:

$$\partial f(\overline{x}) = \{ \phi \in \mathbb{R}^n \, | \, f(\overline{x}) + \phi^\top(x - \overline{x}) \le f(x) \text{ for all } x \}$$

- $\partial f(\overline{x})$ is a closed convex set (always).
- ullet ∂f is a multi-function / set-valued map. $\partial f: \mathbb{R}^n o 2^{\mathbb{R}^n}$
- dom $\partial f = \{x \in \mathbb{R}^n \mid \partial f(x) \neq \emptyset\}.$
- If f convex and differentiable at $\overline{x} \in \operatorname{int} \operatorname{dom} f$, then $\partial f(\overline{x}) = {\nabla f(\overline{x})}.$

Subdifferential

Examples

The **subdifferential** of f at \overline{x} is the set of all subgradients:

$$\partial f(\overline{x}) = \{ \phi \in \mathbb{R}^n \, | \, f(\overline{x}) + \phi^\top(x - \overline{x}) \leq f(x) \text{ for all } x \}$$

- If f convex and differentiable at $\overline{x} \in \operatorname{int} \operatorname{dom} f$, then $\partial f(\overline{x}) = \{\nabla f(\overline{x})\}.$
- Absolute value: $\partial |.|(x) = \begin{cases} \{-1\} & x < 0, \\ \{1\} & x > 0, \\ [-1,1] & x = 0 \end{cases}$

• Indicator function: $\partial \imath_C(\overline{x}) = \mathcal{N}_C(\overline{x})$ (normal cone operator)

Fermat's rule

Characterization of global minimizer:

$$x^*$$
 global minimizer of $f \Leftrightarrow 0 \in \partial f(x^*)$

Proof: Use definition of subdifferential:

$$0 \in \partial f(x^*) \Leftrightarrow f(x^*) + \langle 0, x - x^* \rangle \leq f(x)$$
 for all x

Remark:

ullet holds also for nonconvex f.

The Fenchel conjugate function (definition)

Let $f: \mathbb{R}^n \to \mathbb{R}$ (with $f(x) = \infty$ for $x \notin \text{dom } f$). Fenchel conjugate:

$$f^*(v) = \sup_{x \in \mathbb{R}^n} (v^\top x - f(x))$$

The Fenchel conjugate function (first properties)

$$f^*(v) = \sup_{x \in \mathbb{R}^n} (v^\top x - f(x))$$

- f^* is convex (because \sup of affine functions. True for non convex f also.)
- f > q implies $f^* < q^*$
- If dom $f \neq \emptyset$, f^* never takes the value $-\infty$
- f^* is l.s.c. (lower semi-continuous) (because epigraph closed)

Lower semi-continuous function (l.s.c.)

f is l.s.c. if and only if at any point x:

$$x_n \xrightarrow[n \to \infty]{} x \implies f(x) \le \lim_{n \to \infty} f(x_n)$$

f is l.s.c. \Leftrightarrow epigraph $\{(x,t)\in\mathbb{R}^n\times\mathbb{R}\,|\,f(x)\leq t\}$ is a closed set

Fenchel conjugate function

Examples

$$f(x) = ax + b$$

$$f(x) = e^x$$

•
$$f(x) = -\log x$$

$$f^*(v) = \begin{cases} -b & \text{if } v = a, \\ +\infty & \text{otherwise.} \end{cases}$$

$$\begin{cases} v \log v - v & \text{if } v > 0 \end{cases}$$

$$f^*(v) = \begin{cases} v \log v - v & \text{if } v \ge 0, \\ +\infty & \text{otherwise.} \end{cases}$$

$$f^*(v) = \begin{cases} -\log(-v) - 1 & \text{if } v < 0, \\ +\infty & \text{otherwise.} \end{cases}$$

Fenchel conjugate function

Examples (continued)

•
$$f(x) = \frac{1}{2}x^{\top}Qx$$
 with $Q \succ 0$

•
$$f(x) = \frac{1}{2} ||x||_2^2$$

•
$$f(x) = ||x||$$

$$f^*(v) = \frac{1}{2}v^{\top}Q^{-1}v.$$

$$f^*(v) = \frac{1}{2}\|v\|_2^2.$$

$$f^*(v) = \int_0^{\infty} \|f\|v\|_* \le 1,$$

$$f^*(v) = \begin{cases} 0 & \text{if } ||v||_* \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

Dual norm

Let $\|.\|$ be a norm on \mathbf{E} . Associated **dual norm** $\|.\|_*$:

$$||z||_* := \sup_{||x|| \le 1} \langle z, x \rangle$$

- $\langle z, x \rangle \le ||z||_* ||x||$
- Dual norm of $\|.\|_2$ is itself.
- $\|.\|_{\infty}$ and $\|.\|_{1}$ are dual norms of each other.
- Dual of ℓ_p -norm is ℓ_q norm with $\frac{1}{p} + \frac{1}{q} = 1$.
- $\|.\|_{**} = \|.\|$ (need not hold in infinite dimensional spaces)

Fenchel-Young inequality

- For any x and v in \mathbb{R}^n : $f(x) + f^*(v) \ge v^\top x$
- Equality case:

$$f(x) + f^*(v) = v^{\top}x \Leftrightarrow v \in \partial f(x)$$

• For f convex, I.s.c., proper, equality case:

$$f(x) + f^*(v) = v^{\top} x \Leftrightarrow v \in \partial f(x)$$
$$\Leftrightarrow x \in \partial f^*(v)$$

Fenchel biconjugate

- The biconjugate $f^{**}=(f^*)^*$ is convex l.s.c. (from properties of $f^*(v)=\sup_{x\in\mathbb{R}^n}(v^\top x-f(x))$)
- f^{**} is a minorant of f (follows from Fenchel-Young inequality $f(x) \geq v^{\top}x f^*(v)$)

Theorem

For any function $f: \mathbb{R}^n \to]-\infty, +\infty]$:

$$f=f^{**}\Leftrightarrow f$$
 is closed (l.s.c.) and convex \Leftrightarrow For all points in \mathbb{R}^n ,
$$f(x)=\sup\{\alpha(x)\,|\,\alpha \text{ an affine minorant of }f\}$$

For proper closed convex functions, the conjugacy operation induces a bijection.

Fenchel duality

Let $f: \mathbb{R}^n \to]-\infty, +\infty]$ and $g: \mathbb{R}^m \to]-\infty, +\infty]$ be given function and $A \in \mathbb{R}^{m \times n}$.

$$p^{\star} := \inf_{x \in \mathbb{R}^n} \{ f(x) + g(Ax) \}$$
 (primal value)
$$d^{\star} := \sup_{v \in \mathbb{R}^m} \{ -f^*(A^\top v) - g^*(-v) \}$$
 (dual value)

We have:

- ullet Weak duality: $d^\star \leq p^\star$ (proof: Fenchel-Young inequality)
- Strong duality: if f and g are **convex**, under qualification constraints¹: $p^* = d^*$ and the supremum in the dual problem is attained if finite.

 $^{0 \}in \operatorname{core}(\operatorname{dom} g - A \operatorname{dom} f)$ or stronger condition $A \operatorname{dom} f \cap \operatorname{cont} g \neq \emptyset$

Fenchel and Lagrange duality

- Primal problem (as in Fenchel: previous slide): $\min_{x \in \mathbb{R}^n} f(x) + g(Ax)$
- Equivalent constrained problem:

$$\min_{(x,y)\in\mathbb{R}^n\times\mathbb{R}^m} f(x) + g(y) \quad \text{s.t. } y = Ax$$

Lagrangian and dual function:

$$L(x, y, \nu) = f(x) + g(y) + \nu^{\top}(y - Ax)$$

$$\inf_{x, y} L(x, y, \nu) = -\sup_{x \in \mathbb{R}^n} \{x^{\top} A^{\top} \nu - f(x)\} - \sup_{y \in \mathbb{R}^m} \{(-\nu)^{\top} y - g(y)\}$$

$$= -f^*(A^{\top} \nu) - g^*(-\nu)$$

• Dual problem: $\max_{\nu\in\mathbb{R}^m}-f^*(A^\top\nu)-g^*(-\nu)$ is exactly Fenchel dual! (see previous slide)

Part IV

Algorithms

Unconstrained minimization

With $f: \mathbb{R}^n \to \mathbb{R}$ convex, twice differentiable, find solution to:

$$p^*: \min_x f(x)$$

- Optimality condition: $\nabla f(x^*) = 0$
- Produce a sequence of points $x^{(k)} \in \text{dom } f$ such that:

$$f(x^{(k)}) \to p^*$$

• Starting point $x^{(0)}$ required, such that:

$$x^{(0)} \in \operatorname{dom} f$$
 sublevel set $\{x \mid f(x) \le f(x^{(0)})\}$ is closed

Descent methods

Starting from $x^{(0)}$ repeat for k = 0, 1, 2, ...:

$$x^{(k+1)} = x^{(k)} + t\Delta x^{(k)}$$
 with $f(x^{(k+1)}) < f(x^{(k)})$

- $t \ge 0$ is the **step size** or step length
- $\Delta x^{(k)}$ is the **search direction** or step and must satisfy:

$$\nabla f(x^{(k)})^{\top} \Delta x^{(k)} < 0$$

(because
$$f(x^{(k)}) + \nabla f(x^{(k)})^\top (t\Delta x^{(k)}) \leq f(x^{(k+1)})$$
 from convexity)

Simplified notation:

current point: x, search direction: Δx

next point:
$$x^+ = x + t\Delta x$$
 with: $f(x^+) < f(x)$

Step size and line search

- Constant step size t > 0 chosen and fixed.
- Exact line search $t = \operatorname{argmin}_{t \geq 0} f(x + t\Delta x)$
- Backtracking (with parameters $\alpha \in]0,1/2[,\beta \in]0,1[)$ starting at t=1, repeat $t:=\beta t$ until:

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^{\top} \Delta x$$

(also known as Armijo's rule) graphical interpretation:

Unconstrained descent method

given starting point $x^{(0)} \in \text{dom } f$, tolerance $\epsilon > 0$, repeat:

- Compute search direction $\Delta x^{(k)}$
- ② Stopping criterion: **quit** if it is smaller than ϵ .
- \odot Choose step size t (backtracking, line search, constant, ...)
- **9** Update: $x^{(k+1)} = x^{(k)} + t\Delta x^{(k)}$

Possible search directions for a descent method:

- gradient: $\Delta x_{\mathrm{grad}}^{(k)} = -\nabla f(x^{(k)})$
- (normalized) steepest descent: $\Delta x_{\mathrm{nsd}}^{(k)} = \operatorname{argmin}_v \{ \nabla f(x^{(k)})^\top v \mid ||v|| \le 1 \}$
- Newton: $\Delta x_{\rm nt}^{(k)} = -\nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$

Gradient descent

Gradient descent direction (at point x):

$$\Delta x_{\rm grad} = -\nabla f(x)$$

Stopping condition: usually $\|\nabla f(x^{(k)})\|_2 < \epsilon$.

Strongly convex function

f is strongly convex iff $f - \frac{m}{2} ||x||_2^2$ is convex for an m > 0. For twice continuously differentiable f, equivalent to $\nabla^2 f(x) \succeq m \mathbf{Id}$

Implications:

- $f(y) \ge f(x) + \nabla f(x)^{\top} (y x) + \frac{m}{2} ||y x||_2^2$ (convexity)
- $p^* \ge f(x) \frac{1}{2m} \|\nabla f(x)\|_2^2$ (minimize above r.h.s. w.r.t. y)
- Sublevel sets are bounded (because of the first inequality above). On $\{x \mid f(x) \leq f(x^{(0)})\}$, Hessian max. eigenvalue bounded: $\nabla^2 f(x) \prec M \mathrm{Id}$.
- $\rightarrow f(y) \le f(x) + \nabla f(x)^{\top} (y x) + \frac{M}{2} ||y x||_2^2$
 - M/m is an upper-bound on the condition number of $\nabla^2 f(x)$. $m\mathbf{Id} \preceq \nabla^2 f(x) \preceq M\mathbf{Id}$

Convergence

(Gradient with exact line search)

For strongly convex f:

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

- $c \in]0,1[$ is a constant, depends on $x^{(0)}$ and the function f.
- $c = 1 \frac{m}{M}$ if $m \text{Id} \leq \nabla^2 f(x) \leq M \text{Id}$.
- $f(x^{(k)}) p^* \le \epsilon$ after at most $\frac{\log((f(x^{(0)} p^*)/\epsilon)}{\log 1/c}$ iterations.

→ gradient very simple but very slow, rarely used in practice.

Gradient with optimal step

Gradient with fixed step

Steepest descent

Normalized direction (at x for given $\|.\|$)

$$\Delta x_{\text{nsd}} = \operatorname{argmin} \{ \nabla f(x)^{\top} v \mid ||v|| \le 1 \}$$

Unnormalized direction: $\Delta x_{\rm sd} = \|\nabla f(x)\|_* \Delta x_{\rm nsd}$

- For Euclidian norm, $\Delta x_{\rm sd} = \Delta x_{\rm grad}$.
- For the norm $||z||_P = (z^\top Pz)^{1/2}$ with $P \in \mathbb{S}^n_+$, $\Delta x_{\mathrm{sd}} = -P^{-1}\nabla f(x)$.
- For ℓ_1 norm, $\Delta x_{\rm sd} = -\frac{\partial f(x)}{\partial x_i} e_i$ where e_i is i-th standard basis vector and i such that $\|\nabla f(x)\|_{\infty} = |[\nabla f(x)]_i|$.

Newton step

Newton method: general descent method with search direction

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x) .$$

• $x + \Delta x_{\rm nt}$ minimizes second order approximation

$$\hat{f}_2(x+v) = f(x) + \nabla f(x)^{\top} v + \frac{1}{2} v^{\top} \nabla^2 f(x) v$$

• $x + \Delta x_{\rm nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla f(x) + \nabla^2 f(x)v$$

= 0

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

Newton decrement

Measure of the proximity of x to x^* :

$$\lambda(x) = \left(\nabla f(x)^{\top} \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

 \bullet gives an estimate of $f(x)-p^{\star},$ using quadratic approximation \widehat{f}

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^{2}$$

• equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt}^{\top} \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $\nabla f(x)^{\top} \Delta x_{\rm nt} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)

Unconstrained Newton method

given starting point $x^{(0)} \in \text{dom } f$, tolerance $\epsilon > 0$, repeat:

- **①** Compute the Newton step $\Delta x_{\mathrm{nt}}^{(k)}$ and decrement $\lambda(x^{(k)})$.
- ② Stopping criterion: quit if $\lambda^2/2 \le \epsilon$
- \odot Choose step size t by backtracking line search.
- **4** Update: $x^{(k+1)} = x^{(k)} + t\Delta x_{\rm nt}^{(k)}$
 - descent method: for all k, $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant: Newton iterates for $\tilde{f}(y)=f(Ty)$ with starting point $y^{(0)}=T^{-1}x^{(0)}$ are $y^{(k)}=T^{-1}x^{(k)}$.

Convergence

Newton method

For f strongly convex $(\nabla^2 f(x) \succeq m \mathbf{Id})$ and Hessian L-Lipschitz, there exist η, γ with $0 < \eta \le m^2/L$, $\gamma > 0$:

• if $\|\nabla f(x^{(k)})\|_2 \ge \eta$ (damped phase):

$$f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma$$

• if $\|\nabla f(x^{(k)})\|_2 \ge \eta$ (quadratically convergent phase), bactracking selects unit step and:

$$\frac{L}{2m^3} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^3} \|\nabla f(x^{(k+1)})\|_2\right)^2$$

 \rightarrow number of iterations until $f(x) - p^* \le \epsilon$ bounded above by:

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2 \left(\frac{2m^3}{L^2 \epsilon}\right)$$

Equality constrained minimization

With $f: \mathbb{R}^n \to \mathbb{R}$ convex, twice differentiable, find solution to:

$$\begin{cases} \min. \ f(x) \\ \text{s.t. } Ax = b \end{cases}$$

• Optimality condition: there exists a ν^* such that:

$$\begin{bmatrix} Ax^* = b \\ \nabla f(x^*) + A^\top \nu^* = 0 \end{bmatrix}$$

Equality constr. convex quad. minimization (example) KKT conditions

$$\begin{cases} \min. \ \frac{1}{2} x^{\top} P x + q^{\top} x + r \\ \text{s.t. } A x = b \end{cases} \text{ with } P \in \mathbb{S}^n_+.$$

- Lagrangian: $\mathcal{L}(x,\nu) = \frac{1}{2}x^{\top}Px + q^{\top}x + r + \nu^{\top}(Ax b)$
- KKT conditions:

$$Ax^* = b, \quad Px^* + q + A^{\top}\nu^* = 0$$

can be written as:

$$\begin{bmatrix} P & A^\top \\ A & 0 \end{bmatrix} \begin{bmatrix} x^\star \\ \nu^\star \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

Equality constrained Newton method (1/2)

• Newton step at feasible point x is given by:

$$\begin{bmatrix} \nabla^2 f(x) & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

Interpretation:

- $ightharpoonup \Delta x_{\rm nt}$ solves second order approximation.
- Linearized optimality conditions.
- Newton decrement (expression differs from unconstrained case, same interpretation):

$$\lambda(x) = \left(\Delta x_{\rm nt}^{\top} \nabla^2 f(x)^{-1} \Delta x_{\rm nt}\right)^{1/2} = \left(-\nabla f(x)^{\top} \Delta x_{\rm nt}\right)^{1/2}$$

Equality constrained Newton method (2/2)

given starting point $x^{(0)} \in \text{dom } f$ with $Ax^{(0)} = b$ (feasible), repeat: tolerance $\epsilon > 0$,

- Compute the Newton step $\Delta x_{\rm nt}$ and decrement $\lambda(x)$.
- **2** Stopping criterion: **quit** if $\lambda^2/2 \le \epsilon$
- **3** Choose step size t by backtracking line search.
- - feasible descent method: for all k, $f(x^{(k+1)}) < f(x^{(k)})$ and $x^{(k)}$ feasible
 - affine invariant.

Infeasible start Newton method (1/2)

Newton method can be generalized to infeasible x (i.e. $Ax \neq b$) Newton step at infeasible point x is given by:

$$\begin{bmatrix} \nabla^2 f(x) & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = - \begin{bmatrix} \nabla f(x) \\ Ax - b \end{bmatrix}$$

primal-dual interpretation

• write optimality conditions as r(y) = 0, where:

$$y = (x, \nu)$$
 $r(y) = (\nabla f(x) + A^{\top} \nu, Ax - b)$

• linearizing r(y)=0 gives $r(y+\Delta y)\approx r(y)+Dr(y)\Delta y=0$ and yields the above equation with $w=\nu+\Delta\nu_{\rm nt}$.

Infeasible start Newton method (2/2)

```
given starting point x^{(0)}\in \mathrm{dom}\, f, \nu^{(0)}, tolerance \epsilon>0, \alpha\in ]0,1/2[,\beta\in ]0,1[ repeat:
```

- **①** Compute primal and dual Newton steps $\Delta x_{
 m nt}, \Delta
 u_{
 m nt}$
- ② Bactracking line search on $||r||_2$. t := 1

while
$$||r(x + t\Delta x_{\rm nt}, \nu + t\Delta \nu_{\rm nt}||_2 > (1 - \alpha t)||r(x, \nu)||_2$$
, $t := \beta t$

until
$$Ax = b$$
 and $||r(x, \nu)||_2 \le \epsilon$

• not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible

Inequality constrained minimization

Notations and assumptions

With functions f_i convex, twice continuously differentiable and $A \in \mathbb{R}^{p \times n}$, rank A = p, find solution to:

$$p^*$$
:
$$\begin{cases} \min f_0(x) \\ \text{s.t. } f_i(x) \le 0, \quad i = 1, \dots, m \\ Ax = b \end{cases}$$

Assumptions:

- p^* is finite and attained
- problem is strictly feasible: there exist \tilde{x} with $\tilde{x} \in \text{dom } f_0$ $f_i(\tilde{x}) < 0, i = 1, \dots, m,$ $A\tilde{x} = b$
- → strong duality holds, dual optimum is attained.

Inequality constrained minimization

Reformulation

Original problem reads also:

$$p^*$$
:
$$\begin{cases} \min f_0(x) \\ \text{s.t. } f_i(x) \le 0, \quad i = 1, \dots, m \\ Ax = b \end{cases}$$

Using indicator function ($\iota_{\mathbb{R}_{-}}(u) = 0$ if $u \leq 0$ and $+\infty$ otherwise) \rightsquigarrow equality constrained problem:

$$p^*$$
:
$$\begin{cases} \min. f_0(x) + \sum_{i=1}^m i_{\mathbb{R}_-}(f_i(x)) \\ \text{s.t. } Ax = b \end{cases}$$

 \rightsquigarrow Find an approximation for $\iota_{\mathbb{R}_{-}}$.

Logarithmic barrier

- For t>0, $u\mapsto -\frac{1}{t}\log(-u)$ is a smooth approximation of $\imath_{\mathbb{R}_-}$
- Approximation improves as $t \to \infty$

Approximate problem

$$p^*$$
:
$$\begin{cases} \min. f_0(x) + \sum_{i=1}^m i_{\mathbb{R}_-}(f_i(x)) \\ \text{s.t. } Ax = b \end{cases}$$

Approximation with logarithmic barrier $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$

$$\begin{cases} \min. f_0(x) - \frac{1}{t} \sum_{i=1}^m \log(-f_i(x)) \\ \text{s.t. } Ax = b \end{cases}$$

→ equality constrained problem

 \rightsquigarrow , can be solved by Newton method for increasing values of t

Central path

For t > 0, define $x^*(t)$ as the solution of

$$\begin{cases} \min. f_0(x) - \frac{1}{t} \sum_{i=1}^m \log(-f_i(x)) \\ \text{s.t. } Ax = b \end{cases}$$

Central path is $\{x^{\star}(t) | t > 0\}$

One can prove:

$$p^* \ge f_0(x^*(t)) - \frac{m}{t}$$

 $\rightsquigarrow x^*(t)$ converges to optimal point as $t \to \infty$

Central path: proof of suboptimality bound

From previous slide, $x^*(t)$ satisfies for a $\hat{\nu}$:

$$\begin{cases} Ax^{*}(t) = b, & f_{i}(x^{*}(t)) < 0\\ \nabla f_{0}(x^{*}(t)) + \frac{1}{t} \sum_{i=1}^{m} \frac{1}{-f_{i}(x^{*}(t))} \nabla f_{i}(x^{*}(t)) + A^{\top} \hat{\nu} = 0 \end{cases}$$

Last equation reads $\nabla f_0(x^\star(t)) + \sum_{i=1}^m \lambda_i^\star(t) \nabla f_i(x^\star(t)) + A^\top \nu^\star(t) = 0$ with $\lambda_i^\star(t) = 1/(-tf_i(x^\star(t))) \geq 0$ and $\nu^\star(t) = \hat{\nu}$. Since $x^\star(t)$ minimizes original Lagrangian at $\lambda^\star(t), \nu^\star(t)$, the latter are dual feasible and:

$$p^{*} \geq \mathcal{L}_{D}(\lambda^{*}(t), \nu^{*}(t)) = \mathcal{L}(x^{*}(t), \lambda^{*}(t), \nu^{*}(t))$$

$$\geq f_{0}(x^{*}(t)) + \sum_{i=1}^{m} \lambda_{i}^{*}(t) f_{i}(x^{*}(t)) + \nu^{*}(t)^{\top} (Ax^{*}(t) - b)$$

$$\geq f_{0}(x^{*}(t)) - \frac{m}{t}$$

Barrier method

Given strictly feasible x, $t=t^{(0)}$, $\mu>1$, tolerance $\epsilon>0$, repeat:

- ① Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$ subject to Ax = b.
- ② Update. $x := x^*(t)$.
- **3** Stopping criterion. **quit** if $m/t \le \epsilon$.
- **4** Increase t. $t := \mu t$.
 - Terminates with $f_0(x) p^* \le \epsilon$
- ullet Centering usually done using Newton's method, starting at current x
- Choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10 20$.
- Several heuristics for choice of $t^{(0)}$

Feasibility and phase I methods

Feasibility problem: find x such that

$$f_i(x) \le 0, \quad i = 1, \dots, m, \quad Ax = b$$
 (1)

Phase I: computes strictly feasible point for barrier method Basic phase I method

$$\begin{cases}
\min. s \\
\text{s.t. } f_i(x) \le s, \quad i = 1, \dots, m \\
Ax = b
\end{cases} \tag{2}$$

- If x, s feasible with s < 0, then x strictly feasible for (1).
- If optimal value \bar{p}^{\star} of (2) is positive, then (1) infeasible.
- If $\bar{p}^{\star} = 0$ in (2) and attained, then (1) feasible (but not strictly). if $\bar{p}^{\star} = 0$ in (2) and not attained, then (1) infeasible.

Generalized inequalities

$$\begin{cases} \min f_0(x) \text{ s.t.} & f_i(x) \prec_{K_i} 0, \quad i = 1, \dots, m \\ Ax = b & \end{cases}$$

- f_0 convex
- ullet $f_i:\mathbb{R}^n o\mathbb{R}^{k_i}$ convex with respect to proper cones $K_i\subset\mathbb{R}^{k_i}$
- f_i twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with rankA = p
- We assume p^{\star} is finite and attained
- We assume proble is strictly feasible; hence strong duality holds and dual optimum is attained
- → Ex: SOCP. SDP

(A few words about) Convergence

Number of outer (centering) iterations: exactly

$$\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

plus the initial centering step (to compute $x^*(t^{(0)})$)

Centering problem: see convergence analysis of Newton's method

Part V

Proximal methods

Generalities about proximal methods

Gradient and Newton methods:

- smooth functions (differentiable once or twice),
- medium size problems (Newton), sometimes larger (gradient)

Proximal methods:

- suitable for smooth and non-smooth functions,
- suitable for constrained and unconstrained problems,
- large size and distributed implementations,
- based on high level "prox" operation, which is itself an optimization problem.

(Sub)-gradient in non differentiable case

$$f(x,y) = \begin{cases} \sqrt{x^2 + \eta y^2} & \text{if } |y| \le x, \\ \frac{x + \eta |y|}{\sqrt{1 + \eta}} & \text{if } |y| \ge x. \end{cases}$$

Optimal step size Starting point: $(x^{(0)}, y^{(0)}) = (\eta, 1)$

Proximal operator

Let f be a closed proper convex function.

Proximal operator

$$\operatorname{prox}_{f}(v) = \operatorname{Arg\,min}_{x} f(x) + \frac{1}{2} ||x - v||_{2}^{2}$$

Proximal operator of the scaled function (with $\lambda > 0$)

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{Arg\,min}_{x} f(x) + \frac{1}{2\lambda} ||x - v||_{2}^{2}$$

Projection and prox

With i_C indicator function of convex set C, proximal operator generalizes projection Π_C :

$$\operatorname{prox}_{\lambda i_C}(v) = \operatorname{Arg\,min}_x i_C(x) + \frac{1}{2\lambda} ||x - v||_2^2$$
$$= \operatorname{Arg\,min}_{x \in C} ||x - v||_2^2$$
$$= \Pi_C(v)$$

• Ex: for C an affine subset $C = \{x \mid Ax = b\}$:

$$\text{prox}_{i_{\{x \mid Ax = b\}}}(v) = (\mathbf{Id} - A^{\top} (AA^{\top})^{-1} A)v + A^{\top} (AA^{\top})^{-1} b$$

Prox: examples

Affine function: $f(x) = b^{T}x + c$:

$$\operatorname{prox}_{\lambda f}(v) = v - \lambda b$$

Quadratic function: $f(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x + c$ with $A \in \mathbb{S}^n_+$

$$\operatorname{prox}_{\lambda f}(v) = (\mathbf{Id} + \lambda A)^{-1}(v - \lambda b)$$

<u>Indeed</u>: above expression(s) obtained by setting derivative to zero

$$\nabla f(x) + \frac{1}{\lambda}(x - v) = Ax + b + \frac{1}{\lambda}(x - v) = 0$$

• Shrinkage operator: $\operatorname{prox}_{\frac{\lambda}{2}(.)^2}(v) = \frac{1}{1+\lambda}v$ or more generally:

$$\operatorname{prox}_{\frac{\lambda}{2}\|.\|_{2}^{2}}(v) = \frac{1}{1+\lambda}v$$

For 1st order approximation $\hat{f}_1(x) = f(x_0) + \nabla f(x_0)^{\top}(x - x_0)$:

$$\operatorname{prox}_{\lambda \hat{f}_1}(x_0) = x_0 - \lambda \nabla f(x_0)$$

➤ For 2nd order approximation

$$\hat{f}_2(x) = f(x_0) + \nabla f(x_0)^{\top} (x - x_0) + \frac{1}{2} (x - x_0)^{\top} \nabla^2 f(x_0) (x - x_0):$$

$$\operatorname{prox}_{\lambda \hat{f}_2}(x_0) = x_0 - \left(\frac{1}{\lambda} \operatorname{Id} + \nabla^2 f(x_0)\right)^{-1} \nabla f(x_0)$$

Interpretation of prox

$$\operatorname{prox}_{\lambda f}(v) = \operatorname{Arg\,min}_{x} f(x) + \frac{1}{2\lambda} ||x - v||_{2}^{2}$$

- $\mathrm{prox}_{\lambda f}(v)$ moves from v towards the minimum of f, penalized by the cost of staying near to v depending on λ
- ullet Connection with gradient step (under some assumptions, for small λ):

$$\operatorname{prox}_{\lambda f}(v) \approx v - \lambda \nabla f(v)$$

Prox and subdifferential

From
$$\operatorname{prox}_{\lambda f}(v) = \operatorname{Arg\,min}_x f(x) + \frac{1}{2\lambda} \|x - v\|_2^2$$
, it follows:

$$p = \operatorname{prox}_{\lambda f}(v) \Leftrightarrow 0 \in \partial f(p) + \frac{1}{\lambda}(p - v)$$
$$\Leftrightarrow v \in p + \lambda \partial f(p)$$
$$\Leftrightarrow v \in (\operatorname{Id} + \lambda \partial f)(p)$$

Resolvent

For an operator T, the resolvent of T is $(\mathbf{Id} + \lambda T)^{-1}$.

Resolvent of subdifferential

$$\operatorname{prox}_{\lambda f} = (\operatorname{Id} + \lambda \partial f)^{-1}$$

In addition, $\operatorname{prox}_{\lambda f}$ is single-valued.

Soft thresholding

(Scalar case)

 $\operatorname{prox}_{\lambda|.|}(.)$ of absolute value is the **soft thresholding** operator:

prox of separable sum

If
$$f(x) = \sum_{i=1}^n f_i(x_i)$$
,

$$\operatorname{prox}_f(v) = \begin{bmatrix} \operatorname{prox}_{f_1}(v_1) \\ \vdots \\ \operatorname{prox}_{f_n}(v_n) \end{bmatrix}$$

> For $f(x) = ||x||_1$:

$$\left[\operatorname{prox}_{\lambda \parallel . \parallel_1}(v)\right]_i = S_{\lambda}(v_i)$$

► For $f(x) = \frac{1}{2} ||x||_2^2$:

$$\operatorname{prox}_{\frac{\lambda}{2}\|.\|_2^2}(v) = \left(\frac{1}{1+\lambda}\right)v$$

Other properties of prox

• Precomposition: if $\tilde{f}(x) = f(\alpha x + \beta)$,

$$\mathrm{prox}_{\lambda \tilde{f}}(v) = \frac{1}{\alpha} \big[\, \mathrm{prox}_{\alpha^2 \lambda f}(\alpha v + \beta) - \beta \big]$$

• Postcomposition: if $\tilde{f}(x) = \alpha f(x) + b$ with $\alpha > 0$,

$$\operatorname{prox}_{\lambda \tilde{f}}(v) = \operatorname{prox}_{\alpha \lambda f}(v)$$

• Affine addition: if $\tilde{f}(x) = f(x) + a^{\top}x + b$,

$$\operatorname{prox}_{\lambda \tilde{f}}(v) = \operatorname{prox}_{\lambda f}(v - \lambda a)$$

• Regularization: if $\tilde{f}(x) = f(x) + \rho/2||x - a||_2^2$,

$$\operatorname{prox}_{\lambda \tilde{f}}(v) = \operatorname{prox}_{\tilde{\lambda} f}((\tilde{\lambda}/\lambda)v + (\rho \tilde{\lambda})a)$$
 where $\tilde{\lambda} = \lambda/(1 + \lambda \rho)$

Moreau decomposition

Let $f^*(v) = \sup_x \langle v, x \rangle - f(x)$ be the Fenchel conjugate of f.

Moreau decomposition

$$v = \operatorname{prox}_{f}(v) + \operatorname{prox}_{f^{*}}(v)$$

Moreau decomposition

Let $f^*(v) = \sup_x \langle v, x \rangle - f(x)$ be the Fenchel conjugate of f.

Moreau decomposition

$$v = \operatorname{prox}_f(v) + \operatorname{prox}_{f^*}(v)$$

<u>Proof</u>: Let $p = \operatorname{prox}_f(v)$ and define q = v - p. By definition of prox , $q \in \partial f(p)$ and hence $p \in \partial f^*(q)$, which means $v - q \in \partial f^*(q)$ and hence $q = \operatorname{prox}_{f^*}(v)$.

Moreau decomposition

Let $f^*(v) = \sup_x \langle v, x \rangle - f(x)$ be the Fenchel conjugate of f.

Moreau decomposition

$$v = \operatorname{prox}_f(v) + \operatorname{prox}_{f^*}(v)$$

<u>Proof</u>: Let $p = \text{prox}_f(v)$ and define q = v - p. By definition of prox, $q \in \partial f(p)$ and hence $p \in \partial f^*(q)$, which means $v - q \in \partial f^*(q)$ and hence $q = \text{prox}_{f^*}(v)$.

- generalizes orthogonal decomposition:
 - take L a subspace and $f = i_L$:

$$\begin{split} \imath_L^*(v) &= \sup_x (v^\top x - \imath_L(x)) = \sup_{x \in L} v^\top x \\ &= \begin{cases} +\infty & \text{if } v^\top x_0 \neq 0 \text{ for an } x_0 \in L \\ 0 & \text{if } v^\top x = 0 \text{ for all } x \in L \end{cases} \\ \text{where } L^\perp = \{ y \mid y^\top x = 0 \text{ for all } x \in L \} \end{split}$$

▶ The Moreau decomposition reads: $v = \Pi_L(v) + \Pi_{L^{\perp}}(v)$

Fixed points of prox

Minimizers of f are fixed points of $prox_f$:

$$x^*$$
 minimizes $f \Leftrightarrow x^* = \operatorname{prox}_f(x^*)$

Proof:

- $\Rightarrow f(x) \ge f(x^\star)$ for any x hence $f(x) + \frac{1}{2} \|x x^\star\|_2^2 \ge f(x^\star) + \frac{1}{2} \|x^\star x^\star\|_2^2$ which proves that x^\star minimizes the l.h.s. expression.
- $\Leftarrow \ \tilde{x} = \operatorname{prox}_f(v)$ if and only if \tilde{x} minimizes $f(x) + \frac{1}{2} \|x v\|_2^2$, that is if and only if $0 \in \partial f(\tilde{x}) + (\tilde{x} v)$. With $\tilde{x} = v$, we get $0 \in \partial f(\tilde{x})$ and thus $\tilde{x} = v = x^*$.

Proximal point algorithm

Proximal minimization algorithm

$$x^{(k+1)} = \operatorname{prox}_{\lambda f} \left(x^{(k)} \right)$$

- Convergence can be justified, few applications.
- ▶ Iterative refinement method for solving Ax = b ($A \in \mathbb{S}_{+}^{n}$):

$$x^{(k+1)} = x^{(k)} + (A + \epsilon \mathbf{Id})^{-1}(b - Ax^k)$$

 \leftrightarrow Proximal point minimization of $g(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x$:

$$\operatorname{prox}_{\lambda g}(v) = (\operatorname{Id} + \lambda A)^{-1}(v + \lambda Av - \lambda Av + \lambda b)$$
$$= v - (\frac{1}{\lambda}\operatorname{Id} + A)^{-1}(Av - b)$$

Proximal gradient

Split objective:

$$\min f(x) + g(x)$$

 $f: \mathbb{R}^n \to \mathbb{R}, \ g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ are l.s.c., proper, convex; f is differentiable and g can be nonsmooth

• Proximal gradient method:

$$x^{(k+1)} := \operatorname{prox}_{\lambda_k g} \left(x^{(k)} - \lambda_k \nabla f(x^{(k)}) \right)$$

where $\lambda_k > 0$ is a step size.

 \triangleright Converges with fixed step size $\lambda_k = \lambda \in]0,2/L]$ when ∇f is Lipschitz continuous with constant L.

LASSO (Least Absolute Shrinkage and Selection Operator) (Proximal gradient algorithm)

$$\min. \frac{1}{2} ||Ax - b||_2^2 + \gamma ||x||_1$$

Splitting:

$$f(x) = \frac{1}{2} ||Ax - b||_2^2 \qquad g(x) = \gamma ||x||_1$$
$$\nabla f(x) = A^{\top} (Ax - b) \qquad \text{prox}_{\lambda g}(x) = S_{\lambda \gamma}(x)$$

Proximal algorithm:

$$\boldsymbol{x}^{(k+1)} := S_{\lambda\gamma} \left(\boldsymbol{x}^{(k)} - \lambda \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{x}^{(k)} - \boldsymbol{b}) \right)$$

where fixed step-size $0 < \lambda \le \frac{1}{\|A^{\top}A\|_2}$

▷ Sometimes called ISTA (Iterative Shrinkage-Thresholding Algorithm), accelerated version called FISTA (Fast ISTA).

Alternating Direction Method of Multipliers (ADMM) (seen as a proximal algorithm)

• Split objective:

$$\min f(x) + g(x)$$

 $f,g:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ are l.s.c., proper, convex. f and g can be nonsmooth.

Alternating direction method of multipliers (ADMM):

$$\begin{cases} x^{(k+1)} := \operatorname{prox}_{\lambda f}(z^{(k)} - u^{(k)}) \\ z^{(k+1)} := \operatorname{prox}_{\lambda g}(x^{(k+1)} + u^{(k)}) \\ u^{(k+1)} := u^{(k)} + x^{(k+1)} - z^{(k+1)} \end{cases}$$

▷ Also known as Douglas-Rachford splitting.

Augmented Lagrangian and prox operator

• min. f(x) + g(x) equivalent to:

$$\begin{cases} \min & f(x) + g(z) \\ \text{s.t. } x - z = 0 \end{cases}$$

• Augmented Lagrangian (with parameter $\rho > 0$):

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{\top}(x-z) + \frac{\rho}{2} ||x-z||_{2}^{2}$$

can be written with $u = \frac{1}{a}y$:

$$L_{\rho}(x,z,y) = f(x) + g(z) + \frac{\rho}{2} ||x - z + u||_2^2 - \frac{\rho}{2} ||u||_2^2$$

$$\Rightarrow \operatorname{Arg\,min}_x L_o(x,z,y) = \operatorname{prox}_{\lambda f}(z-u)$$

$$\Rightarrow \operatorname{Arg\,min}_z L_{\rho}(x,z,y) = \operatorname{prox}_{\lambda q}(x+u) \text{ where } \lambda = \frac{1}{\varrho}.$$

Alternating Direction Method of Multipliers (ADMM)

(seen as an augmented Lagrangian method)

• min. f(x) + g(x) equivalent to:

$$\begin{cases} \min f(x) + g(z) \\ \text{s.t. } x - z = 0 \end{cases}$$

• Augmented Lagrangian (with parameter $\rho > 0$):

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{\top}(x-z) + \frac{\rho}{2}||x-z||_{2}^{2}$$

• Alternate Direction Method of Multipliers (ADMM) iterations:

$$\begin{bmatrix} x^{(k+1)} := \operatorname{Arg\,min}_x L_{\rho}(x, z^{(k)}, y^{(k)}) \\ z^{(k+1)} := \operatorname{Arg\,min}_z L_{\rho}(x^{(k+1)}, z, y^{(k)}) \\ y^{(k+1)} := y^{(k)} + \rho(x^{(k+1)} - z^{(k+1)}) \end{bmatrix}$$

Basis pursuit (ADMM algorithm)

$$\begin{cases} \min. \|x\|_1 \\ \text{s.t. } Ax = b \end{cases}$$

Equivalent to:

$$\begin{cases} \min \ i_{\{x \mid Ax=b\}}(x) + ||z||_1 \\ \text{s.t. } x - z = 0 \end{cases}$$

• ADMM iterations (derived from slide 154):

$$\begin{bmatrix} x^{(k+1)} := \Pi_{\{x \mid Ax=b\}} (z^{(k)} - u^{(k)}) \\ z^{(k+1)} := S_{\lambda} (x^{(k+1)} + u^{(k)}) \\ u^{(k+1)} := u^{(k)} + x^{(k+1)} - z^{(k+1)} \end{bmatrix}$$

with S_{λ} : a soft thresholding and $\Pi_{\{x \mid Ax=b\}}$: projection.

LASSO (Least Absolute Shrinkage and Selection Operator) (ADMM algorithm)

$$\min. \frac{1}{2} ||Ax - b||_2^2 + \gamma ||x||_1$$

• Equivalent to:

$$\begin{cases} \min. \ \frac{1}{2} ||Ax - b||_2^2 + \gamma ||z||_1 \\ \text{s.t. } x - z = 0 \end{cases}$$

• ADMM iterations (derived from slide 154):

$$\begin{bmatrix}
x^{(k+1)} := (\lambda A^{\top} A + \mathbf{Id})^{-1} ((z^{(k)} - u^{(k)}) + \lambda A^{\top} b) \\
z^{(k+1)} := S_{\lambda \gamma} (x^{(k+1)} + u^{(k)}) \\
u^{(k+1)} := u^{(k)} + x^{(k+1)} - z^{(k+1)}
\end{bmatrix}$$

with $S_{\lambda\gamma}$: soft thresholding.

Alternating Direction Method of Multipliers (ADMM)

(seen as an augmented Lagrangian method)

$$\begin{cases} \min. \ f(x) + g(z) \\ \text{s.t. } Ax + Bz = c \end{cases}$$

• Augmented Lagrangian (with parameter $\rho > 0$):

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{\top} (Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

• Alternate Direction Method of Multipliers (ADMM) iterations:

$$\begin{bmatrix} x^{(k+1)} := \operatorname{Arg\,min}_x L_{\rho}(x, z^{(k)}, y^{(k)}) \\ z^{(k+1)} := \operatorname{Arg\,min}_z L_{\rho}(x^{(k+1)}, z, y^{(k)}) \\ y^{(k+1)} := y^{(k)} + \rho(Ax^{(k+1)} + Bz^{(k+1)} - c) \end{bmatrix}$$

Generalized LASSO

(ADMM algorithm)

min.
$$\frac{1}{2} ||Ax - b||_2^2 + \gamma ||Fx||_1$$

Equivalent to:

$$\begin{cases} \min. \ \frac{1}{2} ||Ax - b||_2^2 + \gamma ||z||_1 \\ \text{s.t. } Fx - z = 0 \end{cases}$$

• ADMM iterations (derived from slide 159 with $\rho=1/\lambda$, compare with slide 158):

$$\begin{bmatrix} x^{(k+1)} \coloneqq (A^{\top}A + \rho F^{\top}F)^{-1}(A^{\top}b + \rho F^{\top}(z^{(k)} - u^{(k)})) \\ z^{(k+1)} \coloneqq S_{\gamma/\rho}(Fx^{(k+1)} + u^{(k)}) \\ u^{(k+1)} \coloneqq u^{(k)} + Fx^{(k+1)} - z^{(k+1)} \end{bmatrix}$$