
AN INTRODUCTION TO SUBMODULAR FUNCTIONS

ANDREA ARALDO

Abstract. In this tutorial, we will review in a simple way the use of submod-
ular functions as a tool to solve optimization problems. A greedy algorithm is
given and its 1

1−1/e
approximation to the optimum is proved. Recognizing if

an optimization problem can be described in this framework can be very useful
as it permits to directly use the many results that have been already found in
the field (one of them is the approximation bound of greedy algorithms).

1. Outline

• We provide the required definitions and some examples that fit into them.
• We describe a greedy algorithm and give a proof of its 1

1−1/e approximation
(It means the the utility of the solution provided by the greedy algorithm
is at least 63% of the optimal one).

• We provide an example to show how to recognize if a problem can be
described by means of submodular functions.

2. Definitions

Let us consider a set A, that we will call ground set, and a function f : 2A → R,
i.e. a function that associate to a subset S ⊆ A a real value f(S). Sometimes we
will call a subset of A a collection.

Definition 1. f is monotone non decreasing if

∀S ⊆ T ⊆ A⇒ f(S) ≤ f(T )
f(∅) = 0

We will consider only this kind of functions, even when not explicitly specified.

Definition 2. Given a function f , we associate to it another function ρ(i|S), ∀i ∈
A,S ⊆ A, that we call the gain of adding the element i to the collection S:

ρ(i|S) , f(S ∪ {i})− f(S)
Definition 3. f is modular if its associated gain is such that

ρ(i|S) = f({i}), ∀S ⊆ A,∀i ∈ A \ S
f is submodular if

ρ(i|S) ≥ ρ(i|T ), ∀S ⊆ T ⊆ A,∀i ∈ A \ S
f is supermodular if

ρ(i|S) ≤ ρ(i|T ), ∀S ⊆ T ⊆ A,∀i ∈ A \ S

Date: 08/10/2015.
Key words and phrases. optimization; submodular functions; algorithms; approximation

algorithms.
1



AN INTRODUCTION TO SUBMODULAR FUNCTIONS 2

Proposition 4. The previous definitions are equivalent to
f(S) =

∑
i∈S f({i}) iff f is modular

f(S) ≤
∑

i∈S f({i}) iff f is submodular
f(S) ≥

∑
i∈S f({i}) iff f is supermodular

To resume the meaning of the previous definitions, we can say that, if f is
modular, the value of a collection is the sum of the individual values, while if f is
submodular the value of a collection can be also less and if f is supermodular it
can also be more.

Example 5. We now give some high level example of each of the functions above.
MODULAR FUNCTION. Let us consider a set of people A. The value of each

person i is f({i}), the amount of money he has in his pocket. For each collection of
people S ⊆ A we compute the value f(S) as the amount of money that the people
in the collection collectively have. f is modular.

SUBMODULAR FUNCTION. You are an organizer of a “language exchange
café” and you value a person i with f({i}), i.e. the number of languages he can
speak. The value f(S) of a collection S ⊆ A is the number of languages that are
collectively spoken. f is submodular, because when adding a new person i to the
collection S, some of the languages he can speak may be already spoken by other
people in S. Therefore the gain can be less than the number of languages of the
new person. If you consider two collections S ⊆ T , than the contribution given by
the new person to the small set makes more difference with respect to when the
person is added to a superset T , since it is more likely that most of the languages
spoken by the person are already covered in T .

SUPERMODULAR FUNCTION. You provide a social network service and you
put inside each message set by a user an advertisement. Therefore, you value a user
i ∈ A as the number f({i}) of messages she sends. The value f(S) of a collection
of your users S is the number of messages that are collectively sent. Of course,
adding a user to a big set of pre-existing users brings a bigger gain with respect to
adding her to a smaller set, as in the big collection there will be more users willing
to communicate with her and to whom she can be interested in talking.

Remark 6. Submodularity embeds the concept of diminishing return, used a lot in
economy. Supermodularity can be useful when studying interactions among agents.

In this tutorial, we will only focus on submodular functions.

Definition 7. A set of collectionsM is a uniform matroid if there exists a number
k ∈ N such that

M = {S ⊆ A| |S| ≤ k}

Sometimes, we will call the collections inM the feasible collections.

Example 8. Coming back to the “language café” example, suppose you are organiz-
ing your event in a bar that can host k people at most. Therefore you cannot choose
whatever collection, because the feasible ones are only those whose cardinality is
less or equal to k.

In this tutorial we are interested in solving the following optimization problem.



AN INTRODUCTION TO SUBMODULAR FUNCTIONS 3

Problem 9. Given a submodular function f and a matroidM, we want to maxi-
mize f finding the best feasible collection.

max
S⊆A

f(S)

subject to
S ∈M

3. Algorithm

How to solve the problem above? In theory we should consider all the possible
subsets of A (they are 2|A|) and, for each of them, see if it is feasible and compute
the value of f . Of course this is too expensive.

Theorem 10. The problem above is NP complete

We will prove this result later. We now describe a simple greedy algorithm
which gives a solution of the problem. We will prove later that its gap w.r.t. to the
optimal solution is bounded.

Algorithm 1: Greedy algorithm
Input : A, f : 2A → R,M
Output: Salg ∈M
S0 = ∅
for j = 1; j ≤ K; j++ do

i∗ = argmaxi∈A\Sj−1
ρ(i|Sj−1)

Sj = Sj−1 ∪ {i∗}
end
Salg = Sk

The greedy algorithm constructs the collection adding at each iteration, the ob-
ject that brings the most value to the collection constructed so far. This algorithm
has a polynomial time complexity, since the argmax calculation can be implemented
by means of ordering that has a polynomial time cost.

Our goal is now to show that the value f(Salg) has a bounded distance w.r.t. to
the optimal value f(Sopt). We first need the following lemma.

Lemma 11. If f is a non decreasing submodular function and A is the ground set,
then for every S, T ⊆ A

f(T ) ≤ f(S) +
∑

j∈T\S

ρ(j|S)

Proof. Since f is non-decreasing, f(T ) ≤ f(T ∪ S). For the sake of simplicity,
let us enumerate the elements in T \ S = {a1, . . . , an} and observe that T ∪ S =
S ∪

⋃n
i=1{an}. Therefore

f(T ) ≤ f

(
S ∪

n⋃
i=1

{ai}

)



AN INTRODUCTION TO SUBMODULAR FUNCTIONS 4

We can build S ∪
⋃n

i=1{ai} incrementally, by adding 1 to S and obtaining a
marginal utility p(a1|S), than by adding a2 to S ∪{a1} and obtaining the marginal
utility ρ (a2|S ∪ {a1}) and so on. Therefore

f

(
S ∪

n⋃
i=1

{ai}

)
= f(S)+ρ(a1|S)+ρ (a2|S ∪ {a1})+ · · ·+ρ (n|S ∪ {a1} . . . {an−1})

Observe that, for the submodularity, ρ (i|S ∪ {a1} . . . {ai−1}) ≤ ρ (ai|S). There-
fore

f

(
S ∪

n⋃
i=1

{ai}

)
≤ f(S) +

n∑
i=1

ρ(ai|S)

This proves the lemma. �

We can finally prove our theorem.

Theorem 12. The greedy algorithm is a 1/(1-1/e) approximation w.r.t. Optimum

Proof. Let us denote with T the optimal set of elements, of A, i.e. the one that
maximizes the utility subject to the matroid constraint, and be zopt = f(T ) the
optimal utility. Let us denote with zalg the utility of the greedy algorithm. We
have to show that zalg ≥ (1 − 1/e)zopt. It is known that

(
1− 1

k

)k ≤ 1/e, ∀k ∈ N.
Therefore 1−

(
1− 1

k

)k ≥ 1− 1/e. Therefore, in order to show the thesis, it suffices
to show that

(3.1) zg ≥
kk − (k − 1)

k

kk
zopt

for at least one value k ∈ N. We choose k equal to the maximum cardinality of
a feasible set, that corresponds also to the number of iterations of the algorithm.
After the j-th insertion, the set built by the greedy algorithm is Sj . If we show
that

(3.2) f(Sj) ≥
kj − (k − 1)

j

kj
zopt, j = 1 . . . , k

we are sure that Equation 3.1 holds and the thesis will be proved.
We want to prove the inequality above by induction. Observe that it holds for

j = 0. Now, suppose it holds for a certain j. We want to prove that it holds for
j + 1.

Observe that, thanks to the lemma above, at each step j:

(3.3) f(T ) ≤ f(Sj) +
∑

i∈T\Sj

ρ(i|Sj)

We will find upper bounds to the two terms of the sum above. Let us denote ρi
the marginal utility achieved by the greedy algorithm at step i, i.e. ρi , f(Si) −
f(Si−1). Since the greedy algorithm selects at each step the element that brings the
maximum marginal utility, we are sure that ρj+1 = maxi∈A\Sj

ρ(i|Sj). Therefore
ρj+1 ≥ ρ(i|Sj),∀i ∈ T \ Sj , j = 1 . . . k − 1 and

∑
i∈T\Sj

ρ(i|Sj) ≤ |T \ Sj | · ρj+1 ≤
kρj+1. Thanks to what we found, we can rearrange (Equation 3.3) as

f(T ) ≤ f(Sj) + kρj+1

⇒ ρj+1 ≥
1

k
zopt −

1

k
f(Sj)



AN INTRODUCTION TO SUBMODULAR FUNCTIONS 5

Adding f(Sj) to both side

f(Sj+1) = f(Sj) + ρj+1+ ≥
1

k
zopt +

(
1− 1

k

)
f(Sj), j = 1 . . . k − 1

We now substitute the induction hypothesis Equation 3.2 inside the equation
above

j+1∑
i=1

ρi ≥
1

k
zopt +

(
1− 1

k

)
kj − (k − 1)

j

kj
zopt, j = 1 . . . k − 1

that is equivalent to

f(Sj+1) ≥
kj+1 − (k − 1)j+1

kj+1
zopt

�

4. Recognizing a submodular problem

When facing an optimization problem it may not be trivial to have some in-
sight of its properties and to build approximation algorithms. But f one recognizes
that the problem is submodular, one can simply exploit all the results available in
submodular function theory without trying to build them from the scratch.

In this section we consider, as an example, the classic Maximum Coverage Prob-
lem.

Problem 13. We have a set U = {u1, . . . uN}, that we call universe, and a finite
set of subsets of the universe A = {a1, a2, . . . , an}, where ai ⊆ U . We want to find
a collection S ⊆ A of this subsets that covers as many elements of U as possible.
We cannot consider as many subsets we want, but we are constrained to take at
most k of them. The problem is usually formalized as an ILP problem.

We introduce a decision variable xi for each subset ai, where xi = 1 if we include
subset ai in our collection, xi = 1 otherwise. We also introduce variable yj for each
element uj of the universe, which is one if uj is covered, i.e. at least one of the
selected subsets includes uj . The problem is

max
∑
uj∈U

yj

subject to ∑
ai∈A

xi ≤ k∑
ai3uj

xi ≥ yj , ∀uj ∈ U

yj ∈ {0, 1}, ∀uj ∈ U
xi ∈ {0, 1}, ∀ai ∈ A

This problem is known to be NP hard. How can we build an approximate algo-
rithm? How can we find its theoretical gap? If we blindly look at the formulation
above these questions may be hard to answer. But if we can describe the problem
above in terms of a submodular function and a matroid, we can use the general
result given in the previous sections.

We consider A, i.e. the set of subsets of the universe, our ground set. We
associate to a collection S ⊆ A a utility that is the number of elements of the
universe covered by the subsets considered in the collection, f(S) = |

⋃
a∈A a|.



AN INTRODUCTION TO SUBMODULAR FUNCTIONS 6

It is immediate to show that f is non decreasing. We want to show that it is
submodular. Let us consider a subset of the universe a ∈ A. The gain of adding it
to the collection S is the number of elements included in a that are not included in
any of the subsets belonging to S:

ρ(a|S) =

∣∣∣∣∣a \
{⋃

b∈S

b

}∣∣∣∣∣
Taking two collection S, T such that S ⊆ T , some of the new elements of the

universe that a is bringing to S may already be covered by some subset of the
collection T . Therefore

ρ(a|S) ≥ ρ(a|T )
This proves the submodularity of f . The fact that we can only consider collec-

tions of at most k subsets of the universe defines a matroid

M = {S ⊆ A| |S| ≤ k}
Therefore the problem can be expressed in this more compact form

max
S⊆A

f(S)

subject to
S ∈M

We can then directly apply the greedy algorithm and we are guaranteed that its
solution is at most 67% far from the optimum.

We profit from what said about the Maximum Coverage Problem to prove the
following

Theorem 14. The maximization of a submodular function f subject to a uniform
matroid constraint is a NP hard problem.

Proof. The problem we are talking about is whatever problem on the form of Prob-
lem 9. We have shown that the Maximum Coverage Problem is a particular
instance of that problem. This proves the thesis. �

5. Extensions

Submodular functions can describe a vast set of problems, more general that the
ones we have examined here. And in some specific cases, they can provide stronger
results, like the following.

Theorem 15. If function f is modular, then the greedy algorithm gives the exact
optimal solution.

We have just talked about uniform matroids, but similar results hold also in
cases where constraints are more complex, for example when each element has a
weight wi,∀i ∈ A and the constraint is that the sum of the weights of the elements
in the collection must not exceed a threshold, like in a knapsack problem. In this
case, we have another type of matroid

M = {S ⊆ A|
∑
i∈S

wi ≤ K}

Results are similar but not identical. In case of non uniform matroid a simple
greedy algorithm provides only a 2-approximation and more complex algorithms



AN INTRODUCTION TO SUBMODULAR FUNCTIONS 7

exist to find a 1
1−1/e approximation. In general, when trying to formalize a problem,

even if it cannot be described in the terms defined here, one should check the
literature about submodular functions to see if useful results have been found.

6. Useful Links

An entire course on this subject has been proposed at University of Washington
Bilmes [2014].

References

Jeff A. Bilmes. Submodular Functions, Optimization, and Applications to Machine
Learning, 2014. URL http://j.ee.washington.edu/{~}bilmes/classes/
ee596b{_}spring{_}2014/.
E-mail address: araldo@lri.fr

http://j.ee.washington.edu/{~}bilmes/classes/ee596b{_}spring{_}2014/
http://j.ee.washington.edu/{~}bilmes/classes/ee596b{_}spring{_}2014/

	1. Outline
	2. Definitions
	3. Algorithm
	4. Recognizing a submodular problem
	5. Extensions
	6. Useful Links
	References

