
Università degli Studi di Catania
Dipartimento di Ingegneria Elettrica, Elettronica e Informatica

Corso di Laurea Magistrale in
Ingegneria Informatica

Passive analysis of queueing delay
in the Internet

TESI DI LAUREA DI :
Andrea Giuseppe Araldo
RELATORE:

Chiar.mo Prof. Giacomo Morabito
CORRELATORE:

Chiar.mo Prof. Dario Rossi

Anno Accademico 2012/2013

A mio padre e mia madre

Contents

1. The bufferbloat issue 3
1.1. Why large buffers can alter the TCP congestion control 3
1.2. Relation between the size of the buffers and the link rate 7
1.3. How to face bufferbloat . 9
1.4. Related work on the queueing delay measurement 10

1.4.1. Active vs passive approaches 10
1.4.2. Active measurements . 10
1.4.3. Passive measurements . 11

1.5. Is bufferbloat a real concern? . 12

2. Measuring the queueing delay: methodology 14
2.1. Assumptions and definitions . 14
2.2. Validity conditions . 16
2.3. Computing the baseline delay . 19
2.4. Similarity with LEDBAT . 20
2.5. Queueing delay aggregation . 21

3. Measuring queueing delay: implementation 23
3.1. Measurement scenario . 23
3.2. A look at the implementation . 25

3.2.1. Tstat overview . 25
3.2.2. Queueing delay measurement implementation 26
3.2.3. Output log file . 28
3.2.4. Post-processing . 31

3.3. Validation of measurement accuracy 33
3.3.1. Testbed description . 33
3.3.2. Impact of parameters and surrounding conditions 36

3.4. Performance analysis and analysis of the overhead 39

i

Contents

4. Statistical characterization of queueing delay 50
4.1. Introduction . 50
4.2. Global characterization . 51
4.3. Per application view of queueing delay 55
4.4. Queueing delay distribution over classes 55
4.5. Root cause analysis . 58

4.5.1. Methodology . 58
4.5.2. Representation of the rules . 60
4.5.3. Experimental results . 61

4.6. How to obtain the plots . 63

5. Conclusion 68
5.1. Summary . 68
5.2. Future work . 68

Acknowledgments 70

A. Short paper to ACM CoNEXT 2013 71

Bibliography 78

ii

Introduction

In the last 15 years Internet has evolved at an astonishing speed. The technological
advances, particularly in the physical layer, now permit to reach very high bandwidth
and very small delays that no one could imagine some years ago. But saying that
the user experience has “improved” is, at least, too superficial. While in the past a
user could be completely satisfied downloading a prevalently textual web page in a
reasonable time, now the user needs to run a bunch of applications that exchange
data on Internet, each of them with different requirements: she wants to participate
in a video skype call, to synchronize her data on the cloud, to watch youtube videos,
to download large contents with peer-to-peer applications.

Roughly speaking, to satisfy users, Internet has to provide much more bandwith
and much less delay than before. On the other hand, much more users use Internet
for much more time during the day and the mass of data traveling on Internet has
hugely increased.

To complete the picture, we have to take into account that users access Internet
with different devices (desktop pcs, mobiles, ...) attached to different layer 2 local
networks (ethernet, 802.11, ...), so that the paths that packets traverse are very
heterogeneous.

The implications of each piece of the puzzle just depicted will be clearer in the
following chapters. For now, suffice it to say that Internet has to face very complex
challenges and maybe it’s not the “best Internet” we can have. Although from a
different perspective, [Han06] states that “Internet only just works”.

With this picture in mind, we can get convinced that we need conceptual and op-
erational tools to evaluate the Internet performances, to find possible issues and to
investigate their root causes.

In this work, we develop a methodology to study the queueing delays over the
Internet, in particular the time that the packets pass in the buffers of the user ac-
cess points, modem routers, end-host software stacks and network interfaces. Our

1

Contents

methodology is passive, i.e. it can be applied to traces of real traffic, either recorded
in the past or sniffed on line, and does not require to alter the real traffic with
the injection of other packets. We make our open source implementation of the
methodology, based on Tstat [FMM+11], validate it and evaluate it in terms of
computation overhead. We then apply the tool to some real traces and statistically
characterize the observed queueing delay. We propose also a methodology to corre-
late the amount of queueing delay seen by the hosts with the applications running
on them, with the aim to discover the applications that are more likely to induce
high queueing delays and, on the other hand, the applications that are more likely
to suffer high queueing delays, taking into account their requirements. We apply
this methodology to the output of Tstat processing and provide some results.

It’s worth highlighting that our focus is to build a solid methodology, rather than
providing full-blown measurement campaign.

Chapter 1 describes the so called “bufferbloat”, i.e. how the TCP congestion control
coupled with the large size of buffers of the user access points, modem routers, end-
host software stacks and network interfaces can lead to high queueing delays.

Chapter 2 focuses on the methods to measure the queueing delays. After a brief
survey of the existing approaches, our methodology is depicted.

Chapter 3 outlines our implementation on Tstat, provides the validation and per-
formance analysis results and highlights the Tstat parameters that can influence the
quality of the results.

Chapter 4 shows a statistical characterization of the queueing delay computed on
some real traces. The methodology to find the correlation between queueing delays
and running applications is proposed and some results are showed

2

1. The bufferbloat issue

People usually think that the higher is the bandwidth that the Internet Service
Provider offers, the better Internet access will be. It is why Cheshire exclaims
“It’s the latency, stupid” ([Che96]), to point out that delay, more than bandwidth,
impacts on the user experience.

Despite the steady growth of link capacity, the delays that users experience can be
still too high, considering also that users are becoming more and more demanding
and expect a quick interaction when performing their jobs (e.g. when browsing
or playing online videogames): “people time out before packets” ([GN11]). Jim
Gettys (Bell Labs, Alcatel-Lucent) and Kathleen Nichols (Pollere Inc.) claim that
the culprit is bufferbloat ([GN11]) which is “the existence of excessively large and
frequently full buffers inside the network”.

1.1. Why large buffers can alter the TCP congestion
control

Buffers are memory areas of network devices in which the packets are enqueued
before going out on the output link. They are located in the network card of com-
puters, mobile phones (or any other device that has access to a network), user access
points, switches, routers. If the arrival rate of the packets that have to go out on a
certain link is more than the rate at which they are serviced, the queue in the buffer
grows. If the queue fills the entire buffer, there is no more space for new packets
that have to be dropped.

Without going into details, when a TCP sender observes a packet loss, it retransmits
the packet and decreases its sending rate. The rationale behind it is that a possible
cause of the loss is a network congestion1 that a non-decreasing sending rate may

1Section 3 of [Jac88] states: “Packets get lost for two reasons: they are damaged in transit, or

3

1.1 Why large buffers can alter the TCP congestion control

worsen. If the losses are heavy, a network may become clogged with retransmitted
packets and the data throughput may slow to trickle. For this reason, in 1986 the
Internet had its first documented congestion collapse which led to a sudden factor-
of-thousand drop in data throughput ([Jac88]). Since that time, other algorithms
were introduced in TCP to avoids similar events but heavy losses may be still a
problem.

Because the memory is significantly cheaper than in the past, manufacturers have
increased the size of the buffers to prevent any packet loss. In some cases, the result
is that the buffers are oversized and this may prevent TCP to work properly. Despite
heavy losses are to be avoided, some losses are not only not-a-concern but they are
vital to let TCP congestion control calibrate the sending rate. Indeed, if the buffers
are large, they can host very long queues. The packets are not lost, but they pass
a very long time in the buffers before going out. The TCP sender notices no loss
and does not decrease its rate2. In this way the queues become longer and longer
and the queueing delays higher and higher. As a consequence, users can perceive
high latency that hampers QoE of Web browsing ([BOB12], [SdDF+11]), multimedia
([HPC+12], [CHHL06]) or peer to peer applications ([TR11]).

A closer look at TCP congestion control

We have just given a qualitative picture but we can go more deeply into the TCP
congestion control details (see [Jac88]) to correlate them with the bufferbloat.

The TCP sender maintains a value cwnd (congestion window). The sender can send
a number of packet at most equal to3:

n = min (cwnd, rwnd)

without waiting for the respective acknowledgements. In other words, if the last
acknowledged segment is the i-th, it can send the segment i + 1-th, i + 2-th, ...,
i + n-th. Suppose, for the sake of simplicity, that always cwnd < rwnd, so that

the network is congested and somewhere on the path there was insufficient buffer capacity. On
most network paths, loss due to damage is rare (1%) so it is probable that a packet loss is due
to congestion in the network. ”

2Actually, it’s not completely true: to be more precise, the sender does not decrease its cwnd, as
explained later

3rwnd is a value imposed by the TCP receiver and it’s called “receiver advertised window”

4

1.1 Why large buffers can alter the TCP congestion control

n = cwnd. cwnd determines the maximum packet rate that is:

r = cwnd
RTT

(1.1)

where RTT is the round trip time, i.e. the time that passes from the sending of the
i+1-th segment and the arrival of the relative acknowledgement. During the RTT ,
the sender is allowed to send at maximum cwnd packets.

The cwnd is initialized to 1 and is updated during a TCP connection. After the
connection has been established, the slow start phase starts. In this phase, cwnd
is incremented by one for each received acknowledgement. When cwnd reaches a
threshold (often indicated as ssthres - slow start threshold) the congestion avoidance
phase starts: cwnd is still increased, but with a slower rate (cwnd is incremented
by 1 every cwnd segment received).

If there is a loss, the congestion window is reduced 4 and consequently the sending
rate decreases.

Now we can be more precise in depicting why large buffers can hamper the TCP
congestion control: even if the queues on the networks are very long, a TCP sender
continues to increase its congestion window (because no loss is detected) and does not
properly limit its sending rate, making the queues even longer and thus exacerbating
the queueing delay. We should observe that high queueing delays imply an increase of
the RTT and (1.1) guarantees that the sender implicitly reacts to them by decreasing
the sending rate. But unfortunately, this is not always enough.

The mechanism to update the cwnd permits to the TCP sender to have a coarse
estimate of the available bandwidth along the end to end path. The main goal is to
use all this bandwidth for the transmission. An interesting interpretation of what
just explained is the following: while TCP was originally conceived to efficiently fill
the pipe between the sender and the receiver (i.e. to efficiently use the available
bandwidth), now it ends up rapidly filling the buffers. Large buffers “distort” the
image of the pipe that TCP builds up, making it believe that there is more available
bandwidth than there is in the reality. In other terms, some bytes of buffer memory
is mistaken for available bandwidth.

4The way this reduction is operated depends on the TCP implementation. See
http://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm for more details.

5

1.1 Why large buffers can alter the TCP congestion control

Large buffers and cwnd decrease

Suppose that there is an “overbuffering” in the path that goes from a TCP sender to
a TCP receiver. To avoid a long queue in this path, we would prefer sender decrease
its cwnd. TCP sender does this only if a loss event occurs. The loss is detected at
the sender side through these two “loss evidences”:

• the reception of a triple duplicated acknowledgement or

• the elapsed RTO (Retransmission Time Out)

A receiver sends a duplicated acknowledgement when it has correctly received and
acknowledged the i-th segment, and receives a i + k-th segment, with k > 1. In
this case, the receiver sends another acknowledgement for the i-th segment. When
the sender receives this last acknowledgement, it can infer that the segment i + 1
was not correctly delivered, but this does not necessarily mean that the segment
was lost. It is possible that some segments arrive at the receiver out of order, and
eventually the i + 1 segment may be correctly delivered. This is why the reception
of three duplicated acknowledgments is interpreted as a loss evidence.

For the description of the Retransmission Timer, we refer to [PA00]. Every time a
data segment is sent5, if the timer is not running, the sender starts it. When an
acknowledgement related to data waiting to be acknowledged is received, the timer
is restarted. If the Retransmission Timer expires, this means that the sender has
not received new acknowledgements for a time equal to RTO. This is interpreted as
a loss evidence.

We now show that in case of overbuffering both the loss evidences seldom arise and
thus cwnd is unlikely to decrease.

If the buffers are large enough, almost all the segments eventually reach the receiver
that does not send any triple duplicate acknowledgement. Therefore, the first loss
evidence seldom arises.

Segments start to be dropped only after the entire buffer is full and in this case they
do not reach the destination. The sender can be aware of this because the RTO
expires without receiving any acknowledgement. However, the RTO is generally
very large and also tends to increase with the queueing delays. Indeed, as specified
by [PA00], it must be at least 1 second and it is updated by means of an exponential

5Including a retransmission

6

1.2 Relation between the size of the buffers and the link rate

moving average on the basis of the RTT estimation: i.e. if the RTT increases, the
RTO increases too. As a consequence, if queueing delays become larger, the RTT
estimates become larger and so the RTO. Therefore, the second loss evidence seldom
arises.

A side effect of bufferbloat: the unfairness

Suppose a long-lived TCP flow, characterized by a large cwnd and that is sending
data segments into an over-buffered link. The previous subsection shows that cwnd
will seldom decrease. If a new TCP flow has to compete with the long-lived one for
the same link, it will loose: it won’t have the chances to increase its cwnd because
its segments have to traverse a buffer already saturated. This is argued by [GN11]
on page 8.

1.2. Relation between the size of the buffers and the
link rate

Buffers are more critical in the network devices in which fast-to-slow transitions
happen: i.e. the input link is faster than the output link thus requiring to store
the incoming packets before they can be serviced. Fast to slow transitions generally
occur near the network edge:

• a router that connects an ethernet LAN (Local Area Network) to Internet

• a Wireless Access Point that connects a 802.11 network to Internet

But they can also occur on a router on the boundary between different Internet
Service Providers

For example, an ADSL link provides a bandwidth of about 1Mb/s that is much less
that the bandwidth provided by ethernet or 802.11.

The typical rule of thumb for buffer sizing is to have a bandwidth-delay product
(BDP) worth of buffer, multiplying the bandwidth B of the output link (1Mb/s in
the case of an ADSL modem) and a canonical value of RTT (100 ms, a continental
delay for U.S and Europe). The goal is to have buffers that can host the simul-
taneous bits in transit between the transmitter and the receiver. Supposing that

7

1.2 Relation between the size of the buffers and the link rate

TCP correctly estimates the bandwidth B, we have that the cwnd
RT T

·M is equal to the
bandwidth of the link:

cwnd

RTT
·M = B (1.2)

beingM the maximum TCP segment size. We already explained that a TCP sender
sends “burst” of cwnd packet every RTT . Therefore, the bytes that can be simul-
taneously in transit (and that can require to be placed in the buffer) are cwnd ·M
and, thanks to the (1.2), this number can easily be found as:

B ·RTT

Today, this rule of thumb could be considered obsolete. [AKM04] points out that it
is incorrect for the backbone links because of the large number of TCP connections
multiplexed together. It shows that a link a with n flows requires a buffer not
larger than B·RT T√

n
. [GN11] observes also that the 100-ms delay assumption has been

weakened by the advent of CDNs (content delivery networks) and other services
engineered to bring common RTTs down to 10-30 ms. All these arguments all agree
on having buffers smaller than the ones calculated with the obsolete rule of thumb.

[DTMK12] shows that nowadays most home gateways have a fixed buffer size, de-
pending simply on the vendor. Just to give an idea, buffer sizes discovered in
[DTMK12] vary from 22 to 365 KB. In [CK10] was argued that the equipment had
two dominant buffer sizes: 128 KB and 256 KB, without any care of the operation
access rate. For a typical uplink rate of 1.2 Mbps, any buffer large than 150 KB
will introduce more than one second of TCP queuing delay under load, which is
prohibitively large for interactive applications. Moreover, this delay would increase
to 2.3 seconds for a 512 Kbps uplink, and so on.

[GN11] highlights also that equipping the network device with the right buffer is
not a simple design task. Memory is very cheap today and it’s difficult to buy RAM
chips small enough for the buffering in edge devices. In addition, these devices have
no mechanisms for self-limitation. Commodity network devices now span many
downward-compatible generations: Ethernet has gone from 10 Mbps to 10 Gbps;
wireless operates from 1 Mbps to 100 or more Mbps. The result is a single buffer
statically sized for larger bandwidths but much too large for lower- bandwidth links.
For example, the 256 packets of buffering found in many of today’s 802.11 device

8

1.3 How to face bufferbloat

drivers alone translates to more than three seconds at 1 Mbps, which is all the
bandwidth you may have on some wireless networks.

Usually, when people experience high latency on Internet, they tend to think of it
as a network congestion. We discovered that, on the contrary, probably they might
have the culprit inside their home: a buffer on one of their network devices.

1.3. How to face bufferbloat

The previous section suggests that more insights on the correct value of the buffer
size in network devices may be useful.

Another suggestion comes from the 1998 “RED manifesto” ([BCC+98]) that pro-
poses to introduce AQM (active queue management), which attempts to keep the
queues from growing too large by monitoring the growth of the packet queue and
signaling the TCP sender to slow down by dropping or marking packets in a timely
fashion. Nevertheless [GN11] states that AQM is not widely configured in routers,
it’s completely unavailable in many devices and many ISPs are running without
AQM often in circumstances where they really should.

Ideally, we argue that the adoption of congestion control algorithms to replace the
standard TCP one, though proposed with other goals, may mitigate, as a side effect,
the bufferbloat issue. For example, the authors of FAST TCP ([JWL04]) claim that
the congestion control based on the delay (rather than on the loss, like in TCP)
is a more accurate congestion measure, especially in the scenarios in which losses
are rare events. Simply speaking, the sender should regulate its sending rate not
only when some packets are lost but also when it starts to notice high latency in
the network, in order to detect as soon as possible any problem. Other delay based
congestion have been proposed for many years but they will hardly be adopted:
replacing TCP in all the Internet is inconceivable.

Another alternative is the introduction of application layer congestion control solu-
tions (for example on top of UDP) with the aim to coexist with the TCP congestion
control (rather than replacing it) An example is LEDBAT [SHIK10] (Low Extra
Delay Background Transport), a delay based congestion control suitable for sup-
porting background applications with the goal to operate without interfering with
the performance of more delay-sensitive foreground applications. It controls the

9

1.4 Related work on the queueing delay measurement

sending rate in accordance with a queueing delay estimation that is continuously
performed (more details in sec. 2.4).

1.4. Related work on the queueing delay
measurement

1.4.1. Active vs passive approaches

In general, when a measurement of a phenomenon of whatever sort has to be per-
formed, this can be accomplished with an active approach or a passive approach.

In abstract terms, an active measurement implies the modification of the phe-
nomenon, in order to induce some desired behaviors and get useful results. In most
cases, the experimenter desires the modification to be as small as possible, because
he wants to preserve the hypothesis that the aspects of the phenomenon that he is
measuring behave like without the “artificial” modification (or, at least, in a very
similar) way.

On the contrary, a passive measurement permits to achieve the results only “observ-
ing” the phenomenon, without introducing any modification. Roughly speaking, it’s
more straightforward to state the hypothesis that the results are the “real-world” re-
sults, i.e. the ones that hold in the phenomenon itself, regardless of the measurement
activity.

Speaking of network measurements, an active method implies that the measurement
tools inject some traffic in the network in order to get the measures. On the contrary,
in a passive method, the measurement tools only sniff traffic.

The methodology that we present is passive and can be applied to traces of real
traffic, either recorded in the past or sniffed on line. For the reasons described above,
it is unobtrusive and can provide a realistic characterization of the real-world traffic.

1.4.2. Active measurements

With few exceptions, most related work relies on active measurement.

10

1.4 Related work on the queueing delay measurement

Active measurements like [CK10], [MDF12], [HJR12], [SdDF+11], [BOS+11], [BOB12]
measure latency under controlled load. Therefore they tend to givemaximum (rather
than typical) queueing delay.

Moreover, a parameter that influence the active measures is the rate at which the
“artificial” packets are injected. Generally, this rate is not so high and the results
exhibit coarse granularity, with the exception of [SdDF+11], where samples are still
spaced out by 6 seconds in the best case.

Nevertheless, the most notable limitation of the active methods is that they can-
not have the knowledge of the applications that the users are running and cannot
correlate them to the observed queueing delay.

1.4.3. Passive measurements

Some recent work tackles the problem of passive measurement of queuing delay
([GCCK13], [All12], [CRT+13], [CR]). [CRT+13], [CR] propose methodologies to
infer remote host queues exploiting transport layer information available in packet
headers, for both uTP [CR] (the new protocol proposed by BitTorrent as TCP re-
placement for data swarming - see sec. 2.4) and TCP [CRT+13] (using RFC1323
TimeStamp option [JBB92]). The authors of [CR] implemented in Tstat their
methodology and the implementation that we present here is obtained generaliz-
ing their implementation and then adapting it to the TCP case (see chapter 3 for
details).

Contrarily to [CRT+13] and [CR], in this work we focus on the local host queue
(since we have full knowledge of all traffic on that host) and adopt a more general
methodology, of which we outline some important differences. First, notice that
while uTP timestamps allow to precisely gauge the remote queue (even in presence
of cross-traffic toward unseen hosts) observations are limited in both space (to hosts
that are running BitTorrent) and time (precisely when they run it). This constrains
measurement campaign [CR] on the one hand, and possibly induces a biased view of
the Internet bufferbloat on the other hand (since BitTorrent is a data-intensive ap-
plication) – problems that this work instead avoids. Second, contrarily to [CRT+13],
we avoid relying on timestamps carried in packet headers for TCP, increasing the
reach of the methodology (despite growth of TCP TimeStamp option usage, this
still accounts for modest 5%-30% at our vantage points).

11

1.5 Is bufferbloat a real concern?

Closer to our work is [All12] that uses Bro scripts ([Pax99]) as a basis for the mea-
surements. Bro is an open source, Unix-based Network Intrusion Detection System
that passively monitors network traffic and looks for suspicious activity. [All12]
employs a similar methodology to ours, relying on TCP data/ acknowledgement
pairs, using trace timestamps as opposite to TCP Timestamp option and takes care
of rejecting RTT samples from retransmitted segments. But this methodology is
not validated in a testbed and does not take care of tweaking the measurement
parameters that can influence the measures (see sec. 3.3.2 for potential issues). We
also point out that [All12] provides measures of Internet traffic of an experimental
high speed network (more details in sec. 3.1) and cannot be representative of what
a “normal” user experiences.

Finally, [GCCK13] focuses on a memory-efficient bufferbloat measurement method-
ology, by keeping approximate TCP state in a probabilistic data structure (that
can fit the cache of current MIPS and ARM processors used in home DSL gate-
ways), at the price of a minimal accuracy loss (error is less than 10 ms in 99% of
the cases, compared to tcptrace as a baseline). However, as the focus of [GCCK13]
is on the relative accuracy of the methodology, it reports differences with respect
to the baseline rather than absolute bufferbloat measurement. Our approach is
instead complementary and, assuming a high performance dedicated measurement
box (i.e., no memory constraint), implements a methodology to accurately gauge
current Internet bufferbloat (incidentally, building over tcptrace, of which Tstat is
an evolution).

We point out that, to the best of our knowledge, this work is the first to report a
detailed per-application view of the Internet queuing delay.

1.5. Is bufferbloat a real concern?

It is known that queuing delays can potentially reach a few seconds under load
stress: [CK10] purposely fills the pipe and learns the maximum queueing delay.
These delays have been also anecdotically observed by [GN11]. Some authors (like
[Jac98] in 1998) advocate that countermeasures to the bufferbloat are necessary for
the health of the Internet. However it is unclear how common they are for end-
user daily experience – which is precisely what the methodology that we propose
attempts to measure.

12

1.5 Is bufferbloat a real concern?

Section 4.2.3 of [DHGS07] (2007) studies the queueing delay of DSL users both
in the downstream and in the upstream direction. It reveals very large queues in
the upstream direction that negatively affect interactive traffic. [CK10] measures
severe overbuffering. [GN11] claims that bufferbloat is a serious problem which has
immediately to be faced.

On the other hand, [All12] points out that the magnitude of the phenomenon seems
to be quite modest. The results that it presents show that queueing does happen
within the network, as expected, but the author argues that whether this consti-
tutes “bloat” is a subjective judgment. Nevertheless, it’s worth remarking that the
measurement of [All12] is performed on an experimental high speed network and
cannot be representative of what a “normal” user experiences.

The work cited in this section shows that authors often provide contradictory results
on the extent of bufferbloat. Reasonable causes of these may be:

• different input data (different networks under observation, different periods of
observation)

• different ways to produce data and statistically characterize the queueing delay

This scenario asks for more investigation on the analysis of the queueing delay in
the Internet.

13

2. Measuring the queueing delay:
methodology

2.1. Assumptions and definitions

Figure 2.1.: Queueing delay estimation

We infer queuing delay of local hosts simply as depicted in Fig. 2.1, where the queue-
ing delay on host A is calculated and the monitoring device is supposed to be near
A and is represented by the eye. In this section, we will add some simplifying
assumptions. We will discuss these assumptions later.

With respect to Fig. 2.1, assume that the monitor observes a data segment DS di-
rected to A at time trx,i. Suppose that when the data segment arrives at A, its queue
contains packets directed toward hosts B, C and D. Then, the TCP receiver issues
the corresponding acknowledgement ACK and the monitor sees it at instant ttx,i+1.

Assumption 1. Here we assume that the TCP receiver issues the acknowledgement
as soon as data is received and also that

14

2.1 Assumptions and definitions

• ACK is not a delayed acknowledgement

• there is no reordering of the data segments (if the n-th byte of the data stream
was the last received one, DS starts with the n+ 1-th byte)

• the data segment is not a retransmitted one, otherwise the monitor could not
distinguish if ACK was related to some previous transmission of the data seg-
ment or to the present one

ACK will be serviced after the already queued packets. We consider the queueing
delay at A as the time that ACK spends in the queue waiting for the previous packets
to exit from A (in this case, packets toward B, C and D) before it can exit too.
Suppose that monitor sniffs the acknowledgement at time ttx,i+1. The two instants
are correlated by the following equation:

trx,i + T pr,i+1 + Tel,i+1 + qi+1 + T �
pr,i+1 = ttx,i+1

where T pr,i+1 is the propagation time that the data segment spends to go from the
monitor to A, Tel,i+1 is the elaboration time, i.e. the time that the TCP receiver
requires to produce the acknowledgment, qi+1 is the queueing delay and Tpr,i+1 is the
propagation delay that the acknowledgment spends to go from A to the monitor.
Defining

ΔTi+1 � ttx,i+1 − trx,i

we have:

qi+1 = ΔTi+1 −
�
T pr,i+1 + Tel,i+1 + T �

pr,i+1

�

In order to calculate qi+1, we have to find the term T pr,i+1 + Tel,i+1 + T �
pr,i+1.

Assumption 2. The variation of the elaboration time is negligible, so that we can
introduce a number Tel such that, for every j:

T el,j � Tel

Assumption 3. The variation of the propagation delays is negligible too, so that

15

2.2 Validity conditions

we can introduce a number Tpr such that, for every j:

T pr,j + T �
pr,j � Tpr

Thanks to these assumption, the following equation holds for every j:

qj�ΔTj − (Tel + Tpr) (2.1)

What we miss now is to calculate Tel + Tpr. We call it baseline and indicate it with
β. We need the following assumption

Assumption 4. At least one acknowledgement has experienced no queueing delay,
i.e. there exists a k ≤ i+ 1 such that qk = 0. As a consequence, we have

ΔTk = T pr,k + Tel,k + T �
pr,k

and, using assumptions 2 and 3:

ΔTk � T pr + Tel = β

Taking a j ≤ i+ 1, we observe that

ΔTj � qj + β ≥ β

Therefore we can state that the baseline is

β � ΔTk = min
j≤i+1

ΔTj

2.2. Validity conditions

First of all, we need to guarantee that the assumption 1 holds. Therefore, each
acknowledgment sent by A is classified as valid or invalid and only the former ones
are used for our measurement. The invalid acknowledgments are the ones related
to reordering or retransmission. The valid/invalid classification is made by our

16

2.2 Validity conditions

implementation of Tstat1 in accordance with the algorithm described in [MMM06]
and with the method that Tcptrace uses to filter out invalid round trip times samples.

Data segment retransmission

As observed in [MMM06] (section 2), retransmissions may stem from manifacturing
apparatuses, routing loops, mis-configured networks, or retransmissions at the link
layer (e.g., when a MAC Layer acknowledgement is lost in a Wireless LAN forcing
the sender to retransmit the frame), retransmission by a TCP sender merely for flow
control purposes or because a Retransmission Timer has fired or the fast retransmit
mechanism has been triggered (i.e., three or more duplicate acknowledgements have
been received for the segment before the retransmitted one) or the previous TCP
acknowledge for that data segment hes been lost. Section 3 of [KP87] examines the
retransmission ambiguity: it cannot be possible to know if an acknowledgement is in
response to the original transmission of a packet or a retransmission. Considering an
acknowledgement related to a segment that was transmitted twice, if we suppose that
it is in response to the original transmission, we obtain a certain value of ΔTi+1, while
if we suppose that it is in response to the retransmission, we get ΔT �

i+1 < ΔT i+1.
Our choice is to ignore acknowledgements referred to retransmitted data segment
([All12] (section 2.1) operates in the same way). To neglect the acknowledgement of
retransmitted data segments, Tstat (that runs on the monitor) maintains a database
of descriptors, one for each sniffed data segment, indicating the sequence numbers
of the first and the last byte2. When a new data segment arrives, Tstat can check if
the bytes that it carries were previously sniffed3. If it contains some byte that was
already sniffed in the past (considering the fact that also partial retransmit can be
performed), the data segment is labeled as retransmitted 4. When Tstat sniffs an
acknowledgement, it searches 5 its database for the descriptor of the data segment

1This classification is performed by the function ack_in(..) called by tcp_flow_stat(..)
(tstat/tcp.c). The implementation of ack_in(..) is in tstat/rexmit.c and the return
value is an enum value that can assume one of the following values: NORMAL, AMBIG, NOSAMP,
CUMUL, TRIPLE. We perform queueing delay measures only when the return value is NORMAL.
This is the only case when the acknowledgement can be considered valid.

2see the function addseg(..) in tstat/rexmit.c
3This is done by the function retransmit(..) in tstat/rexmit.c
4See the field retrans of struct segment (in tstat/struct.h)
5See ack_in(..) in tstat/rexmit.c

17

2.2 Validity conditions

that is being acknowledged6 and checks if it’s retransmitted 7. If not, the queueing
delay calculation is performed 8, otherwise the acknowledgement is invalid and is
ignored.

Reordering

Out of sequence segments can occur as a consequence of a retransmission of lost
segments or of network reordering 9. For each acknowledgement, Tstat verifies that
the acknowledged data segment is the last sniffed one 10. If it is not the case, the
acknowledgement is invalid.

Duplicate acks

In addition, for each acknowledgement, Tstat checks if the relative data segment
has already been acknowledged in the past. If it is the case, the acknowledgment is
invalid 11.

Delayed acknowledgements

The TCP receiver may generate a delayed acknowledgement. In this case, it does
not generate the acknowledgement as soon as a data segment is received but delays
the acknowledgement for a certain amount of time. The goal is to wait that TCP
receiver have data ready to send back in order to piggyback the acknowledgement
with those data. The aim is to increase the efficiency. Section 4.2 of [APS+99]
imposes that an acknowledgement must be generated within 500ms. If the i+ 1-th
acknowledgement is a delayed one, the sample qi+1 is overestimated, because the
time ΔTi+1 − β contains not only the queueing delay but also the time in which the
TCP receiver has deliberately been idle. This is a potential issue of the methodology
that we do not address and that requires further investigation.

6It is the segment such that the sequence number of its last byte is the acknowledgement number
-1

7This check is performed in rtt_ackin(..) in tstat/rexmit.c
8See the line of rtt_ackin(..) of tstat/rexmit.c where bufferbloat_analysis(..) is called
9Section 2 of [MMM06] proposes a technique to distinguish between the two cases

10See the local variable intervening_xmits in ackin(..) in tstat/rexmit.c . If this variable
is true, the data segment is not the last sniffed one and the acknowledgement is classified as
NOSAMP.

11In particular, it is marked as CUMUL or TRIPLE (see ack_in(..) in tstat/rexmit.c)

18

2.3 Computing the baseline delay

2.3. Computing the baseline delay

We can suppose that assumption 2 holds because usually the elaboration time is
negligible and its variation even more so. Regarding the assumption 3, propagation
delay can vary as a consequence of a route change. This is not a great concern in
our case because in our experimental setup (sec. 3.1) we place the monitor at the
network edge. Therefore, considering a TCP flow, all packets tend to follow the
same path going from the vantage point to the hosts and then from the hosts to
the vantage point again. The same argument is given by [All12] (in section 2.1).
Therefore, we can suppose that assumptions 2 and 3 hold.

The assumption that deserves more attention is the 4. It is too strong for the real
cases. It may happen that, considering a flow of a certain host, from its starting
instant to the instant ttx,i+1, it has always seen a non-empty buffer. This is especially
true when i+ 1 is small. Therefore, we cannot calculate:

β � Tpr + Tel

All that we can do is calculating βi+1, an estimation of the baseline at the instant
ttx,i+1, as:

βi+1 � min
j≤i+1

ΔTj

Observe that

βi+1 � min
j≤i+1

q̄j + Tel + Tpr ≥ β

where q̄j is the real queueing delay12 of the acknowledgement sniffed at the instant
tj. This demonstrates that βi+1 overestimates the real baseline β.

The monitor can then estimate the queuing delay qi+1 incurred by the (i + 1)-th
acknowledgement as

qi+1 = ΔTi+1 − βi+1

i.e. the difference between the current sample ΔTi+1 and the minimum among the

12This value is “hidden” inside minj≤i+1 ΔTj and cannot be separated from Tel and Tpr

19

2.4 Similarity with LEDBAT

previously observed samples of that flow.

It should be clear, from the formula above, that qi+1 is an overestimation of the real
queueing delay q̄i+1:

qi+1 ≥ q̄i+1

Time evolution of the baseline

Notice that the sequence of the baseline estimatesβ1, β2, . . . is monotonically non
decreasing and that, going ahead, the baseline estimation becomes more and more
refined and has more chance to approach the real β. As a consequence, considering
a single TCP flow, the last queueing delay estimates may be more accurate than the
first ones.

This observation suggests an alternative way to get the baseline estimate at time
ttx,i+1: calculating the minimum not only among the ΔTj samples seen until ttx,i+1

but among all the ΔTj samples, until the end of the flow:

βi+1 � min
∀j

ΔTj

This solution is feasible only for offline processing in which we know in advance
all the TCP flow, but we want to develop a methodology suitable for both offline
and online processing, so we do not implement this enhanced calculation. As future
work, an analysis of the impact of the baseline calculation in the accuracy of queueing
delay estimation may be conducted.

2.4. Similarity with LEDBAT

Low Extra Delay Background Transport (LEDBAT) ([SHIK10]) is an experimen-
tal delay-based congestion control algorithm designed for background bulk-transfer
applications. It is the congestion control algorithm used by Micro Transport Pro-
tocol (uTP), a BitTorrent peer-to-peer file sharing protocol. A LEDBAT sender
implement a Proportional Integral Derivative (PID) controller to adjust the conges-
tion window taking the queueing delay estimate as the input (see section 1.2.2 of
[Chi12]).

20

2.5 Queueing delay aggregation

There are similarities between our queueing delay estimation and LEDBAT, but in
this section we justify the differences between the two methods.

LEDBAT requires that each data segment carries a "timestamp"13 from the sender,
based on which the receiver computes the one-way delay from the sender and sends
this computed value back to the sender(see section 2.2 of [SHIK10]). The LEDBAT
sender keeps track of all these one way delays and use them to calculate a baseline
βi and the queueing delay estimate qi:

qi = owdi − βi

where owdi is a value obtained applying a filter function to the recent one way delays
with the aim of eliminating the outliers (for the sake of simplicity we can think of
owdi as the i-th one way delay). The calculation of βi is very complex compared
with ours. LEDBAT maintains a base history vector. The first element of this
vector is the minimum of the owdi seen in the current minute. The second element
is the minimum calculated in the previous minute and so on. Every minute the base
history vector rolls over: the last element is removed, all the other elements are
shifted back and the first element can be used to update the minimum of the owd
over the minute just begun. The goal of this procedure is to address the possible
changes in the network state or in the path followed by the packets. It is why the
baseline is not calculated as the minimum owdi over the entire communication, but
only over the recent interval (the interval covered by the base history vector). As
explained in sec. 2.3, we can neglect changes in network state or in the path and can
perform a simpler calculation of the baseline.

The main difference between LEDBAT queueing delay estimation and ours is the
goal: our aim is to measure the queueing delay itself, while for LEDBAT qi is only
the input for the PID controller and a precise estimation of it is not the main goal
for a PID controller can tolerate also imprecise inputs.

2.5. Queueing delay aggregation

We batch consecutive samples belonging to the same TCP flow into windows whose
duration relates with the timescale typical of user dynamics. We consider a TCP

13The application (and not the transport layer) has to take care of this timestamp

21

2.5 Queueing delay aggregation

flow as the communication between two TCP endpoints in a certain direction, i.e.
if the TCP connection between A and B exchange data in the two directions, each
of them will be considered as a separate flow. An endpoint is identified by a (IP
address, TCP port) pair.

For each flow, we calculate the queueing delay samples as explained in this chapter.
In every window of 1 second, we calculate the aggregated queueing delay as the
average of the collected queueing delay samples during that time window. In case
there are no queueing delay samples in a window, no aggregated queueing delay is
calculated (or, in other words, the aggregated queueing delay is an NA).

The motivation behind the choice to aggregate the queueing delay is twofold.

First, we argue that the aggregated queueing delay is useful from the user perspective
for it describes what happens to the “entire” flow at a certain time and not to its
segments. In the specific case of uTP, [CR] shows that queuing delay statistics can
be biased (precisely queueing delay is underestimated) in case each packet is counted
as a sample (as opposite to windows of equal duration). In our case, a similar issue
arises. As Section sec. 3.3 will show, in conjunction with high queueing delays, the
number of acknowledgements that are observed generally decreases. Therefore, we
tend to have more samples representing the intervals of low queueing delays than
the ones representing the intervals of high queueing delays. As stated in [CR] we
risk to couple the measurement process with the flow dynamics and if we do not take
into account this detail, global statistics as the cumulative distribution function or
the probability density function of the queueing delay samples tend to be “shifted”
a bit towards lower values.

Second, aggregating the queueing delays permits to store less information to accom-
plish our measurements (see sec. 3.4 for more details). This is a crucial concern if
our methodology has to be applied to very large traffic traces or if it has to run in
an online monitoring system continuously sniffing large slices of Internet traffic.

22

3. Measuring queueing delay:
implementation

3.1. Measurement scenario

We now describe the experimental setup used to obtain the trace on which we
applied our methodology. We claim that our methodology can be applied also to
other scenarios but, in this case, care of the accuracy of the results should be taken,
e.g. the assumption 3 of sec. 2.1 might be less straightforward.

Our monitor is placed near the DSLAM (Digital Subscriber Line Access Multiplexer)
of an Internet Service Provider, as in Fig. 3.1. Our goal is to measure the queueing
delay inside user devices by inferring how much time the acknowledgments coming
from them spend enqueued in the buffers. We claim that the queueing delay inside
user devices is sufficiently representative for the queueing delay in the Internet, con-
sidering that (i) buffers are easily filled in the bottlenecks (i.e. the devices in which
fast-to-slow transitions happen) as stated in sec. 1.2 and that (ii) the broadband link
is the bottleneck on the Internet path (see section 3.4.2 of [DHGS07]).

Packets are timestamped at the measurement point via Endace DAG cards, so that
timestamp is reliable. A DAG card is a hardware that could capture traffic at very
high line rates with a timestamp resolution of less than 1 microsecond.

Our experimental setup is similar to the one used by [All12]: the main difference
is that [All12] vantage point is placed between the CCZ users and the Internet.
CCZ (Case Connection Zone) in an experimental fiber-to-the-home network which
connects roughly 90 homes adjacent to Case Western Reserve University’s campus
with bi-directional 1 Gbps links. On the contrary we are able to monitor the traffic
of “normal” users.

We consider each internal IP as a single host. This is known to be simplistic as, due

23

3.1 Measurement scenario

Figure 3.1.: Vantage point

24

3.2 A look at the implementation

to the penetration of NAT devices, the same IP is shared by multiple hosts (50%
of the cases [MSF11]), that are possibly active at the same time. Yet we point out
that this simplification has no impact for our methodology, since these potentially
multiple hosts share the same access bottleneck link (see chapter 1).

3.2. A look at the implementation

3.2.1. Tstat overview

Tstat [FMM+11] is an open source passive monitoring tool developed by the net-
working research group at Politecnico di Torino1 since 2000. It started as an evo-
lution of tcptrace2 and offers live monitoring (specifying the interface to monitor)
and offline analysis (specifying the input file to analyze, e.g. a pcap trace). It is
written in ANSI C for efficiency and allows sophisticated multi-gigabit-per-second
traffic analysis to be run live using common hardware and Libpcap [JLM94], the de
facto standard application programming interface (API) to capture packets.

Tstat sniffs IP packets and aggregate them in flows. Each flow is typically defined as
the sequence of packets characterized by the same flowID that have been observed
in a given time interval, where flowID = (ipaddress1, port1, ipaddress2, port2,
direction) so that TCP and UDP flows are considered. The direction indicates if the
data go from ipaddress1 to ipaddres2 or in the opposite direction. For this work,
only TCP flows are studied. The start of a new flow is commonly identified when
the TCP three-way handshake is observed; similarly, its end is triggered when either
a proper TCP connection teardown is seen, or no packets have been observed for
some time.

By configuration files, it is possible to specify the hosts that are considered as internal
or external and the traffic is organized in

• Incoming traffic: The source is external and the destination is internal.

• Outgoing traffic: The source is internal and the destination is external.

• Local traffic: Both source and destination are internal.

• External traffic: Both source and destination are external.
1Tstat Homepage: http://tstat.tlc.polito.it
2TCPTrace Homepage: http://www.tcptrace.org

25

3.2 A look at the implementation

We monitor only outgoing traffic and divide internal and external hosts according
to Fig. 3.1.

Tstat collects several network-layer as well as transport-layer measurements, which
are described in full details in http://tstat.polito.it/measure.shtml. Part of the
Tstat output is represented by plain text logs. In the offline analysis (the one
that we are performing), for each pcap trace Tstat produces a folder with differ-
ent log files. Examples of log files are: log_tcp_complete, log_tcp_nocomplete ,
log_udp_complete , log_skype_complete, log_chat_complete, log_streaming_complete.
Their form is quite similar: they are plain text files where each row corresponds to a
different flow and each column is associated to a specific measure (for log_tcp_complete
we have number of data packets, number of SYN messages, maximum receiver win-
dow announced, ...).

Tstat is also able to identify the application that generated the traffic. Primarily,
Tstat implements a deep packet inspection (DPI) technology.

3.2.2. Queueing delay measurement implementation

Bufferbloat-related code

When implementing our methodology in Tstat, our goal was to isolate the code
related to the queueing delay calculation from the rest of Tstat. Tstat is now a
complex tool able to accomplish different measurement tasks and it’s important to
maintain it modular: the experimenter should be able to activate and deactivate
what he needs for his measurement. We know that not all the experimenters will
be interested in queueing delay measures and we want that they should be able to
use Tstat for their goals simply ignoring the existence of portions of code related to
queueing delay.

All the C procedures related to queueing delay measurement are in tstat/bufferbloat.h
and tstat/bufferbloat.c. In particular, the functions declared here are:

• bufferbloat_analysis(..):

– called in tstat/tcp.c, tstat/ledbat.c, tstat/rexmit.c

• chance_is_not_valid(..):

– called in tstat/tcp.c

26

3.2 A look at the implementation

• check_direction_consistency(..):

– called in tstat/tcp.c, tstat/ledbat.c, tstat/rexmit.c

These function calls are activated only if the precompilation option BUFFERBLOAT_ANALYSIS
is enabled (see “Configuration parameters”).

The code in tstat/bufferbloat.c is an evolution of the code developed by Chiara
Chirichella [Chi12] to study the bufferbloat by monitoring the uTP flows (see sec. 2.4).
We generalize and extend the code to make it work both with uTP monitoring (as in
Chirichella’s work) and TCP monitoring (as in our work). As we observed in sec. 2.4,
the calculation method used for the uTP case is very similar to ours. They both
estimate the queueing delay collecting the samples of gross delays. Gross delay is the
general term with which we indicate the one-way delay in the uTP case and the data-
to-acknowledgement time in our TCP case. Therefore, if bufferbloat_analysis(..)
is called by tstat/rexmit.c, the following parameter is passed:

last_gross_delay = etime_rtt/1000

where etime_rtt is the data-to-acknowledgement time in microseconds.

On the contrary, if bufferbloat_analysis(..) is called by tstat/ledbat.c, the
last_gross_delay will be assigned a value depending by time_diff, that is the
one-way delay.

We inserted comments in the code with the aim to make it self-explanatory and thus
we do not dwell on the code description.

Configuration parameters

Our implementation on Tstat is highly configurable by precompilation options3.

The general options are

• BUFFERBLOAT_ANALYSIS: if enabled, the queueing delay estimation will be per-
formed. Otherwise, the “classical” version of Tstat will run

• DATA_TRIGGERED_BUFFERBLOAT_ANALYSIS: if enabled, in addition to the queue-
ing delay inference method that we are presenting in this work, a different
method will run. It is based on the ack-to-the-following-data-segment time
(rather then on data-to-ack time).We implement this method but do not an-
alyze it. This method will be ignored in this work.

3See tstat/Makefile.conf

27

3.2 A look at the implementation

• FILTERING: if enabled, all the LEDBAT-like filtering operations to calculate
the baseline will be used (see sec. 2.4).

• FORCE_CALL_INLINING: if enabled, gcc compiler will be forced to compile using
the optimization technique called “call inlining”4: in the compilation phase,
the calls to a function are replaced with the body of the function. This gen-
erally permits shorter running times, because, at run time, the overhead of
the function call (branch, parameter passing, allocation of space in the stack,
return parameter handling, ...) is avoided. The disadvantage is the increase
of the object code size.

The debug options are:

• SEVERE_DEBUG: If it is enabled, a lot of redundant and overabundant checks
will be performed to check for inconsistent states or data. If an inconsistent
state is detected, Tstat terminates and issues an error message. This can be
useful for further editing of the code to be sure that the modifications do not
introduce inconsistency.

• SAMPLE_VALIDITY: If it is enabled, Tstat will perform the calculations to check
how many acknowledgements are considered valid or invalid (see sec. 2.2).

• SAMPLE_BY_SAMPLE_LOG: If it is enabled, the log files with all the queueing
delay samples will be produced (in addition to the log files of the aggregated
queueing delays).

• ONE_FLOW_ONLY: it can be used when, for debugging purposes, it is necessary
to be sure that Tstat is monitoring only one flow.

The default configuration is with only BUFFERBLOAT_ANALYSIS and
FORCE_CALL_INLINING are enabled.

3.2.3. Output log file

In addition to the other Tstat log files, the following files will be produced5:

• log_tcp_windowed_qd_acktrig: if BUFFERBLOAT_ANALYSIS is enabled

• log_ledbat_windowed_qd: if BUFFERBLOAT_ANALYSIS is enabled

4See http://www.greenend.org.uk/rjk/tech/inline.html for a good howto on the question
5Notice that the term “windowed” stands for “aggregated”

28

3.2 A look at the implementation

• log_tcp_windowed_qd_datatrig: if BUFFERBLOAT_ANALYSIS and DATA_TRIGGERED
are enabled

• log_ledbat_qd_sample: if BUFFERBLOAT_ANALYSIS and SAMPLE_BY_SAMPLE_LOG
are enabled

• log_tcp_qd_sample_acktrig: if BUFFERBLOAT_ANALYSIS and SAMPLE_BY_SAMPLE_LOG
are enabled

• log_tcp_qd_sample_datatrig: if BUFFERBLOAT_ANALYSIS,
SAMPLE_BY_SAMPLE_LOG and DATA_TRIGGERED are enabled

For the measures that we present here, only log_tcp_windowed_qd_acktrig is used.

Each row of this file describes a 1-second-window of a certain flow pair characterized
by the same (ipaddress1, port1, ipaddress2, port2)-tuple. Considering the role of
the host that sends the packet, for each tuple like above Tstat distinguishes between
client and server, i.e., host that opens a connection and and host that replies to con-
nection request. The role of client or server does not correspond to the classification
in internal or external host.

The columns of the log file are as follows:

1. timestamp (in seconds)

2. ip_addr_1: IP address of the client

3. port_1: port of the client

4. ip_addr_2: port of the server

5. port_2: port of the server

6. internal_src: 1 if the host identified as client is internal; 0 otherwise6

7. internal_dst: 1 if the host identified as server is internal; 0 otherwise

8. connection_type (client-to-server direction7): a string in the form
<con_type>:<p2p_type>. <con_type> can be P2P, HTTP, SMTP, ... (see
tstat/protocol.h for the complete list). If the connection is of type P2P,
<p2p_type> indicates more detail about the type of connection. In our work,
we use only the information in <con_type>.

6For more details, search tstat/struct.h for “internal_src”
7Actually, this is a redundant information beacause the two directions are always of the same
type.

29

3.2 A look at the implementation

9. aggregated_queueing_delay (client-to-server direction): in milliseconds

10. window_error (client-to-server direction): in milliseconds

11. qd_max_w1 (client-to-server direction): in milliseconds, it indicates the maxi-
mum of the queueing delays collected in the last 1-second-window

12. chances_in_win (client-to-server direction): how many acknowledgements (ei-
ther valid or invalid) are collected in the 1-second-window. Each acknowledg-
ment is considered as a “chance”8 to calculate the queueing delay. When
SAMPLE_VALIDITY is disabled, this column is always equal to “-”.

13. aggregated_grossdelay (client-to-server direction): this is the average data-
to-acknowledgement time 9 (milliseconds) of all the samples collected in the
1-second-window.

14. connection_id (client-to-server direction): this is meaningful only in the
LEDBAT contest.

15. samples_in_win (client-to-server direction): number of queueing delay sam-
ples collected in the 1-second window. The aggregated queueing delay is cal-
culated on the base of these samples.

16. not_void_windows (client-to-server direction): meaningless, used only for de-
bugging purposes

17. qd_measured_sum (client-to-server direction): in milliseconds, it is the sum of
the queueing delay samples seen from the beginning of the flow

18. aggregated_qd_sum (client-to-server direction): in milliseconds, it is the sum
of the aggregated queueing delay of the 1-second-windows seen from the be-
ginning of the flow.

19. sample_qd_sum_until_last_window (client-to-server direction): in millisec-
onds, it is the sum of all the queueing delay samples from the beginning of the
flow to the last closed 1-second window.

20. baseline (client-to-server direction): in milliseconds: it is the last baseline
calculated in the 1-second window. Notice that this value is not used for the

8The log file log_tcp_windowed_qd_datatrig (that we do not use) has the same form presented
here. In that contest, every data segment is considered as a chance to calculate the queueing
delay. This is why we do not call this column “number_of_acks” and prefer the more general
name “chance”

9ΔT in sec. 2.1

30

3.2 A look at the implementation

calculation but only written here for debugging purposes. Indeed, the baseline
used for the queueing delay calculation is recomputed at every sample.

21. connection_type (server-to-client direction)

22. aggregated_queueing_delay (server-to-client direction)

23. window_error (server-to-client direction)

24. qd_max_w1 (server-to-client direction)

25. chances_in_win (server-to-client direction)

26. aggregated_grossdelay (server-to-client direction)

27. connection_id (server-to-client direction)

28. samples_in_win (server-to-client direction)

29. not_void_windows (server-to-client direction)

30. qd_measured_sum (server-to-client direction)

31. aggregated_qd_sum (server-to-client direction)

32. sample_qd_sum_until_last_window (server-to-client direction)

33. baseline (server-to-client direction)

The procedures responsible for writing the log file are print_last_window_general(..)
(it writes the first five columns of each row) and print_last_window_directional(..)
(it writes all the other columns, starting from the ones related to the client-to-server
direction and then writing the columns related to the server-to-client direction).
Both the procedures are in tstat/bufferbloat.h and tstat/bufferbloat.c. They
are used to produce not only log_tcp_windowed_qd_acktrig, but also
log_ledbat_windowed_qd and log_tcp_windowed_qd_datatrig. This is why, for
the sake of generality, some columns are meaningless in our contest and some column
names may seem too abstract.

3.2.4. Post-processing

All the results are obtained by means of calculations that have the log file described
above as input. The script files that implement these calculations are in the folders
offline_analysis, performance_evaluation and ping_validation.

31

3.2 A look at the implementation

Most of them are Linux bash scripts and use tools like awk10. We use Gnuplot
([Jan09]) for some of the plots.

For more advanced data analysis, we use R ([IG96]), a programming language for
statistical computing and graphics. We choose to use this language because

• it permits to associate to raw data semantic information that are essential for
further complex processing

• it provides ready-to-use statistical functions and plotting capabilities

• it permits to combine data in a very natural way, similar to SQL

• it is suitable for mathematical computation, like Matlab

The major limitation that we find in R is that it reads data into memory by default.
The data needed for some of our computations are huge and cannot be contained
in the RAM only. The result is that, by default, R run into “cannot allocate mem-
ory” problems. Fortunately, R has few packages for big data support11. We use
ff package, that provides file-based access to datasets that cannot fit in memory:
the programmer invokes the same functions12 as if the data set were entirely in the
memory and the ff package performs the underlining operations to map from disk
to memory only necessary/active parts of the data.

All the functions we use are in
offline_analysis/R_scripts/get_affected_flows.r . The best way to use these
functions is editing the file above in its last part and inserting the function calls that
are needed; then, launching

sh offline_analysis/Rlauncher.sh

from the shell. This script will execute the R code: all the function definitions
will be loaded and the function calls executed. A log file will be written in the file
specified inside get_affected_flows.r to check for possible errors.

10In a Linux shell, run man awk for more details
11See

http://www.bytemining.com/2010/08/taking-r-to-the-limit-part-ii-large-datasets-in-r/
for a good introduction to this topic

12Actually, we found that this is only partially true

32

3.3 Validation of measurement accuracy

3.3. Validation of measurement accuracy

In a local testbed, we compare our measures to the ones obtained by considering
the ping RTT, as ground truth. We also change the data rate at which the net-
work interface works in order to understand in what scenario our measurement is
more accurate. We repeat the experiment with different values of a parameter (the
quadrant size) to evaluate its impact on the accuracy.

3.3.1. Testbed description

We send bidirectional TCP traffic between two hosts connected via an Ethernet
LAN, as in Fig. 3.2. We perform the measurement of the queueing delay of the
queue on host A. We start three flows:

• the monitored TCP flow: host B sends data segments to host A that replies
with the acknowledgements.

• the cross traffic flow: host A sends burst of data to B

• the ICMP flow: host B sends an ICMP echo requests to host A at 1 Hz that
replies with an ICMP echo replies.

Our monitor runs on host B and estimate the queueing delay on A observing the
data-to-ack time on the monitored flow, applying the methodology of chapter 2.
In particular, the monitor infers how much time the acknowledgments (that host
A sends on the monitored flow) pass in the local queue. The cross traffic flow is
used to periodically form the queue inside A, filling it with bursts of data segments
with which the host A acknowledgements in the monitored flow have to compete.
Compare Fig. 2.1 with Fig. 3.2 to have a better idea of how the methodology is
applied in the testbed.

Crafting traffic

The monitored and cross traffic flow are artificially created with Iperf ([TQD+05]).
Iperf is a tool that consists of two softwares: iperf client and iperf server.

To create the monitored flow, we first launch iperf server on host A listening on
port 5011. Then we launch the iperf client on host B specifying to open a TCP

33

3.3 Validation of measurement accuracy

connection to the port 5011 on host A. In this way, iperf client starts to send data
segment to iperf server that replies with acknowledgements.

To create the cross traffic flow we launch iperf server on host B listening on port
5012, then we launch iperf client on host A a series of times, separated by 15 seconds,
for 2 seconds each time. iperf client acts to inject traffic at a data rate such to use
the entire available bandwidth. Therefore, during the intervals of 2 seconds in which
iperf client is active, we recreate the scenario of full link utilization and we impose a
large queue in the exit link of host A, hampering in this way the acknowledgments
of host A on the monitored flow.

The ICMP flow is created launching the Linux utility ping on host B, setting host
A as destination.

Creating the bottlenecks

To create some artificial bottlenecks, we use Ethtool13 and Netem14.

Ethtool permits to physically slow down the Ethernet interface15. Our hosts are
equipped with a 100 Mbps Ethernet interface and we slow down the interface of
host A to 10 Mbps.

On the other hand, Netem creates software bottlenecks. We set Netem to use the
Hierarchical Token Bucket (HTB) method to implement the bottleneck. HTB is
now part of the official Linux Kernel. We use Netem to limit the rate at which host
B sends packets to host A in the in the monitored flow. The limit we impose is
7Mbps . In the same way, we impose a limit of 1 Mbps in the data rate at which the
host A send packets to host B. Doing this way, we want to simulate the bottleneck
represented by the ADSL uplink.

It should be noticed that, to slow down the link exiting from host A, we use both
Netem and Ethtool. We do this beacuse during our experiments we observed that
slowing down the 100Mbps ethernet interface only via Netem may lead to an instable
evolution of the RTT we use as ground thruth (as can be seen in Fig. 3.3 - for now
observe only RTT (green line) and ignore the rest). In particular, the RTT goes up
and down very rapidly. We suppose that this is a consequence of the token bucket

13See http://en.wikipedia.org/wiki/Ethtool
14See http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
15On some network interfaces it may not work

34

3.3 Validation of measurement accuracy

mechanism: when there are free tokens, they are rapidly consumed by iperf client
that can send a lot of packets and fill the queue, thus imposing high round trip
times�. In the time intervals when there are no more tokens, the packets of iperf
client cannot go out and have to wait until they are recreated. In these intervals the
queue has the chance to partially empty and the round trip times decrease. Fig. 3.3
shows also that when Netem is used in conjunction with Ethtool, the RTT evolution
is more natural, because the Ethernet interface physically works at 10 Mbps and
Netem has to slow down the link only by a factor of 10 (instead of slowing down by
a factor of 100 like when using only Netem).

Because we want to avoid these irregular and unnatural behaviors, we choose to use
Netem and Ethtool together.

Fig. 3.4 completes Fig. 3.2 with some more details about the tools that we use.

Replicating the experiments

The experiments that we propose for the validation are easily reproducible. They
are automated by means of distributed bash scripts. To have an idea of what the
scripts are and what process are launched, see Fig. 3.5.

Two identical version of our Tstat implementation are present on both host A and
host B. Some preliminary configuration variable may be set up16

Then, launching ping_validation/exp2-brain-iperf.sh, the entire experiment is
performed. This script is the “orchestrator” and is responsible to launch all the soft-
wares we need. It runs in host A but is able also to launch processes in host B17. This
16In ping_validation/exp2-brain-iperf.sh on the host A

side and in ping_validation/exp2-ping-netbook.plot.sh and
ping_validation/exp2-netbook-variables_conf.sh on the host B side. The word
“netbook” that appears in the names of the host B side scripts is not meaningful. It appears
only because in our experiment we originally used a netbook as host B.

17Some network settings are needed on both host A and host B:

• /etc/hosts file must be edited in host A, to associate the IP address of host B to the name
“netbook”

• /etc/hosts file must be edited in host B, to associate the IP address of host A to the name
“desktop”

• from host A it must be possible to access via SSH the host B as root user without password.
A good howto about this is:
http://www.linuxproblem.org/art_9.html

• ping_validation/exp2-brain-iperf.sh must be launched with root privileges

35

3.3 Validation of measurement accuracy

script also calls a script on host B, ping_validation/exp2-ping-netbook.plot.sh,
that is delegated to launch other processes on host B.

First, the bottlenecks are created on host A and host B. Then, the iperf servers start
(both the one for the monitored flow and the one for the cross traffic flow) to listen
on their respective ports. On host B, tcpdump starts to sniff the monitored flow. At
the end of the experiment, it will produce a pcap trace18, useful for further analysis
of the experiment. Then host B starts to ping host A. The round trip times are
recorded in the ping output file, together with the relative timestamps 19. Finally,
the monitored and the cross traffic flows start.

Analyzing the results

After running the experiment, it’s possible to obtain plots like Fig. 3.3 using the the
pcacp trace and the ping output file produced with the previous procedure. Launch-
ing ping_validation/exp2-netbook-offline-plotting.bash Tstat analyzes the
pcap trace producing its log files20. At the end of the process, a gnuplot script
examines the Tstat log file and the ping output script and generate the plots 21.
Separating the experiment runs from the analysis of results permits to compare the
results produced by different configurations of Tstat on the same pcap trace.

To have an idea of the data taken as input, the data produced during the analysis
and the scripts and sofwares involved, see Fig. 3.6.

3.3.2. Impact of parameters and surrounding conditions

The impact of the quadrant size

At low level, tcptrace (and thus Tstat too) keeps sequence numbers in a circular
data structure named quad (i.e., after the “quadrants” the structure is divided into,

18The file name is specified by the variable PCAP_TRACE of
ping_validation/exp2-netbook-variables_conf.sh

19The file name is specified by the variable PING_OUT_FILE of
ping_validation/exp2-netbook-variables_conf.sh .

20All the log files written by Tstat will be in the folder specified by the variable TSTAT_OUT_FOLDER
of ping_validation/exp2-netbook-variables_conf.sh .

21An eps file is generated. Its path is specified in ping_validation/build_gnuplot_script.bash
.

36

3.3 Validation of measurement accuracy

to speed-up lookup). In case the quad has a fixed size, it may happen that, if
the number of outstanding segments grows larger than the quad size, then sequence
numbers are overwritten – so that acknowledgements cannot be paired with data and
RTT samples are lost. We show an occurrence of this problem in Fig. 3.7, where
we configured two values of the quad size22 – one is fixed (to a purposely small
value) and the other is variable and can grow arbitrarily large to avoid overwriting
outstanding sequence numbers (notice that variable size is handled with linked lists,
so that in this validation phase we take precisely the opposite direction to [GCCK13],
as we do not want to compromise accuracy).

Fig. 3.7 and Fig. 3.8 represent three measurements on exactly the same traffic trace23.
Each measurement correspond to a configuration of Tstat. For each of the three
configurations, we provide three plots: in the top plot we compare the ground
truth (the RTT of the ICMP flow) with our estimation. In the bottom plot we
represent the number of acknowledgments that host A sends to host B every second
in the monitored flow and the validity ratio, i.e. the ratio between the number of
valid acknowledgements observed in a second (see sec. 2.2) and the total number of
acknoledgements (either valid or invalid). In the middle plot, we represent how many
queueing delay samples Tstat is able to calculate. These samples are the ones that
Tstat uses to calculate the aggregated queueing delay, every second (see sec. 2.5).

First, we easily observe that when the cross traffic is inserted, it saturates the link
from host A to host B. Therefore, the queueing delay increases, as confirmed by
the ground truth. As expected, the number of acknowledgements that succeed in
arriving to host B decreases and thus Tstat has less information to infer the queueing
delay, as confirmed by the decreasing of the number of queueing delay samples per
second. Nevertheless, the qd_samples/sec value does not depend only on the number
of acknowledgements but also on the quadrant size. From Fig. 3.7, it is clear that
with a small quadrant size the number of qd_samples/sec that can be calculated
is very small for sequence numbers are possibly overwritten. Observing the validity
ratio plot, we can grasp why it happens: with a small quadrant size, most of the
acknowledgements are marked as invalid, and cannot be used for our estimation.
For the configuration MAX_SEG_PER_QUAD=2, the validity ratio never exceeds 0.25,
while for the configuration MAX_SEG_PER_QUAD=INFTY it reaches 1.0 .

As a consequence, for small values of the quadrant size, Tstat estimation is very
22The quadrant size is represented by MAX_SEG_PER_QUAD in tstat/param.h
23We sniff the traffic with tcpdump and then apply the measurement on the offline trace

37

3.3 Validation of measurement accuracy

coarse, while, increasing the quadrant size, Tstat better approaches the ground
truth (in Fig. 3.7, compare the top plot of the two configurations, in particular
after second 55). We point out that, when quadrant size is small, the error is not
“random” but systematically may lead to an underestimation of the queueing delay:
in particular, during our experiments we observed that when the ICMP RTT is
not so high Tstat gives a good estimation but when the RTT is high Tstat cannot
produce its estimates. Providing estimates of the queueing delay only when it is low
clearly is a measurement bias.

The Fig. 3.8 represents an intermediate case: the validity ratio is slightly lower than
with MAX_SEG_PER_QUAD=INFTY, and so the number of queueing delay samples per
seconds; nonetheless Tstat succeeds in estimating the queueing delay.

The results that are presented in the following chapter are obtained with
MAX_SEG_PER_QUAD=INFTY. The considerations that we’ve given in this section
highlight that to infer the queueing delay (like when performing any other mea-
surement), attention should be paid in tweaking the measuring tool, otherwise the
results may be distorted. We point out that other authors do not report much on
tweaking the tool they use.

Dependency on the data rate

In this subsection, we show that the expected data rate should be taken into account
when tweaking Tstat. For the data rates that we have when using the bottlenecks
(Netem and Ethtool), a MAX_SEG_PER_QUAD=5 is enough to have a good estimation
of the queueing delay. Now, we provide the results obtained replicating the experi-
ments of sec. 3.3.1 without any bottleneck (neither in host A nor in host B, neither
Netem nor Ethtool). Both the monitored flow and the cross traffic flow are free to
run at the maximum speed.

Fig. 3.9, Fig. 3.10 and Fig. 3.11 show that the number of acknowledgements in the
monitored flow is more than a magnitude larger than the previous experiments, but
the validity ratio is almost 0 even with MAX_SEG_PER_QUAD=15 and thus
the number of queueing delay samples per second is not sufficient. In the previous
experiments, with
MAX_SEG_PER_QUAD=2 the estimation was coarse but at least possible. Now,
with that configuration, Tstat is not able to provide any estimation. While in
the previous example MAX_SEG_PER_QUAD=5 guaranteed a good estimation,

38

3.4 Performance analysis and analysis of the overhead

now the estimation is very coarse. To have a good estimation, we have to set
MAX_SEG_PER_QUAD=15.

3.4. Performance analysis and analysis of the
overhead

In this section, we coarsely analyze the overhead imposed on Tstat by the queueing
delay estimation both in terms of required disk space for the output files and of
execution time.

We run Tstat on a set of 59 compressed pcap traces. The total size of the traces
is 43 GB. With bufferbloat analysis disabled, Tstat running time is 23 minutes and
the output log files are 1,462GB. Enabling bufferbloat analysis, the log files increase
to 2,328 GB and running time increases to 25 minutes. We can conclude that the
bufferbloat analysis imposes an overhead of 60% in terms of required space on the
disk and of 8% in terms of running time.

39

3.4 Performance analysis and analysis of the overhead

Figure 3.2.: Local testbed

40

3.4 Performance analysis and analysis of the overhead

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

[m
s
]

qd
ping rtt

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

 0

 5

 10

 15

 20

 25

 30

v
a
lid

it
y
 r

a
ti
o

s
a
m

p
le

s
/s

e
c

timestamp

qdsamples/sec
validity ratio

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

[m
s
]

qd
ping rtt

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 5

 10

 15

 20

 25

 30

v
a
lid

it
y
 r

a
ti
o

s
a
m

p
le

s
/s

e
c

timestamp

qdsamples/sec
validity ratio

Figure 3.3.: (top) RTT (green line) when only Netem is the host A bottleneck.
(bottom) RTT (green line) when Netem is used in conjunction to Ethtool.

41

3.4 Performance analysis and analysis of the overhead

Figure 3.4.: Local testbed: detailed schema

42

3.4 Performance analysis and analysis of the overhead

Figure 3.5.: Testbed automating scripts

43

3.4 Performance analysis and analysis of the overhead

Figure 3.6.: Offline analysis process

44

3.4 Performance analysis and analysis of the overhead

MAX_SEG_PER_QUAD=2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

[m
s
]

qd
ping rtt

 0

 5

 10

 15

 20

 25

 30

q
d

_
s
a

m
p

le
s
/s

e
c

qdsamples/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 20

 40

 60

 80

 100

 120

 140

v
a

lid
it
y
 r

a
ti
o

a
c
k
s

times (sec)

acks
validity ratio

-
MAX_SEG_PER_QUAD=INFTY

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

[m
s
]

qd
ping rtt

 0

 5

 10

 15

 20

 25

 30

q
d

_
s
a

m
p

le
s
/s

e
c

qdsamples/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 20

 40

 60

 80

 100

 120

 140

v
a

lid
it
y
 r

a
ti
o

a
c
k
s

times (sec)

acks
validity ratio

Figure 3.7.: Queueing delay estimation using different values of quadrant size.
MAX_SEG_PER_QUAD=2 in the top figure and MAX_SEG_PER_QUAD is INFTY in the
bottom figure (INFTY means that Tstat keeps track of all the segments: the only
limit is the system meory).

45

3.4 Performance analysis and analysis of the overhead

MAX_SEG_PER_QUAD=5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

[m
s
]

qd
ping rtt

 0

 5

 10

 15

 20

 25

 30

q
d

_
s
a

m
p

le
s
/s

e
c

qdsamples/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 20

 40

 60

 80

 100

 120

 140

v
a

lid
it
y
 r

a
ti
o

a
c
k
s

times (sec)

acks
validity ratio

Figure 3.8.: Queueing delay estimation with MAX_SEG_PER_QUAD=5

46

3.4 Performance analysis and analysis of the overhead

MAX_SEG_PER_QUAD=2

 0

 20

 40

 60

 80

 100

[m
s
]

qd
ping rtt

 0

 50

 100

 150

 200

 250

 300

 350

 400

q
d

_
s
a

m
p

le
s
/s

e
c

qdsamples/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 1000

 2000

 3000

 4000

 5000

 6000

v
a

lid
it
y
 r

a
ti
o

a
c
k
s

times (sec)

acks
validity ratio

MAX_SEG_PER_QUAD=5

 0

 20

 40

 60

 80

 100

[m
s
]

qd
ping rtt

 0

 50

 100

 150

 200

 250

 300

 350

 400

q
d

_
s
a

m
p

le
s
/s

e
c

qdsamples/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 1000

 2000

 3000

 4000

 5000

 6000

v
a

lid
it
y
 r

a
ti
o

a
c
k
s

times (sec)

acks
validity ratio

Figure 3.9.: Experiment without bottlenecks

47

3.4 Performance analysis and analysis of the overhead

-
MAX_SEG_PER_QUAD=10

 0

 20

 40

 60

 80

 100

[m
s
]

qd
ping rtt

 0

 50

 100

 150

 200

 250

 300

 350

 400

q
d

_
s
a

m
p

le
s
/s

e
c

qdsamples/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 1000

 2000

 3000

 4000

 5000

 6000

v
a

lid
it
y
 r

a
ti
o

a
c
k
s

times (sec)

acks
validity ratio

MAX_SEG_PER_QUAD=15

 0

 20

 40

 60

 80

 100

[m
s
]

qd
ping rtt

 0

 50

 100

 150

 200

 250

 300

 350

 400

q
d

_
s
a

m
p

le
s
/s

e
c

qdsamples/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 1000

 2000

 3000

 4000

 5000

 6000

v
a

lid
it
y
 r

a
ti
o

a
c
k
s

times (sec)

acks
validity ratio

Figure 3.10.: Experiment without bottlenecks

48

3.4 Performance analysis and analysis of the overhead

MAX_SEG_PER_QUAD=INFTY

 0

 20

 40

 60

 80

 100

[m
s
]

qd
ping rtt

 0

 50

 100

 150

 200

 250

 300

 350

 400

q
d

_
s
a

m
p

le
s
/s

e
c

qdsamples/sec

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 0

 1000

 2000

 3000

 4000

 5000

 6000

v
a

lid
it
y
 r

a
ti
o

a
c
k
s

times (sec)

acks
validity ratio

Figure 3.11.: Experiment without bottlenecks

49

4. Statistical characterization of
queueing delay

4.1. Introduction

As our focus is to build a solid methodology, rather than providing full-blown mea-
surement campaign, for the time being we analyze offline traces gathered in a single
ISP network during FP7 NapaWine [LMH+08] project, when P2P was still fairly
popular (we consider a 8 hr-long period starting at 14:00, gathered during 2009).

We consider only the flows in which we observe acknowledgements originated by an
internal host and directed to an external host1. According to Fig. 3.1, internal hosts
are the ones that access Internet connecting to the DSLAM that we are monitoring.
The rest of the hosts are considered external.

For the sake of simplicity, we will often refer to three ranges of aggregated queueing
delay (aqd):

• LOW: aqd < 100ms

• MID: 100ms ≤ aqd < 1000ms

• HIG: aqd ≥ 1000ms

We make the assumption that performance of interactive multimedia (e.g., VoIP,
video-conference and live-streaming) or data-oriented applications (e.g., remote ter-
minal or cloud editing of text documents) require to have queueing delay in the
range LOW to guarantee a good quality of service; mildly- interactive applications
require at least the MID range; the other applications do not suffer much even if
the queueing delay is in the HIG range.

1An host (identified by a an IP address) is specified to be internal or external by configuration
files (see sec. 3.2.1)

50

4.2 Global characterization

4.2. Global characterization

Fig. 4.1 shows how the aggregated queueing delay is distributed. We observe that
most of the aggregated queueing delays fall in the LOW range, but that the MID
region is not negligible.

m
e

a
n

0.0

0.1

0.2

0 100 200 300 400 500 600 700 800 900 1000

aggregated queueing delay (ms)

fr
e

q
u

e
n

c
y

Figure 4.1.: Normalized frequency plot of the aggregated queueing delay (cutting
away from the plot the queueing delays greater than 1000ms). Every vertical
bar represents a 10-ms large interval. The height of each bar is the number of
aggregated queueing delays that fall in that interval divided by the total number
of aggregated queueing delays.

This emerges in a clearer way from Fig. 4.2. For each flow, we calculate the 50th,
90th, 95th, 99th percentiles and we plot the cumulative distribution function (CDF)
of these values.

More precisely, indicate with F the set of all the flows and take a certain flow F ∈ F .

51

4.2 Global characterization

Without ambiguity, we can indicate with the symbol F , either a flow itself or the
set of aggregated queueing delays of that flow, neglecting the void windows, i.e. the
windows in which no queueing delay sample has been observed. The 50-th percentile
of F is the value pF such that:

|{aqd ∈ F | aqd ≤ pF }|
|F | = 50%

i.e. pF is the value such that the 50% of the aggregated queueing delays does not
exceed it.

The 90th, 95th and 99th percentile for each flow are calculated as above.

To plot the 50th-percentile curve, we consider the population P = {pF |F ∈ F}
consisting in the set of the 50th percentile value pF for all the flows. The curve
represents the cumulative distribution function of that population, i.e.

CDF (x) = |{pF ∈ P | pF ≤ x}|
|P |

The complementary cumulative distribution function is

CCDF (X) = |{pF ∈ P | pF > x}|
|P | = 1 − CDF (x)

The curves relative to the 90th, 95th and 99th percentiles are calculated as above.

From the CCDF of Fig. 4.2 we see that almost the 20% of the medians (50th per-
centiles) fall in the MID or HIG ranges. This means that almost the 20% of the
flows experience, in the 50% of their 1-second-windows, a delay greater or equal to
100 ms.

In Fig. 4.3, we provide the frequency plots of the percentiles of the aggregated queue-
ing delay. The 50th percentile plot, for example, is obtained calculating the 50th
percentile for each flow and then observing the frequency at which these values
occur. The same holds for the other plots of Fig. 4.3.

From these plots, we can grasp interesting insights. For example, considering the
90th percentile plot, we can see that the average 90th percentile (calculated over all
the flows) is greater than 100ms. Roughly speaking, we can conclude that, taking
an “average flow”, the 10% of its 1-second-windows fall in the MID or HIG range.
This is a clue for a non-negligible buffering.

52

4.2 Global characterization

1 5 10 50 500 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

aggregated queueing delays (ms)

C
D

F

50%−percentile

90%−percentile

95%−percentile

99%−percentile

1 5 10 50 500 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

aggregated queueing delays (ms)

c
o
m

p
le

m
e
n
ta

ry
 C

D
F

50%−percentile

90%−percentile

95%−percentile

99%−percentile

Figure 4.2.: Cumulative distribution function (CDF) and complementary cumula-
tive distribution function (CCDF) of the aggregated queueing delay percentiles
(calculated on a per-flow basis)

53

4.2 Global characterization

m
e
a
n

0.00

0.02

0.04

0.06

0 100 200 300 400 500 600 700 800 900 1000

50th percentile of aggregated queueing delay (ms)

fr
e
q
u
e
n
c
y m

e
a
n

0.00

0.02

0.04

0.06

0 100 200 300 400 500 600 700 800 900 1000

90th percentile of aggregated queueing delay (ms)

fr
e
q
u
e
n
c
y

m
e
a
n

0.00

0.02

0.04

0.06

0 100 200 300 400 500 600 700 800 900 1000

95th percentile of aggregated queueing delay (ms)

fr
e
q
u
e
n
c
y m

e
a
n

0.00

0.02

0.04

0.06

0 100 200 300 400 500 600 700 800 900 1000

99th percentile of aggregated queueing delay (ms)

fr
e
q
u
e
n
c
y

Figure 4.3.: Normalized frequency plots of the aggregated queueing delay per-
centiles. Every vertical bar represents a 10-ms large interval. The height of each
bar is the number of the flows that have the percentile that fall in that interval
divided by the total number of flows.

Fig. 4.4 shows the evolution of the quantiles of the aggregated queueing delay in the
observation period. The plot has the granularity of 2 minutes: taking for example the
0.5th quantile curve, the point corresponding to a certain time value t is calculated
as follows:

• take all the 1-second-windows that fall in the interval [t, t+ 2min], regardless
of the flow that contains them

• take the aggregated queueing delays of these windows

• Calculate the 0.5th quantile of all these values

54

4.3 Per application view of queueing delay

0

1000

2000

time

ag
gr

eg
at

ed
qu

eu
ei

ng
de

la
y

(m
s)

quantiles

X50.

X90.

X95.

X99.

14:46 17:33 20:20 23:06

Figure 4.4.: Evolution of the quantiles during the 8-hour long observation.

4.3. Per application view of queueing delay

Each delay sample that Tstat measures carries an application label, obtained through
Tstat Deep Packet Inspection (DPI) and behavioral classification capabilities. Though
Tstat is capable of fine-grained classification of different applications ([FMM+11]),
we cluster similar applications into few classes depending on the service they offer.
They are listed in the Tab. 4.1. For each class of traffic, the last column indicates
the queueing delay range (see sec. 4.1) which is suitable for that class to guarantee a
good QoE (Quality of Experience). This classification is made according to studies
assessing the impact of delay on the QoE: [BOB12, SdDF+11] for the WEB appli-
cation, [HPC+12] for MEDIA (i.e. multimedia applications) , [CHHL06] for VOIP,
[TR11, CR] for P2P. Nevertheless, it’s worth highlighting that when the queueing
delays fall in the HIG region, also less demanding traffic classes as P2P may start
to experience a severe degradation of performance ([TR11, CR]).

All flows that Tstat is not able to classify are considered as OTHER.

4.4. Queueing delay distribution over classes

In Fig. 4.5 we depict a jittered density map of the aggregated queuing delays (y-axis)
for different application classes (x-axis), along with boxplots reporting the quartiles

55

4.4 Queueing delay distribution over classes

Table 4.1.: Classes of traffic

(and 5th, 95th percentiles). Applications are ordered, left to right, in increasing
order of delay sensitivity. It can be seen that, for most applications, the 75% of
windows experience less than 100ms worth of queuing. The only exceptions are con-
stituted by, rather unsurprisingly, P2P applications and, somehow more surprisingly,
Chat applications, with median delays exceeding 100ms.

In the ideal case, the most delay-sensitive traffic classes should be better serviced
(i.e. they should experience less queueing delay) than the other ones. Therefore
we would expect the values of the percentiles to go down from left to right (i.e.
from the less sensitive traffic classes to the more sensitive ones), but Fig. 4.5 does
not confirm this. Intuitively, we can conclude that some traffic classes are better
serviced than other more sensitive ones. For example MAIL, WEB and MEDIA
are better serviced than CHAT. MAIL is serviced in quite a similar way to WEB.
Fortunately, almost all the aggregated queueing delay of VOIP flows fall into range
LOW.

56

4.4 Queueing delay distribution over classes

 1

 10

 100

 1000

 10000

Oth Mail P2P Web Media Chat SSH VoIPM
ea

n
qu

eu
in

g
de

la
y

in
 1

s
w

in
do

w
s

[m
s]

lo
w

m
id

hi
gh

Figure 4.5.: Breakdown of queuing delay per application. Plot reports jittered
density maps and (5,25,50,75,95)- th percentiles.

A simplified view of the information carried by Fig. 4.5 is given by Fig. 4.6. As
expected, a big part of the aggregated queueing delays of P2P flows fall into MID
and also HIG range. Surprisingly, the MID part of the CHAT bar is even bigger
than the corresponding part of P2P. On the other hand, the HIG part of CHAT is
almost of 0-size, while in P2P it is relevant. Similarly, LOW part of MAIL is bigger
than the LOW part of WEB, but MAIL shows a non-null HIG part that is non
existent in WEB. The more demanding classes, VOIP and SSH, are partitioned in
a quite similar way: most of the aggregated queueing delays fall in LOW and the
HIG part is null.

To have a more precise picture of the information contained in Fig. 4.6, the Tab. 4.2
tabulates the percentage of 1 sec windows for each application that fall into either
of the three delay regions, where we use boldface values to highlight possible QoE
degradation. It follows that, in practice, bufferbloat impact on QoE appears to be

57

4.5 Root cause analysis

modest. A limited 0.1% of Web and Chat sessions may be impacted by significant
delay, and 2.2% (1.4%) of VoIP (remote terminal) sessions may be impacted by
moderate delay. P2P clearly stand out, raising the odds to induce high delays (2.9%)
followed by MAIL (0.6%), though with likely minor impact for the end-users.

CHAT MAIL MEDIA OTHER P2P SSH VOIP WEB
LOW 45.7 93.2 86.2 89.7 58.4 98.6 97.8 91.9
MID 54.1 6.2 13.2 10.2 38.7 1.4 2.2 8.0
HIG 0.1 0.6 0.0 0.1 2.9 0.0 0.0 0.1

Table 4.2.: Table report the percentage of per- application aggregated queueing
delays falling into either of the three delay regions (boldface values highlight
possible QoE degra- dation)

The plots in Fig. 4.7 are obtained partitioning all the aggregated queueing delays
on their range and then, for each range, representing the count of the traffic classes
(i.e. how many aggregated queueing delay we observe for that class). What clearly
emerges is that the monitored traffic is dominated, at least in our per-flow view,
by the P2P. A motivation behind this is that most P2P applications use multiple
connections to support various functions.

Excluding P2P and OTHER from the plots in Fig. 4.7, we obtain Fig. 4.8 which
permit a more comfortable analysis. We see that, not considering P2P, WEB is the
most popular class of traffic. All classes are sufficiently represented in the LOW
range. In MID range CHAT is quite frequent. MAIL is particularly frequent in the
HIG range, as we may hope.

4.5. Root cause analysis

4.5.1. Methodology

As we have full knowledge of the traffic generated and received by hosts, we can cor-
relate the queuing delay with the traffic active on the hosts. As before, we limitedly
consider the upstream traffic direction, and divide time in 1 second long slots. For
all active flows of each host, we log the application label and its aggregated queue-
ing delay during that window. Notice that in sec. 4.3 we independently consider all
the aggregated queueing delays: in other words, the delay seen by packets of an

58

4.5 Root cause analysis

application flow can be induced by other flows active on the same time in the same
host (or household). In this section, we leverage standard data mining techniques
to, if possible, pinpoint the root cause of the observed delay. In particular, we use
Apriori ([AS+94]), a classic algorithm for frequent item set mining.

In our analysis, we face known, yet non trivial problems. At this stage, we make
the problem tractable by performing stratified sampling, initially including 8,000
random aggregated queueing delays per-application (64,000 overall). In this way,
we also cope with class imbalance: taking the same number of aggregated queueing
delays for all the applications permits to avoid the bias due to the fact that there
are very popular classes of traffic and other less popular ones. Let us denote by
(t, h, a, q) an aggregated queuing delay q gathered on host h during the time win-
dow t and corresponding to an application a. Evidently, we need to ensure that our
population includes all other aggregated queueing delays corresponding to applica-
tions that were active on h during t. We therefore complement the initial population
and achieve an overall population of 107,825 aggregated queueing delays. To guar-
antee the statistical relevance of our analysis, we further verify that statistics of the
sampled population correspond to those reported in Fig. 4.5.

For each host h and time window t, we next compute the mean of the aggregated
queueing delays seen by all applications during t. As rule-inference techniques are
known to be largely ineffective on continuous variables, and in reason of the previous
QoE considerations, we quantize queuing delay in a low, medium and high score (see
sec. 4.1).

We also aggregate all application labels, and denote with
√

(or ++) applications
that have generated respectively one (or more) flows during t. For the sake of
illustration, consider 2 applications are active at host h during t = 0. One is a Chat
application, consisting of a single flow, the other is a P2P application with 3 active
flows during t = 0: we thus aggregate the application labels as (Chat

√
, P2P++).

Notice that this criterion again implements an aggressive quantization into classes:
intuitively, we argue that there is more information in knowing coarsely whether
there was a single or more flows, rather than precisely distinguishing the exact
number of flows. Following this spirit, we additionally encode the previous example
with purely binary indicators as in (Chat

√
, P2P++).

We yet have to perform a final step in order to facilitate the root cause analysis.
Namely, we group together windows, irrespectively of the host, having the same

59

4.5 Root cause analysis

overall amount of active applications 2. Intuitively, as windows with x active flows
for an host will not have the same frequency as windows with y concurrently active
flows in our dataset, grouping windows by the number of active flows allows to let
infrequent (i.e., with small support) but still interesting (i.e., with high confidence)
rules to emerge.

4.5.2. Representation of the rules

Each rule is defined as A → C, where A is the antecedent of the rule and C is the
consequent.

The antecedent A of a rule is a description of a possible (h, t) pair, i.e. the description
of the outgoing traffic of host h observed in the 1-second window t. More precisely,
A is a tuple with the following fields:

• Num: the number of applications that are simultaneously active in the host h
during t

• Other: void if there is no active flow labeled as OTHER (i.e. an applica-
tion that Tstat is not able to classify),

√
if there is one active flow for such

applications, ++ if there is more than one flows of that kind

• Mail: as above

• P2P: as above

• Web: as above

• Chat: as above

Each antecedent of rule is characterized by the support. The support Supp (A) is
the number of pairs (h, t) that are described by tuple A.

In our dataset, we can associate to each (h, t) pair the mean of the aggregated
queueing delays of the outgoing flows of host h, observed in the 1-second window
t. For the sake of simplicity we consider only the range which this value falls in:
the range can be Low, Medium or High (corresponding, respectively, to LOW, MID,
HIG of sec. 4.1). Now, we can explain what is the consequent of the rule.

2Notice that, for example, if there are 3 active flows for the application “P2P” and 1 active flow
for the application “CHAT”, we will count 2 active applications.

60

4.5 Root cause analysis

The consequent of a rule is a nothing more than a delay range. Evaluating a rule
like

A → C

means finding “how much” it is true that if a pair (h, t) is described by A, then
the mean of the aggregated queueing delays of the flows on host h, observed in the
1-second window t, falls in the range indicated by C. Each rule is characterized by
a confidence.

The confidence of A → C is

conf (A → C) = n (A ∧ C)
Supp (A)

where n (A ∧ C) is the number of pair (h, t) that are described by A and have the
mean of the aggregated queueing delays falling in the region indicated by C. In other
words, the confidence is the fraction of (h, t) pairs described by A that actually fall
into the range C.

4.5.3. Experimental results

Results of Apriori are reported in Tab. 4.3 for both medium and high delays, where
for each rule we report confidence and support. Rules are reported, top to bottom,
for increasing size (i.e., number of application labels in the rule). For each rule size,
rules are sorted, top to bottom, for decreasing confidence. Already from this small
dataset, several interesting observation can be made.

First, notice that Mail can cause bufferbloat: this is summarized by rule (a), which
can be expected due to the use of persistent TCP connections, used to send multiple
messages, each of which encapsulates possibly large e-mail bodies due to the use
of MIME to encode attachments of various kind (e.g., pictures, music, archives,
etc.). Notice that mail application does not otherwise frequently generate delay,
confirming the intuition that small textual messages have no impact on the QoE of
other applications.

Second, high delays are also due to (b) multiple concurrent P2P flows or (c) single
persistent HTTP connections. Interestingly, in the specular case in which (j) a
P2P application has a single active flow, or (k) multiple HTTP connections are

61

4.5 Root cause analysis

Table 4.3.: Rule inference with Apriori

active in parallel, the delay generally remains bound to the 100 ms-1 sec range.
The intuition is thus that users often browse the Web in parallel to P2P transfers.
However, packets of short lived TCP Web connections often pile up behind bursts
of TCP packets due to multiple P2P connections. An implicit confirmation of this
intuition comes from the fact that BitTorrent recently([SHIK10]) redesigned the
data transfer, by introducing the delay-sensitive uTP protocol, aimed at bounding
the queuing delay to no more than a configurable target parameter (set to 100 ms
by default). Reason why a single Web connection should generate larger uplink
queuing delay is instead less obvious, and needs further investigation.

Third, various combinations of P2P, Web and uncategorized traffic (Other) jointly
concur in creating bufferbloat (we notice that uncategorized traffic possibly include

62

4.6 How to obtain the plots

P2P applications for which Tstat has no valid classification signature). We again
notice that rule (d) combining a single Web and multiple P2P flows, has a higher
confidence that rule (h). Moreover, as the support of (h) is included in the support of
(d), it follows that including multiple Web connections weakens the rule significance
– as already observed comparing (c) against (k), the delay seems to be inversely
correlated with the number of Web connections. Finally, we see that Chat sessions
often happen in parallel with (l) P2P or (r) Web traffic – with the former especially
cause of delay suffered by Chat application, in reason of the relative confidence of
rules (a) and (j) with respect to (l). Hence, user behavior of Chatting in parallel to
other applications is the cause of relative high frequency of medium delays (54% fall
in the 100 ms- 1 sec range) seen early in Fig. 4.5. From this observation, we can also
conjecture that Chat users likely do not consider these levels of delay harmful for
QoE. Indeed, since all other applications have lower delay statistics, this may follow
from the fact that user naturally deactivate data-intensive background applications
(e.g., P2P) and do not perform other activities (e.g., Web browsing) while delay-
sensitive applications are ongoing (e.g., VoIP calls).

4.6. How to obtain the plots

Almost all plots of this chapter are obtained with R. To obtain them from scratch,
edit offline_analysis/Rscripts/get_affected_flows.r, insert the following lines
as the main instructions and run that script.

eps files will be produced as output. To locate them, you can check the code.

To obtain Fig. 4.1 and Fig. 4.3, insert:

build_outgoing_windows_df ()
c a l c u l a t e_p e r c e n t i l e s ()
bui ld_frequency_plots ()

To obtain Fig. 4.2, insert:

build_outgoing_windows_df ()
c a l c u l a t e_p e r c e n t i l e s ()
p l o t_pe r c en t i l e s ()

To obtain Fig. 4.4, insert:

63

4.6 How to obtain the plots

build_outgoing_windows_df ()
bui ld_quant i le_t ime_evolut ion ()
plot_quant i l e_t ime_evolut ion ()

To obtain Fig. 4.6, insert:

build_outgoing_windows_df ()
plot_percentage_bar ()

To obtain Fig. 4.7 and Fig. 4.8, insert:

build_outgoing_windows_df ()
p lo t_c la s s_d i s t ingu i shed_frequency_plot s ()

64

4.6 How to obtain the plots

0.00

0.25

0.50

0.75

1.00

CHAT MAIL MEDIAOTHER P2P SSH VOIP WEB
class

fra
ct
io
n range

LOW
MID
HIG

Figure 4.6.: Partition of the aggregated queueing delays into LOW, MID, HIG
ranges, on a per application basis. In the y-axis we represent the fraction of
queueing delay of a certain class that fall into one of the three ranges.

65

4.6 How to obtain the plots

LOW

0

500000

1000000

1500000

2000000

CHAT MAIL MEDIA OTHER P2P SSH VOIP WEB

class

c
o
u
n
t

-
MID

0

500000

1000000

1500000

CHAT MAIL MEDIA OTHER P2P SSH VOIP WEB

class

c
o
u
n
t

-
HIG

0

30000

60000

90000

120000

CHAT MAIL MEDIA OTHER P2P SSH VOIP WEB

class

c
o
u
n
t

Figure 4.7.: Frequency plots for different aggregated queueing delay ranges

66

4.6 How to obtain the plots

LOW

0e+00

1e+05

2e+05

3e+05

4e+05

CHAT MAIL MEDIA SSH VOIP WEB

class

c
o
u
n
t

-
MID

0

10000

20000

30000

40000

CHAT MAIL MEDIA SSH VOIP WEB

class

c
o
u
n
t

-
HIG

0

200

400

600

CHAT MAIL MEDIA SSH VOIP WEB

class

c
o
u
n
t

Figure 4.8.: Frequency plots for different aggregated queueing delay ranges (with-
out OTHER and P2P)

67

5. Conclusion

5.1. Summary

This work proposes a methodology to passively observe Internet bufferbloat. Though
preliminary, this work already conveys several useful insights (e.g., ranging from
guidelines on settings of monitoring tools to avoid bufferbloat underestimation (sec. 3.3.2),
to a per-application assessment of likely QoE impact, to rule inference, etc.) and
especially allows to pinpoint its root cause.

Moreover, the monitoring tool that we realized in Tstat can be already used to apply
our methodology to other real traffic traces and compare the results with the ones
proposed by other authors (see sec. 1.5).

5.2. Future work

As future work, our methodology could be deeply analyzed and refined.

The impact of the delayed acknowledgement (see page18) could be further inves-
tigated. The quality of the results that our methodology produces could be sys-
tematically analyzed in different scenarios, e.g. experimenting with wireless devices
that may lead to high variability of the data-to-acknowledgement time that is not
correlated with buffering. The validation of sec. 3.3 could be extended to a testbed
in which the devices are connected in the real Internet (rather than in a LAN).

While in this work we adopt a minimalistic approach, each delay sample carries
additional information beyond the application label, concerning the amount of its
activity during the window (i.e., number of packets, bytes and number of valid data-
ack pairs). As part of our future work, we plan to leverage this information to refine
the quality of our inference (e.g., aggregated queueing delays could be weighted

68

5.2 Future work

by the number of packets; the number of valid data-ack pair, raw or normalized
over the number of packets in the window, could be used as an indication of the
confidence of each aggregated queueing delay; the instantaneous sending rate over
the last few windows correlates with the queuing delay of the subsequent windows,
possibly assisting root cause analysis; etc.).

We also plan to apply our measurement to a measurement campaign with more
representative real traffic traces (rather than the 8-hour trace we have worked on).

More importantly, we plan to deploy the modified version of Tstat on operational
networks, in order to gather more statistically significant results from both spatial
(over several ISPs and traffic mixes) and temporal perspectives (comparing the older
dataset which we focus on in this paper with on- line monitoring results).

69

Acknowledgments

This work has been carried out during Andrea Araldo’s intership at LINCS http://www.lincs.fr.
The research leading to these results has received funding from the European Union
under the FP7 Grant Agreement n. 318627 (Integrated Project ”mPlane”).

70

A. Short paper to ACM CoNEXT
2013

The work that we present here in an extended form led up to the submission of the
following short paper to ACM CoNEXT 2013, the 9th International Conference on
emerging Networking EXperiments and Technologies1.

1http://conferences.sigcomm.org/co-next/2013/

71

Bufferbloat: passive inference and root cause analysis

Andrea Araldo,
Universit«a degli Studi di Catania, Italy

andrea.araldo@unict.it

Dario Rossi
Telecom ParisTech, Paris, France

dario.rossi@enst.fr

ABSTRACT
In this work, we propose a methodology to gauge the ex-
tent of queuing delay (aka bufferbloat) in the Internet, based
on purely passive measurement of bidirectional TCP traffic.
Leveraging on Deep Packet Inspection (DPI) and behavioral
classification, we next show a per-application breakdown of
the queuing delay in ISP networks, that assists in binding the
queueing delay to the performance perceived by the users of
that application. Finally, we report preliminary results to fur-
ther correlate the amount of queuing delay seen by each host
with the set of active applications for that host during small
time windows, to find the root cause of bufferbloat.

1. INTRODUCTION
Despite the steady growth of link capacity, Internet

performance may still be laggy in the early 2010. Al-
ready in 1996, a famous post [9] pointed out that delay,
more than bandwidth, was an important metric for user
perception. As confirmed by the recent resonance of the
“bufferbloat” buzzword [16], this may still hold today.
Shortly, excessive buffer delays (measured in seconds)
are possible in today’s Internet due to the combination
of loss-based TCP congestion control coupled to exces-
sive buffer sizes (e.g., in user AP and modem routers,
end-host software stack and network interfaces) in front
of slow access links.
While, through controlled testbed and experiments,

it is clear that high latency can hamper user QoE of
Web [5, 24], multi-media [17, 8] or even peer-2-peer [25]
users, it is unclear how high is queuing latency in prac-
tice. Indeed, while it is known that queuing delays
can potentially reach a few seconds [20] under load
stress, and while these delays have been anedoctically
observed [16], it however is unclear how common they
are for end-users daily experience – which is precisely
the goal of this paper.
Summarizing, our contributions are as follows: first,

we propose a passive TCP queuing delay estimation
methodology and make our open source implementa-
tion, based on Tstat[14], available to the community.
Second, we quantify the typical bufferbloat seen by dif-
ferent applications, by leveraging on Tstat’s Deep Packet

Inspection (DPI) and behavioral classification capabili-
ties. Third, we propose a methodology to find the root
cause of bufferbloat, and report preliminary results that
further correlate the amount of queuing delay seen by
each host with the set of applications active on that
host during small time windows.

2. BACKGROUND
Delay measurement over the Internet are definitively

not a new subject – indeed, over 20 years passed since
seminal work such as [6]. Yet, despite the Internet
steady evolution, performance problems resurface that
are actually worsened by technology advances: indeed,
Moore law not only increased the memory size, but also
the amount of packets standing in modem buffers. As
such, recent effort has focused on explicitly measuring,
among other performance indicators, the latency and
queuing delay experienced by end-users. With few ex-
ceptions [3, 15, 10, 11], most related effort [20, 12, 19,
24, 4, 5, 1, 21] employs active measurement techniques.
Active vs Passive measurement. Our method-

ology relies on passive measurement that, due to its
unobtrusiveness and realism of the user traffic, is the
ideal candidate to answer our questions – i.e., what de-
lay users observe in their daily activities? under what
applications? Hence, due to lack of space, we invite
the reader to a companion technical report [7] for a
thorough overview and comparison of related work on
active measurement. Here we limitedly observe that,
though active methodologies are potentially simpler and
more accurate, at the same time they exhibit some weak
points of worth pointing out. First, many work mea-
sures latency under controlled load [20, 12, 19, 24, 4,
5], which tends to give maximum (rather than typical)
bufferbloat. Second, periodic measures of latency have
generally very coarse granularity (with the exception
of [24], where samples are still spaced out by 6 sec-
onds in the best case), so that bufferbloat can go un-
noticed. Third, and most important, active techniques
miss one crucial ingredient: the knowledge of the traf-
fic that caused the bufferbloat. In other words, while
[24] points out queuing delay to vary between 800ms

1

and 10s depending on modem make and model, active
methods are unable to gauge how often users actually
see bufferbloats in excess of 1s, or to pinpoint the ap-
plication that caused it – which are precisely our goals.
Another interesting tradeoff between active vs pas-

sive measurements concerns their representativeness, in
terms of number of users and networks observed. Scale
of active measurements can be as small as O(10)–O(103)
users in O(1) networks (resp. [19] and [24]), growing
up to O(105) users in O(103) networks [20, 4] (though
it is worth stressing that the user base is possibly gath-
ered over several months [20]). Passive methodologies
allow to observe a larger number of users at any given
time. At the same time, as observation of both forward
and backward paths is necessary, they can hardly be
applied in the network core (due to routing asymme-
try, only about 2%[15] flows are bidirectional) so that,
generally vantage points are sited at the network edge
(e.g., near to a DSLAM as in this work) and represents
about O(104) users in O(1) networks.
Passive measurement. Some recent work tack-

led the problem of passive measurement of queuing de-
lay [15, 3, 11, 10]. In our previous work [11, 10], we
propose methodologies to infer remote host queues ex-
ploiting transport layer information available in packet
headers, for both uTP [10] (the new protocol proposed
by BitTorrent as TCP replacement for data swarming)
and TCP [10] (using RFC1323 TimeStamp option[18]).
Contrarily to [11, 10], in this work we focus on the local
host queue (since we have full knowledge of all traffic
on that host) and adopt a more general methodology,
of which we outline some important differences. First,
notice that while uTP timestamps allow to precisely
gauge the remote queue (even in presence of cross-traffic
toward unseen hosts) observations are limited in both
space (to hosts that are running BitTorrent) and time
(precisely when they run it). This constrains measure-
ment campaign [10] on the one hand (a disadvantage
shared with [4]), and possibly induces a biased view of
the Internet bufferbloat on the other hand (since Bit-
Torrent is a data-intensive application) – problems that
this work instead avoids. Second, contrarily to [11], we
avoid relying on timestamps carried in packet headers
for TCP, increasing the reach of the methodology (de-
spite growth of TCP TimeStamp option usage, this still
account for modest 5%-30% at our vantage points).
Closer to our work is [3] that, using bro, employs

a similar methodology to ours, relying on TCP data/
acknowledgement pairs, using trace timestamps as op-
postie to TCP Timestamp option and takes care of re-
jecting RTT samples from retransmitted segments (though
the methodology is not validated in a testbed, see Sec. 3.1
for potential issues). Since our dataset significanly dif-
fer from [3] (in terms of US vs EU location, FTTH vs
ADSL access, duration, etc.), we cannot attempt a di-

rect comparison of bufferbloat results – but still point
out that, as in [3, 10] we find delays above 1 sec to be
rare in practice. Additionally, while [3] equally counts
all RTT samples (i.e., equally weighting packets of the
same TCP burst, so that users transferring large vol-
umes are over-represented) we give a more unbiased
view (equally weighting each second of all hosts). Fi-
nally, a more important difference is that while [3] mea-
sures TCP queuing delay blindly across all applications,
we instead give a fine-grained per-application view –
binding queuing delay to user QoE and explaining its
root cause.
Finally, [15] focuses on a memory-efficient bufferbloat

measurement methodology, by keeping approximate TCP
state in a probabilistic data structure (that can fit the
cache of current MIPS and ARM processors used in
home DSL gateways), at the price of a minimal accuracy
loss (error is less than 10ms in 99% of the cases, com-
pared to tcptrace as a baseline). However, as the focus
of [15] is on the relative accuracy of the methodology,
it reports differences with respect to the baseline rather
than absolute bufferbloat measurement. Our approach
is instead complementary and, assuming a high per-
formance dedicated measurement box (i.e., no memory
constraint), implements a methodology to accurately
gauge current Internet bufferbloat (incidentally, build-
ing over tcptrace, of which Tstat is an evolution).

3. QUEUING DELAY INFERENCE

3.1 Methodology
We infer queuing delay of local hosts simply as de-

picted in Fig. 1. For each acknowledgement packet
reporting a valid RTT sample (i.e., no reordered, nor
retransmitted as in [3]), we compute the difference be-
tween the time ttx,i+1 the acknowledgement packet is
observed and the time trx,i the data packet correspond-
ing to the sequence number was observed. Packets
are timestamped at the measurement point via Endace
DAG cards, so that timestamp is reliable. With re-
spect to Fig. 1, assume the local host queue A con-
tains at time trx,i packets directed toward hosts B,C
and D. Neglecting for the sake of simplicity delayed-
acknowledgement timers (that are by the way small
compared to the bufferbloat magnitudo reported in [20]),
as soon as data is received at about trx,i at A, the TCP
receiver issues an acknowledgement that will be serviced
after the already queued data segments. The monitor
can then estimate the queuing delay qi+1 incurred by
the (i+1)-th acknowledgement segment as the difference
between the current samples ttx,i+1− trx,i and the min-
imum among the previously observed samples of that
flow (that represents the propagation delay component
and, as the monitor is close to the end-user, is by the
way expected to be small).

2

Figure 1: Synopsis of our passive methodology

At low level, tcptrace keeps sequence numbers in
a circular data structure named quad (i.e., after the
“quadrants” the structure is divided into, to speed-up
lookup). In case the quad has a fixed size, it may hap-
pen that, if the number of outstanding segments grow
larger than the quad size, then sequence number are
overwritten – so that ack cannot be paired with data
and RTT samples are lost. We show an occurrence of
this problem in Fig. 2, where we configured two val-
ues of the quad size – one is fixed (to a purposely small
value) and the other is variable and can grow arbitrarily
large to avoid overwriting outstanding sequence num-
bers (notice that variable size is handled with linked
lists, so that in this validation phase we take precisely
the opposite direction to [15], as we do not want to
compromise accuracy).
In a local testbed, we send bidirectional TCP traf-

fic between LAN hosts, mimicking Fig. 1. Host B sends
rate-limited data (at application-layer) to A, whose acks
are used to passively infer queuing delay samples at A
(denoted Tstat in the picture). The uplink of host A
is limited to 1Mbps with a token bucket shaper and,
after about 10sec, we start a backlogged transfer be-
tween A and C, causing congestion to build up. To
validate passive inference, we send ICMP echo requests
to B at 1Hz, and compare average Tstat queuing de-
lay during 1 sec long windows. To gather the impact of
low-level Tstat settings, we record the packet trace and
repeat the analysis with small and fixed (left) or vari-
able (right) size quad. It can be seen that, in case the
structure is under-dimensioned, sequence numbers are
possibly overwritten when large amounts of packets are
queued, so that possibly all samples during a 1 sec long
window are lost. As large buffer sizes are common [13,
24], it follows that careful settings of monitoring tools
are needed to avoid underestimating bufferbloat1.

1Notice that, at 1Mbps, 1500ms worth of queuing delay cor-
respond to more than 100 queued packets, which exceeds
the default quad=100 size in Tstat – hence, at higher ca-
pacities, even lower delay could be underestimated for lower

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Q
ue

ui
ng

 d
el

ay
 [m

s]

Fixed-size quad

Tstat
ICMP

Variable-size quad

0
20
40
60
80

100

0 10 20 30 40V
al

id
 R

T
T

 s
am

pl
es

 [%
]

Valid
All invalid

0 10 20 30 40

Figure 2: Testbed validation of the methodology

3.2 Experimental results
We now report experimental results of the inference.

As our focus on this paper is to build a solid method-
ology, rather than providing full-blown measurement
campaign, for the time being we analyze offline traces
gathered in a single ISP network during FP7 NapaW-
ine [22] project, when P2P was still fairly popular (we
consider a 8 hr-long period starting at 14:00, gathered
during 2009).
We argue that in order to give statistics that are use-

ful from the user perspective, we need to batch2 consec-
utive samples (e.g., belonging to the same TCP burst)
into windows whose duration relates with the timescale
typical of user dynamics. For the network under obser-
vation, we consider each internal IP as a single3 host.
For each host, we collect delay samples for each active
flow, corresponding to the average queuing delay over
short time windows of 1 second duration, as estimated
by valid data-ack pairs of each flow. Overall, our pro-
cessing gathers about 107 individual per-flow samples.
Each delay sample carries an application label, ob-

tained through Tstat Deep Packet Inspection (DPI) and
behavioral classification capabilities. Though Tstat is
capable of fine-grained classification of different applica-
tions [14], we cluster similar applications into few classes
depending on the service they offer (namely, Mail, Web,
Multimedia, P2P, SSH, VoIP, Chat and other uncatego-
rized applications). To the best of our knowledge, this

quad sizes.
2In the specific case of uTP, we have already shown [10] that
queuing delay statistics can be biased (precisely, queuing
delay is underestimated) in case each packet is counted as a
sample (as opposite to windows of equal duration).
3This is known to be simplistic as, due to the penetration of
NAT devices, the same IP is shared by multiple hosts (50%
of the cases [23]), that are possibly active at the same time
(10% of the cases). Yet we point out that this simplification
has no impact for our methodology, since these potentially
multiple hosts share the same access bottleneck link

3

 1

 10

 100

 1000

 10000

Oth Mail P2P Web Media Chat SSH VoIPM
ea

n
qu

eu
in

g
de

la
y

in
 1

s
w

in
do

w
s

[m
s]

lo
w

m
id

hi
gh

low 89.7 93.2 58.4 91.9 86.8 45.7 98.6 97.8
mid 10.2 6.2 38.7 8.0 13.2 54.1 1.4 2.2
high 0.1 0.6 2.9 0.1 0.0 0.1 0.0 0.0

Figure 3: Breakdown of queuing delay per application.
Plots report jittered density maps and (5,25,50,75,95)-
th percentiles. Table report the percentage of per-
application samples falling into either of the three delay
regions (boldface values highlight possible QoE degra-
dation).

work is the first to report a detailed per-application
view of the Internet queuing delay – that depends on
the traffic mix and user behavior of each household. We
present our results in Fig. 3 where we depict a jittered
density map of queuing delay samples (y-axis) for dif-
ferent application classes (x-axis), along with boxplots
reporting the quartiles (and 5th, 95th percentiles). Ap-
plications are ordered, left to right, in increasing order
of delay sensitivity. It can be seen that, for most appli-
cations the 75% of windows experience less than 100ms
worth of queuing. The only exceptions are consituted
by, rather unsurprisingly, P2P applications and, some-
how more surprisingly, Chat applications, with median
delays exceeding 100ms.
Before dwelving the root cause of the above observa-

tions, let us dig further its implication. Due to studies
assessing the impact of delay on the QoE of several ap-
plications such as Web [5, 24], multimedia [17, 8] or
P2P [25, 10] applications, we can easily map a QoS
metric such the queuing delay, into an coarse indication
of QoE for the end-user. Based on the above work, we
set two thresholds at 100ms and 1 second, such that:
(i) performance of interactive multimedia (e.g., VoIP,
video-conference and live-streaming) or data-oriented
applications (e.g., remote terminal or cloud editing of
text documents) significantly degrades when the first
threshold is crossed [17, 8]; (ii) performance of mildly-
interactive application (e.g., Web, chat, etc.) signifi-
cantly degrades when the second threshold is crossed [5,
24]; (iii) additionally, while bulk transfers (e.g., P2P,
long TCP connections) are elastic in nature, it has been
shown that also TCP performance degrades [16] in pres-
ence of excessive buffering (i.e., control becomes unsta-
ble due to absence/delay of feedback information) and

furthermore queuing delay affect control plane of P2P
applications [25, 10] – so that even these applications
performance start to degrade when the second threshold
is crossed.
Additionally, Fig. 3 tabulates the percentage of 1 sec

windows for each application that fall into either of the
three delay regions, where we use boldface values to
highlight possible QoE degradation. It follows that, in
practice, bufferbloat impact on QoE appears to be mod-
est. A limited 0.1% of Web and Chat sessions may be
impacted by significant delay, and 2.2% (1.4%) of VoIP
(remote terminal) sessions may be impacted by moder-
ate delay. P2P clearly stand out, raising the odds to
induce high delays (2.9%) followed by SMTP (0.6%),
though with likely minor impact for the end-users.

4. ROOT CAUSE ANALYSIS

4.1 Methodology
As we have full knowledge of the traffic generated and

received by hosts, we can correlate the queuing delay
samples with the traffic active on the hosts. As before,
we limitedly consider the upstream traffic direction, and
divide time in 1 second long slots. For all active flow of
each hosts, we log the application label and its aver-
age queueing delay during that window. Notice that in
Fig. 3 we independently consider all delay samples: in
other words, the delay seen by packets of an applica-
tion flow can be induced by another flows active on the
same time in the same host (or household). In this sec-
tion, we leverage standard data mining techniques to, if
possible, pinpoint the root cause of the observed delay.
In our analysis, we face known, yet non trivial prob-

lems. First, techniques such as frequent itemset min-
ing or rule-mining are known not to be scalable, and
would be hard to apply to our full dataset. Second,
these techniques are affected by class imbalance, that we
need to cope with. At this stage, we make the problem
tractable by performing stratified sampling, initially in-
cluding 8,000 random samples per-application (64,000
samples overall). Let us denote by (t,h,a,q) a queuing
delay sample q gathered on host h during the time win-
dow t and corresponding to an application a. Evidently,
we need to ensure that our population includes all other
samples corresponding to applications that were active
on h during t. We therefore complement the initial
population, to achieve an overall population of 107,825
samples. To guarantee the statistical relevance of our
analysis, we further verify that statistics of the sampled
population correspond to those reported in Fig. 3.
For each host h and time window t pair, we next com-

pute the queuing delay average as seen by all applica-
tions during t. As rule-inference techniques are known
to be largely ineffective on continuous variables, and in
reason of the previous QoE considerations, we quantize

4

queuing delay in a low, medium and high score.
We also aggregate all application labels, and denote

with � (or ++) applications that have generated re-
spectively one (or more) flows during t. For the sake of
illustration, consider 2 applications are active at host
h during t = 0. One is a Chat application, consisting
of a single flow, the other is a P2P application with 3
active flows during t = 0: we thus aggregate the ap-
plication labels as (Chat�, P2P++). Notice that this
criterion again implements an aggressive quantization
into classes: intuitively, we argue that there is more in-
formation in knowing coarsely whether there was a sin-
gle or more flows, rather than distinguishing precisely
the exact number of flows. Following this spirit, we
additionally encode the previous example with purely
binary indicators as in (Chat�, P2P�).
We yet have to perform a final step in order to facil-

itate the analysis of the root cause analysis. Namely,
we group together windows, irrespectively of the host,
having the same overall amount of active flows. This
is necessary to simplify interpretation of the support of
the inferred rules. Intuitively, as windows with x active
flows for an host will not have the same frequency as
windows with y concurrently active flows in our dataset,
grouping window by the number of active flows allows to
let overally infrequent (i.e., with small support) but still
interesting (i.e., with high confidence) rules to emerge.

4.2 Experimental results
Results of Apriori [2] are reported in Tab. 1 for both

medium and high delays, where for each rule (essen-
tially, a group of contemporary application labels in-
ducing a given delay) we report confidence and support
(percentage). Rules are reported, top to bottom, for
incresing size (i.e., number of application label in the
rule). For each rule size, rules are sorted, top to bot-
tom, for decreasing confidence. Already from this small
dataset, several interesting observation can be made.
First, notice that SMTP can cause bufferbloat: this

is summarized by rule (a), which can be expected due
to the use of persistent TCP connections, used to send
multiple messages, each of which encapsulates possi-
bly large e-mail bodies due to the use of MIME to en-
code attachments of various kind (e.g., pictures, music,
archives, etc.). Notice that mail application does not
otherwise frequently generate delay, confirming the in-
tuition that small textual messages have no impact on
the QoE of other applications.
Second, high delays are also due to (b) multiple con-

current P2P flows or (c) single persistent HTTP con-
nections. Interestingly, the specular case in which (j) a
P2P application has a single active flow, or (k) multi-
ple HTTP connections are active in parallel, the delay
generally remains bound to the 100ms-1 sec range. The
intuition is thus that users often browse the Web in par-

Table 1: Rule inference with Apriori

Applications

D
e
la
y

N
u
m

O
th
e
r

M
a
il

P
2
P

W
e
b

C
h
a
t

S
u
p
p
.

C
o
n
f.

(ref)

H
ig
h

1 � 11 99 (a)
1 ++ 10 96 (b)
1 � 10 64 (c)
2 ++ � 20 98 (d)
2 � ++ 28 87 (e)
2 � � 23 80 (f)
2 ++ ++ 14 61 (g)
2 ++ ++ 19 54 (h)
3 � ++ � 13 99 (i)

M
e
d
iu
m

1 � 35 76 (j)
1 ++ 44 53 (k)
2 � � 10 85 (l)
2 ++ � 11 88 (m)
2 � � 19 85 (n)
2 � ++ 10 77 (o)
2 � � 15 76 (p)
2 ++ ++ 16 72 (q)
2 � � 10 51 (r)
2 � ++ 20 50 (s)

allel to P2P transfers. However, packets of short lived
TCP Web connections often pile up behind bursts of
TCP packets due to multiple P2P connections. An im-
plicit confirmation of this intuition comes from the fact
that BitTorrent recently4 redesigned the data transfer,
by introducing the delay-sensitive uTP protocol, aimed
at bounding the queuing delay to no more than a con-
figurable target parameter (set to 100ms by default).
Reason why a single Web connection should generate
larger uplink queuing delay is instead less obvious, and
need further investigation.
Third, various combinations of P2P, Web and un-

categorized traffic (Other) jointly concurr in creating
bufferbloat (we notice that uncategorized traffic pos-
sibly include P2P applications for which Tstat has no
valid classification signature). We again notice that rule
(d) combining a single Web and multiple P2P flows, has
a higher confidence that rule (h). Moreover, as the sup-
port of (h) is included in the support of (d), it follows
that including multiple Web connections weakens the
rule significance – as already observed comparing (c)
against (k), the delay seem to be inversely correlated
with the number of Web connections.
Finally, we see that Chat sessions often happens in

4Our dataset is before BitTorrent uTP became popular in
late 2010.

5

parallel with (l) P2P or (r) Web traffic – with the former
especially cause of delay suffered by Chat application, in
reason of the relative confidence of rules (a) and (j) with
respect to (l). Hence, user behavior of Chatting in par-
allel to other applications is the cause of relative high
frequency of medium delays (54% fall in the 100ms-
1 sec range) seen early in Fig. 3. From this observation,
we can also conjecture that Chat users likely do not
consider these levels of delay harmful for QoE. Indeed,
since all other applications have lower delay statistics,
this may follow from the fact that user naturally disacti-
vate data-intensive background applications (e.g., P2P)
and do not perform other activities (e.g., Web brows-
ing) while delay-sensitive applications are ongoing (e.g.,
VoIP calls).

5. DISCUSSION
This paper propose a methodology to passively ob-

serve Internet bufferbloat. Though preliminary, this
work already convey several useful insights (e.g., rang-
ing from guidelines on settings of monitoring tools to
avoid bufferbloat underestimation, to a per-application
assessment of likely QoE impact, to rule inference, etc.)
and especially allows to pinpoint its root cause.
While in this work we adopt a minimalistic approach,

each delay sample carries additional information beyond
the application label, concerning the amount of its ac-
tivity during the window (i.e., number of packets, bytes
and number of valid data-ack pairs). As part of our
future work, we plan to leverage this information to
refine the quality of our inference (e.g., samples could
be weighted by the number of packets; the number of
valid data-ack pair, raw or normalized over the number
of packets in the window, could be used as an indica-
tion of the confidence of each sample; the istantaneous
sending rate over the last few windows correlates with
the queuing delay of the subsequent windows, possibly
assisting root cause analysis; etc.).
More importantly, as part of our future work, we plan

to deploy the modified version of Tstat on operational
networks, in order to gather more statistically signif-
icant results from both spatial (over several ISPs and
traffic mixes) and temporal perspectives (comparing the
older dataset which we focus on in this paper with on-
line monitoring results).

Acknowledgements
This work has been carried out during Andrea Araldo
intership at LINCS http://www.lincs.fr. The re-
search leading to these results has received funding from
the European Union under the FP7 Grant Agreement
n. 318627 (Integrated Project ”mPlane”).

6. REFERENCES
[1] http://internetcensus2012.bitbucket.org/.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB, 1994.

[3] M. Allman. Comments on bufferbloat. SIGCOMM Comput.
Commun. Rev., 43(1), Jan 2012.

[4] Z. Bischof, J. Otto, M. Sánchez, J. Rula, D. Choffnes, and
F. Bustamante. Crowdsourcing ISP characterization to the
network edge. In ACM SIGCOMM Workshop on
Measurements Up the STack (W-MUST’11), 2011.

[5] Z. S. Bischof, J. S. Otto, and F. E. Bustamante. Up, down
and around the stack: ISP characterization from network
intensive applications. In ACM SIGCOMM Workshop on
Measurements Up the STack (W-MUST’12), 2012.

[6] J.-C. Bolot. End-to-end packet delay and loss behavior in
the internet. ACM SIGCOMM Computer Communication
Review, 23(4):289–298, 1993.

[7] P. Casoria, D. Rossi, J. Auge, M.-O. Buob, T. Friedman,
and A. Pescape. Distributed active measurement of internet
queueing delays. Technical report, Telecom ParisTech, 2013.

[8] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei.
Quantifying skype user satisfaction. 36(4):399–410, 2006.

[9] S. Cheshire. It’s the latency, stupid! http://rescomp.
stanford.edu/~cheshire/rants/Latency.html, 1996.

[10] C. Chirichella and D. Rossi. To the moon and back: are
internet bufferbloat delays really that large. In IEEE
INFOCOM Workshop on Traffic Measurement and
Analysis (TMA), 2013.

[11] C. Chirichella, D. Rossi, C. Testa, T. Friedman, and
A. Pescape. Remotely gauging upstream bufferbloat delays.
In PAM, 2013.

[12] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich,
M. Allman, N. Weaver, and V. Paxson. Fathom: a
browser-based network measurement platform. In ACM
IMC, 2012.

[13] L. DiCioccio, R. Teixeira, M. Mayl, and C. Kreibich. Probe
and Pray: Using UPnP for Home Network Measurements.
In PAM, 2012.

[14] A. Finamore, M. Mellia, M. Meo, M. Munafo, and
D. Rossi. Experiences of internet traffic monitoring with
tstat. IEEE Network Magazine, May 2011.

[15] S. Gangam, J. Chandrashekar, I. Cunha, and J. Kurose.
Estimating TCP latency approximately with passive
measurements. In PAM, 2013.

[16] J. Gettys and K. Nichols. Bufferbloat: Dark buffers in the
internet. Communications of the ACM, 55(1):57–65, 2012.

[17] O. Holfeld, E. Pujol, F. Ciucu, A. Feldmann, and
P. Barford. BufferBloat: how relevant? a QoE perspective
on buffer sizing. Technical report, 2012.

[18] V. Jacobson, R. Braden, and D. Borman. TCP Extensions
for High Performance. IETF RFC 1323, 1992.

[19] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling
bufferbloat in 3G/4G networks. In ACM IMC, 2012.

[20] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the edge network. In ACM IMC,
2010.

[21] D. Leonard and D. Loguinov. Demystifying service
discovery: implementing an internet-wide scanner. In ACM
IMC, 2010.

[22] E. Leonardi, M. Mellia, A. Horvath, L. Muscariello,
S. Niccolini, and D. Rossi. Building a cooperative P2P-TV
application over a Wise Network: the approach of the
European FP-7 STREP NAPA-WINE. IEEE
Communication Magazine, 64(6), April 2008.

[23] G. Maier, F. Schneider, and A. Feldmann. Nat usage in
residential broadband networks. In PAM, 2011.

[24] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira,
S. Crawford, and A. Pescapè. Broadband internet
performance: a view from the gateway. In ACM
SIGCOMM, 2011.

[25] C. Testa and D. Rossi. The impact of uTP on BitTorrent
completion time. In IEEE P2P, 2011.

6

Bibliography

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router
buffers. SIGCOMM Comput. Commun. Rev., 34(4): 281–292, August
2004, http://doi.acm.org/10.1145/1030194.1015499.

[All12] Mark Allman. Comments on bufferbloat. ACM SIGCOMM Computer
Communication Review, 43(1): 30–37, 2012.

[APS+99] Mark Allman, Vern Paxson, Wright Stevens, et al. Tcp congestion con-
trol. 1999.

[AS+94] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for min-
ing association rules. In Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, volume 1215, pages 487–499, 1994.

[BCC+98] Bob Braden, David Clark, Jon Crowcroft, Bruce Davie, Steve Deering,
Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig Par-
tridge, et al. Recommendations on queue management and congestion
avoidance in the internet. 1998.

[BOB12] Zachary S. Bischof, John S. Otto, and Fabián E. Bustamante. Up,
down and around the stack: Isp characterization from network inten-
sive applications. SIGCOMM Comput. Commun. Rev., 42(4): 515–520,
September 2012, http://doi.acm.org/10.1145/2377677.2377778.

[BOS+11] Zachary S. Bischof, John S. Otto, Mario A. Sánchez, John P.
Rula, David R. Choffnes, and Fabián E. Bustamante. Crowdsourc-
ing isp characterization to the network edge. In Proceedings of
the first ACM SIGCOMM workshop on Measurements up the stack,
W-MUST ’11, pages 61–66, New York, NY, USA, 2011. ACM,
http://doi.acm.org/10.1145/2018602.2018617.

[Che96] Stuart Cheshire. It’s the latency, stupid, 1996.

78

Bibliography

[CHHL06] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei.
Quantifying skype user satisfaction. In ACM SIGCOMM Computer
Communication Review, volume 36, pages 399–410. ACM, 2006.

[Chi12] C. Chirichella. A methodology to gauge the extent of Bufferbloat in the
Internet: LEDBAT vs TCP . Tesi di laurea specialistica, Universita’
degli Studi di Napoli Federico II, 2011/12.

[CK10] B. Nechaev V. Paxson C. Kreibich, N. Weaver. Netalyzr: Illuminating
the edge network. Internet Measurement Conference (IMC), 2010.

[CR] Chiara Chirichella and Dario Rossi. To the moon and back: are internet
bufferbloat delays really that large?

[CRT+13] C Chirichella, D Rossi, C Testa, T Friedman, and Antonio Pescapé.
Remotely gauging upstream bufferbloat delays. In Passive and Active
Measurement, pages 250–252. Springer, 2013.

[DHGS07] Marcel Dischinger, Andreas Haeberlen, Krishna P Gummadi, and Ste-
fan Saroiu. Characterizing residential broadband networks. In Internet
Measurement Conference: Proceedings of the 7 th ACM SIGCOMM con-
ference on Internet measurement, volume 24, pages 43–56, 2007.

[DTMK12] Lucas DiCioccio, Renata Teixeira, Martin May, and Christian Kreibich.
Probe and pray: Using upnp for home network measurements. In Passive
and Active Measurement, pages 96–105. Springer, 2012.

[FMM+11] A. Finamore, M. Mellia, M. Meo, M.M. Munafo, and D. Rossi. Expe-
riences of internet traffic monitoring with tstat. Network, IEEE, 25(3):
8–14, 2011.

[GCCK13] Sriharsha Gangam, Jaideep Chandrashekar, Ítalo Cunha, and Jim
Kurose. Estimating tcp latency approximately with passive measure-
ments. In Passive and Active Measurement, pages 83–93. Springer, 2013.

[GN11] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the
internet. Queue, 9(11): 40, 2011.

[Han06] M. Handley. Why the internet only just works. BT Technology Journal,
24(3): 119–129, 2006, http://dx.doi.org/10.1007/s10550-006-0084-z.

[HJR12] K. Lee H. Jiang, Y. Wang and I. Rhee. Tackling bufferbloat in 3g/4g
networks. ACM IMC, 2012, 2012.

79

Bibliography

[HPC+12] Oliver Hohlfeld, Enric Pujol, Florin Ciucu, Anja Feldmann, and Paul
Barford. Bufferbloat: How relevant? a qoe perspective on buffer sizing.
2012.

[IG96] Ross Ihaka and Robert Gentleman. R: A language for data analysis
and graphics. Journal of computational and graphical statistics, 5(3):
299–314, 1996.

[Jac88] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM
Computer Communication Review, volume 18, pages 314–329. ACM,
1988.

[Jac98] Van Jacobson. Notes on using red for queue management and congestion
avoidance. talk at NANOG, 13, 1998.

[Jan09] Philipp K Janert. Gnuplot in action: understanding data with graphs.
Manning Publications Co., 2009.

[JBB92] Van Jacobson, Robert Braden, and David Borman. Tcp extensions for
high performance. 1992.

[JLM94] V Jacobson, C Leres, and S McCanne. libpcap, lawrence berkeley lab-
oratory, berkeley, ca. Initial public release June, 1994.

[JWL04] Cheng Jin, David X Wei, and Steven H Low. Fast tcp: motivation, ar-
chitecture, algorithms, performance. In INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications
Societies, volume 4, pages 2490–2501. IEEE, 2004.

[KP87] Phil Karn and Craig Partridge. Improving round-trip time estimates in
reliable transport protocols. ACM SIGCOMM Computer Communica-
tion Review, 17(5): 2–7, 1987.

[LMH+08] Emilio Leonardi, Marco Mellia, A Horvath, L Muscariello, S Niccolini,
and D Rossi. Building a cooperative p2p-tv application over a wise
network: the approach of the european fp-7 strep napa-wine. Commu-
nications Magazine, IEEE, 46(4): 20–22, 2008.

[MDF12] R. Teixeira C. Kreibich M. Allman N. Weaver M. Dhawan, J. Samuel and
V. Paxson. Fathom. a browser-based network measurement platform.
ACM IMC, 2012.

80

Bibliography

[MMM06] Marco Mellia, Michela Meo, and Luca Muscariello. Tcp anomalies: iden-
tification and analysis. In Distributed Cooperative Laboratories: Net-
working, Instrumentation, and Measurements, pages 113–126. Springer,
2006.

[MSF11] Gregor Maier, Fabian Schneider, and Anja Feldmann. Nat usage in
residential broadband networks. In Passive and Active Measurement,
pages 32–41. Springer, 2011.

[PA00] Vern Paxson and Mark Allman. Computing tcp’s retransmission timer.
Technical report, RFc 2988, November, 2000.

[Pax99] Vern Paxson. Bro: a system for detecting network intruders in real-time.
Computer networks, 31(23): 2435–2463, 1999.

[SdDF+11] Srikanth Sundaresan, Walter de Donato, Nick Feamster, Renata Teix-
eira, Sam Crawford, and Antonio Pescapè. Broadband internet perfor-
mance: A view from the gateway. Proc. ACM SIGCOMM, Toronto,
Ontario, Canada, 2011.

[SHIK10] Stanislav Shalunov, Greg Hazel, Janardhan Iyengar, and Mirja
Kuehlewind. Low extra delay background transport (ledbat). draft-
ietf-ledbat-congestion-04. txt, 2010.

[TQD+05] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs.
Iperf: The tcp/udp bandwidth measurement tool. htt p://dast. nlanr.
net/Projects, 2005.

[TR11] Claudio Testa and Dario Rossi. On the impact of utp on bittorrent
completion time. In Peer-to-Peer Computing (P2P), 2011 IEEE Inter-
national Conference on, pages 314–317. IEEE, 2011.

81

